CBLT-Ⅱ 连续流动反应器停留时间分布测定实验装置(化工专业实验)
- 格式:doc
- 大小:606.00 KB
- 文档页数:4
连续反应器的停留时间分布及流动模型参数的测定连续反应器是化工过程中常用的反应器之一,其特点是进料和产物的连续流动,反应物在反应器中的停留时间是一个重要的参数。
停留时间分布及流动模型参数的测定对于反应器的设计、操作和优化具有重要意义。
停留时间分布是指进料从反应器的进口到出口所经历的时间。
在连续反应器中,每个分子或粒子在反应器中的停留时间可能不同,形成一定的分布。
停留时间分布的测定可以采用多种方法,其中较常用的是色谱法。
色谱法是一种基于成分浓度变化对时间的记录和分析的方法。
在连续反应器中,可以通过在进料中添加示踪剂,如某种色谱指示剂,来追踪反应物在反应器中的停留时间。
通过取样和分析,在不同时刻得到的浓度-时间曲线可以计算出停留时间分布。
流动模型参数的测定是指描述反应物在连续反应器中流动行为的参数。
常用的流动模型包括完全混合模型(CSTR)和分层流模型(PFR)。
完全混合模型假设反应物在反应器中快速均匀混合,适用于物理吸附、解离反应等。
分层流模型假设反应物在反应器中按照一定的流动方式进行,适用于化学反应、催化反应等。
流动模型参数的测定可以采用理论计算和实验测定结合的方法。
理论计算常用的方法包括理论模型的建立和数值模拟。
通过建立反应动力学模型和反应器流体力学模型,进行数值模拟,可以得到流动模型参数。
实验测定常用的方法包括加入示踪剂进行测定,如通过采样得到浓度-时间曲线,根据模型进行拟合,得到流动模型参数。
除了色谱法,还有其他一些测定停留时间分布和流动模型参数的方法。
例如,可以使用放射性示踪剂法,通过测量放射性示踪剂在反应器中的浓度变化,得到反应物的停留时间分布。
可以使用激光多普勒测速仪等仪器,测量流体在反应器中的速度分布,从而得到流动模型参数。
在连续反应器的设计和操作中,准确的停留时间分布和流动模型参数是非常重要的。
它们可以帮助确定最佳反应器尺寸和操作条件,提高反应器的效率和产物的质量。
因此,对于连续反应器的停留时间分布及流动模型参数的测定,需要选择合适的方法,并进行仔细的测量和分析。
测定停留时间分布实验报告测定停留时间分布实验报告引言:在许多科学领域,测定物质停留时间分布是一项重要的实验技术。
这项技术的应用范围广泛,涵盖了化学、物理、生物等多个领域。
本实验旨在通过测定溶液中颗粒物质的停留时间分布,研究其在不同条件下的扩散特性,以及对溶液的影响。
实验方法:首先,我们准备了一定浓度的溶液,并加入了待测颗粒物质。
然后,将溶液置于一个容器中,并通过一定的实验装置进行搅拌。
在搅拌的过程中,我们使用一定的探测器对颗粒物质进行监测,并记录下其离开容器的时间。
实验过程中,我们改变了搅拌速度、溶液浓度和温度等条件,以观察这些因素对停留时间分布的影响。
实验结果:通过实验数据的收集和分析,我们得到了颗粒物质的停留时间分布曲线。
在不同条件下,停留时间分布曲线呈现出不同的形态。
在低浓度的溶液中,停留时间分布曲线呈现出较为均匀的分布,说明颗粒物质在溶液中的扩散速度较快。
而在高浓度的溶液中,停留时间分布曲线则呈现出明显的峰值和尾部,说明颗粒物质的扩散速度受到了溶液浓度的限制。
此外,我们还发现了搅拌速度和温度对停留时间分布的影响。
在较低的搅拌速度下,停留时间分布曲线呈现出较长的尾部,说明颗粒物质的扩散速度受到了搅拌速度的限制。
而在较高的温度下,停留时间分布曲线则呈现出较短的尾部,说明颗粒物质的扩散速度受到了温度的影响。
讨论与结论:通过本实验,我们得出了一些结论。
首先,颗粒物质在溶液中的停留时间分布受到多个因素的影响,包括溶液浓度、搅拌速度和温度等。
其次,不同条件下的停留时间分布曲线形态不同,这表明颗粒物质的扩散速度在不同条件下具有差异。
此外,本实验还存在一些限制。
首先,我们只考虑了颗粒物质在溶液中的停留时间分布,而未考虑其在其他介质中的情况。
其次,实验中的探测器可能存在一定的误差,这可能会对实验结果产生一定的影响。
在今后的研究中,我们可以进一步探索其他因素对停留时间分布的影响,比如溶液pH值、颗粒物质大小等。
实验十九连续均相反应器停留时间分布的测定1 实验目的本实验旨在通过测量连续均相反应器中溶液的进出时间,得到反应器的停留时间分布,并探究不同进料流速对停留时间分布的影响。
2 实验原理连续均相反应器是指反应物在气液、液液或固液两相混合后,在反应器内不断流动,实现反应的一种装置。
在连续均相反应器中,每个质点在反应器内的停留时间是不同的,因此停留时间分布是一个反应器的重要性能参数。
停留时间分布是指质点在反应器内停留时间的概率密度函数,它能反映反应器内的流动特性、物理化学变化。
在本实验中,设计的反应器为塔式反应器,研究单一液相在反应器中的停留时间分布。
反应器内的搅拌器不断搅拌反应液,以保持液体中浓度的均匀分布,使反应均匀进行。
反应器内自上向下分别放置了进料管口、液面计和出料口,通过测量进出管口的时间,可以测定连续均相反应器中质点的停留时间分布。
3 实验步骤3.1 实验器材塔式连续反应器、溶液储罐、液面计、蠕动泵、计时器。
1. 准备实验样品。
将20%的乙醇溶液稀释为5%分数的乙醇溶液,作为实验样品。
2. 设置实验参数。
设定不同的进料流速,包括1.0 mL/min、2.0 mL/min、3.0 mL/min、4.0 mL/min、5.0 mL/min。
3. 注入实验样品。
将实验样品注入液体储罐,设定蠕动泵的流速。
4. 记录出料时间。
在实验操作开始时,记录出料口的时间和液面计读数,随着溶液的流动,不断记录出料时间和液面计读数。
5. 重复实验。
重复同样的实验步骤,至少进行3次以上的实验。
4 实验结果4.1 停留时间分布曲线通过实验数据计算得出不同进料流速下的停留时间分布曲线,如图所示。
图中的横坐标为反应器内质点的停留时间,纵坐标为停留时间的概率密度函数。
根据图中的曲线可以看出,不同进料流速下,停留时间分布的峰值和分布范围都存在差异。
在进料流速较低(≤2.0 m L/min)时,停留时间分布的峰值较窄、分布范围较窄。
附页:数据处理结果一、单釜实验部分 1, 原始图表2,原始电导率的Origin60作图200400600800100012001400160018000.70.80.91.01.11.21.31.41.5图1 单釜原始图像图2 单釜原始电导率作图3,平滑后原始电导率的Origin60作图200400600800100012001400160018000.70.80.91.01.11.21.31.41.54,浓度与时间的Origin60作图200400600800100012001400160018001020304050图3 单釜平滑后电导率作图 图4 单釜实验KCl 浓度与时间的关系图5,选取数据点计算数学期望、方差及模型参数根据要求,按离散化方法取30个数据点,如表1所示表1 单釜实验选取数据表二、多釜实验部分 1,原始图表2,原始电导率的Origin60作图1002003004005000.81.01.21.41.61.82.0图5 多釜原始图像图6 多釜原始电导率作图3,平滑后原始电导率的Origin60作图1002003004005000.81.01.21.41.61.82.04,浓度与时间的Origin60作图100200300400500010203040506070图7 多釜平滑后电导率作图图8 多釜实验KCl 浓度与时间的关系图5,选取数据点计算数学期望、方差及模型参数根据要求,按离散化方法取30个数据点,如表1—表3所示表2 多釜中釜1的选取数据表。
停留时间分布综合实验报告停留时间分布综合实验一、实验目的1.掌握用脉冲示踪法测定停留时间分布及数据处理方法;2.了解和掌握停留时间分布函数的基本原理;3.了解停留时间分布与模型参数的关系;4.了解多级混本实验通过单釜、多釜及管式反应器中停留时间分布的测定, 将数据计算结果用多釜串联模型来定量返混程度,从而认识限制返混的措施 和釜、管式反应器特性;5.了解和掌握模型参数N 的物理意义及计算方法;二、实验原理在连续流动反应器中,由于反应物料的返混以及在反应器内出现的层流,死角,短路等现象,使得反应物料在反应器中的停留时间有长有短,即形成停留时间分布,影响反应进程和最终结果;测定物料的停留时间分布是描述物料在反应器内的流动特性和进行反应器设计计算的内容之一;停留时间分布可以用停留时间分布密度函数 Et 和停留时间分布函数 Ft 来表示,这两种概率分布之间存在着对应关系,本实验只是用冲脉示踪法来测定 Et,利用其对应关系也可以求出 Ft 来;函数 Et 的定义是:在某一瞬间加入系统一定量示踪物料,该物料中各流体粒子将经过不同的停留时间后依次流出,而停留时间在t,t+dt 间的物料占全部示踪物料的分率为 Etdt;根据定义Et 有归一化性质:0.1`)(0=⎰∞dt t E 1 Et 可以用其他量表示为)()/()(0t c M Q t E ⋅= 2 其中:Q0主流体体积流量,M 为示踪物量,ct 为t 时刻流出的示踪剂浓度;对停留时间分布密度函数Et 有两个重要概念,数学期望_t 和方差2t σ,它们分别定义为Et 对原点的一次矩和二次矩;当实验数据的数量大,且所获样品是瞬间样品,即相应于某时刻t 下的样品,则:∑∑∑∑====-∆∆=∆∆=Ni iAiNi iAii Ni iiN i iiit ct ct tt E t t E t t 1111)()( 3211221122)()(t t ct ct t t t E t t E tNi iAiNi iAii N i iiNi ii it-∆∆=-∆∆=∑∑∑∑====σ 4 式中△ti 是两次取样时间,若等时间间隔取样,2112211t cct cct t Ni AiNi Aii tNi AiNi Aii -==∑∑∑∑====-σ 5对恒容稳定流动系统有: τ==-v V t R6 为了使用方便,常用对比时间τθt=来代换t,经这样变换后,有以下关系:)()(t E E τθ= 7222τσσθt = 8对全混流12=θσ,对活塞流02=θσ,对一般情况102<<θσ;用无因次2θσ来评价反应器内的流动状态比较方便,一般可将实际反应器当做多级串联釜式反应器加以描述,并认为每级为全混流反应釜,各级存料量相等,级间无返混;对多级全混釜有N 为串联全混釜的个数: 21θσ=N 9三、实验仪器、设备和试剂实验仪器与设备:釜式反应器两个、管式反应器一个、水泵一个、转子流量计,阀门,管线若干,电导率仪三台,分析天平; 实验试剂:饱和KCl 溶液;四、实验装置原理图1-槽;2-磁力泵;3-调节阀;4-三通阀;5-注射器;6、五、实验安排实验内容1、安装实验装置;2、测定不同浓度下KCl电导率的标准曲线最大值为2mS;计算对示踪剂注入量,并根据反应器体积计算KCl溶液的浓度范围是否在可测量范围;3、选择合适的流量,将平均停留时间保持在10-20min,注入适量的示踪剂,测定单釜不同时间的电导率值,绘制单釜停留时间与电导关系曲线,计算停留时间分布函数及停留时间分布密度函数;4、选择合适流量,将平均停留时间保持在10-20min,注入适量的示踪剂,测定两釜并联条件下的电导率值,计算并绘制单釜及两釜并联的停留时间与电导关系曲线,计算停留时间分布函数及停留时间分布密度函数;5、按4进行两釜串联实验;6、测定釜式、管式反应器串联的停留时间分布曲线,并计算停留时间分布函数及密度分布函数;7、大型智能仪器的操作使用,用其测量釜式反应器串联的停留时间分布曲线,并计算停留时间分布函数及密度分布函数;实验安排时间实验内容六、数据处理电导率的标准曲线由origin作图,可得到如下:经过线性模拟,我们得到其电导率和浓度之间是线性关系,其相关的数值如下表:从上表中,我们不难发现,电导率和浓度之间的关系的线性关系很强,得到:单釜、不转、流量Q=4L/h由origin作图得到,时间与浓度之间的关系如下图:由上表中的数据,用origin作图并模拟积分得:单釜、中转、流量Q=4L/h由origin 作图得到,时间与浓度之间的关系如下图:62.040.9103517.514396tt 3517.514396910.4056.09496107456258186901.11t )()(910.40s 56.09496107425548.83729)()(t :456258186901.11)(425548.83729)(56.09496107)(origin 22222222020≈====-=-=≈=====⎰⎰⎰⎰⎰⎰⎰∞∞∞∞∞∞∞τσσσθt tdtt c dt t c t dt t c dt t tc dt t c t dt t tc dt t c 无因次方差:对于恒容稳态系统有:平均停留时间;;作图并模拟积分得:由上表中的数据,用单釜、中转、流量Q=6L/h由origin作图得到,时间与浓度之间的关系如下图:71.071.30565936.66429tt 65936.6642971.05353.699037068125591432.612t )()(s71.05353.6990370600551130.84974)()(t :8125591432.612)(00551130.84974)(53.69903706)(origin 222222022020≈====-=-=≈=====⎰⎰⎰⎰⎰⎰⎰∞∞∞∞∞∞∞τσσσθt tdtt c dt t c t dtt c dt t tc dt t c t dt t tc dt t c 无因次方差:对于恒容稳态系统有:平均停留时间;;作图并模拟积分得:由上表中的数据,用单釜、中转、流量Q=8L/h由origin作图得到,时间与浓度之间的关系如下图:双釜串联、都不转、流量Q=4L/h由origin 作图得到,时间与浓度之间的关系如下图:18.029.855347806753.1tt 6753.13478029.8554.26534938252254205416.61t )()(s29.8554.2653493810353648.10380)()(t :252254205416.61)(10353648.10380)(4.26534938)(origin 222222022020≈====-=-=≈=====⎰⎰⎰⎰⎰⎰⎰∞∞∞∞∞∞∞τσσσθt tdtt c dt t c t dtt c dt t tc dt t c t dt t tc dt t c 无因次方差:对于恒容稳态系统有:平均停留时间;;作图并模拟积分得:由上表中的数据,用双釜串联、一釜中转一釜大转、流量Q=2L/h由origin 作图得到,时间与浓度之间的关系如下图:32.047.15040523.715280tt 0523.71528047.15045515.45364336100546033467.8t )()(s47.15045515.453643339672523203.1205)()(t :6100546033467.8)(39672523203.1205)(5515.4536433)(origin 22222222020≈====-=-=≈=====⎰⎰⎰⎰⎰⎰⎰∞∞∞∞∞∞∞τσσσθt tdtt c dt t c t dtt c dt t tc dt t c t dt t tc dt t c 无因次方差:对于恒容稳态系统有:平均停留时间;;作图并模拟积分得:由上表中的数据,用双釜串联、一釜中转一釜大转、流量Q=4L/h由origin作图得到,时间与浓度之间的关系如下图:47.017.9468425.421347tt 8425.42134717.94658.3170245641132510950074.0t )()(s17.94658.31702456028257869.28027)()(t :41132510950074.0)(028257869.28027)(58.31702456)(origin 222222022020≈====-=-=≈=====⎰⎰⎰⎰⎰⎰⎰∞∞∞∞∞∞∞τσσσθt tdtt c dt t c t dtt c dt t tc dt t c t dt t tc dt t c 无因次方差:对于恒容稳态系统有:平均停留时间;;作图并模拟积分得:由上表中的数据,用双釜串联、一釜不转一釜大转、流量Q=6L/h由origin 作图得到,时间与浓度之间的关系如下图:43.095.7340403.230012tt 0403.23001295.734755.35476810620254124047.17t )()(s95.734755.3547681051553935.48509)()(t :620254124047.17)(51553935.48509)(755.35476810)(origin 222222022020≈====-=-=≈=====⎰⎰⎰⎰⎰⎰⎰∞∞∞∞∞∞∞τσσσθt tdtt c dt t c t dtt c dt t tc dt t c t dt t tc dt t c 无因次方差:对于恒容稳态系统有:平均停留时间;;作图并模拟积分得:由上表中的数据,用双釜并连、都不转、流量为4L/h。
实验一 多釜串联连续流动反应器中停留时间分布的测定一、实验目的本实验通过单釜与三釜反应器中停留时间分布的测定,将数据计算结果用多釜串联模型来描述返混程度,从而认识限制返混的措施。
1、掌握停留时间分布的测定方法;2、了解停留时间分布与多釜串联模型的关系;3、掌握多釜串联模型参数N 的物理意义及计算方法。
二、实验原理在连续流动的反应器内,不同停留时间的物料之间的混和称为返混。
返混程度的大小,一般很难直接测定,通常是利用物料停留时间分布的测定来研究。
然而在测定不同状态的反应器内停留时间分布时,可以发现,相同的停留时间分布可以有不同的返混情况,即返混与停留时间分布不存在一一对应的关系,因此不能用停留时间分布的实验测定数据直接表示返混程度,而必须借助于反应器数学模型来间接表达。
物料在反应器内的停留时间完全是一个随机过程,须用概率分布方法来定量描述。
所用的概率分布函数为停留时间分布密度函数E (t)和停留时间分布函数F (t)。
停留时间分布密度函数E (t )的物理意义是:同时进入的N 个流体粒子中,停留时间介于t 到t +dt 间的流体粒子所占的分率dN/N 为E (t )dt 。
停留时间分布函数F (t )的物理意义是:流过系统的物料中停留时间小于t 的物料所占的分率。
停留时间分布的测定方法有脉冲输入法、阶跃输入法等,常用的是脉冲输入法。
当系统达到稳定后,在系统的入口处瞬间注入一定量Q 的示踪物料,同时开始在出口流体中检测示踪物料的浓度变化。
由停留时间分布密度函数的物理含义,可知: E (t )dt =VC (t )/Q (1) ⎰∞=0)(dt t VC Q (2)所以 ⎰⎰∞∞==)()()()()(dtt C t C dtt VC t VC t E (3)由此可见E (t )与示踪剂浓度C (t )成正比。
本实验中用水作为连续流动的物料,以饱和KCl 作示踪剂,在反应器出口处检测溶液的电导值。
在一定范围内,KCl 浓度与电导值成正比,则可用电导值来表达物料的停留时间变化关系,即E (t )∝L (t ),这里L(t)=L t -L ∞,L t 为t 时刻的电导值,L ∞为无示踪剂时电导值。
停留时间分布综合实验报告停留时间分布综合实验一、实验目的1.掌握用脉冲示踪法测定停留时间分布及数据处理方法;2.了解和掌握停留时间分布函数的基本原理;3.了解停留时间分布与模型参数的关系;4.了解多级混本实验通过单釜、多釜及管式反应器中停留时间分布的测定, 将数据计算结果用多釜串联模型来定量返混程度,从而认识限制返混的措施 和釜、管式反应器特性;5.了解和掌握模型参数N 的物理意义及计算方法。
二、实验原理在连续流动反应器中,由于反应物料的返混以及在反应器内出现的层流,死角,短路等现象,使得反应物料在反应器中的停留时间有长有短,即形成停留时间分布,影响反应进程和最终结果。
测定物料的停留时间分布是描述物料在反应器内的流动特性和进行反应器设计计算的内容之一。
停留时间分布可以用停留时间分布密度函数E(t)和停留时间分布函数F(t)来表示,这两种概率分布之间存在着对应关系,本实验只是用冲脉示踪法来测定E(t),利用其对应关系也可以求出F(t)来。
函数E(t)的定义是:在某一瞬间加入系统一定量示踪物料,该物料中各流体粒子将经过不同的停留时间后依次流出,而停留时间在[t ,t+dt]间的物料占全部示踪物料的分率为E(t)dt 。
根据定义E(t)有归一化性质:0.1`)(0=⎰∞dt t E (1)E(t)可以用其他量表示为)()/()(0t c M Q t E ⋅=(2)其中:Q0主流体体积流量,M 为示踪物量,c(t)为t 时刻流出的示踪剂浓度。
对停留时间分布密度函数E(t)有两个重要概念,数学期望_t 和方差2t σ,它们分别定义为E(t)对原点的一次矩和二次矩。
当实验数据的数量大,且所获样品是瞬间样品,即相应于某时刻t 下的样品,则:∑∑∑∑====-∆∆=∆∆=Ni iAiNi iAii Ni iiN i iiit ct ct tt E t t E t t 1111)()((3)211221122)()(t t ct ct t t t E t t E tNi iAiNi iAii N i iiNi ii it -∆∆=-∆∆=∑∑∑∑====σ(4) 式中△ti 是两次取样时间,若等时间间隔取样,2112211t cct cct t Ni AiNi Aii t Ni AiNi Aii -==∑∑∑∑====-σ(5)对恒容稳定流动系统有:τ==-v V t R(6) 为了使用方便,常用对比时间τθt=来代换t ,经这样变换后,有以下关系:)()(t E E τθ=(7)222τσσθt =(8)对全混流12=θσ,对活塞流02=θσ,对一般情况102<<θσ。
实验二连续搅拌釜式反应器液体停留时间分布及其流动模型的测定实验二连续搅拌釜式反应器液体停留时间分布及其流动模型的测定一、实验目的当流体连续流过搅拌釜式反应器时,由于各种原因造成物料质点在反应器内停留不一定完全相同,因此形成不同的停留时间分布。
不同停留时间分布直接影响反应的结果(如反应的最终转化率可能不同)。
单级连续搅拌釜式反应器的理想流动模型为全混流模型,而实际反应器是否达到理想流动模型,需要通过实验来检验。
非理想流动反应器的流动模型也需要通过实验来确定。
多级连续搅拌釜式反应器的流动特性和流动模型也都需要通过实验进行研究。
连续流动的搅拌釜式反应器的流动特性的研究和流动模型的确立,一般采用实验测定停留时间分布的方法。
实验测定停留时间分布的方法常用的脉冲激发——响应技术。
本实验采用脉冲激发的方法测定液体(水)连续流过搅拌釜式反应器的停留时间分布曲线。
由此了解反应器的流动特性和流动模型。
通过本实验,使实验者观察和了解连续流动的单级、二级串联或三级串联搅拌釜式反应器的结构、流程和操作方法;掌握一种测定停留时间分布的实验技术;初步掌握液体连续流过搅拌釜式反应器的流动模型的检验和模型参数的测定方法。
无疑,通过实验对于停留时间分布与返混的概念,以及有关流动特性数学模型的概念、原理和研究方法会有更具体的了解和更加深入的理解。
二、实验原理流体流经反应器的流动状况,可以采用激发—响应技术,通过实验测定停留时间分布的方法,以一定的表达方式加以描述。
本实验采用的脉冲激发方法是在设备入口处,向主体流体瞬时注入少量示踪剂,与此同时在设备出口处检测示踪剂的浓度)(t c 随时间t 的变化关系数据或变化关系曲线。
由实验测得的t t c -)(变化关系曲线可以直接转换为停留时间分布密度t t E -)(随时间t 的关系曲线。
由实验测得的t t E -)(曲线的图像,可以定性判断流体流经反应器的流动状况。
由实验测得全混流反应器和多级串联全混流反应器的t t E -)(曲线的典型图像如图1所示。
CBLT-Ⅱ连续流动反应器停留时间分布测定实验装置
一、概述
CBLT-Ⅱ连续流动反应器停留时间分布测定实验装置是用来测定带搅拌的釜式液相反应器中物料返混情况,是加深对反应器返混特性的最好手段。
通过示踪剂的瞬时加入,用数字电导率仪测出各釜出口处浓度随时间的变化,经微机采集数据和处理后可得到不同釜数串联的停留时间分布函数和方差,并计算出多釜串联的理论釜数。
本装置设备整体为铝合金框架结构,釜式反应器为有机玻璃材质;釜内搅拌均匀稳定,示踪剂瞬间加入,加入量准确;使用电导率仪测定示踪剂在釜内的浓度变化,并通过计算机进行数据采集及处理。
通过本实验,让实验者观察和了解连续流动的三级串联搅拌釜式反应器的结构、流程和操作方法;掌握一种测定停留时间分布的实验技术;初步掌握液体连续流过搅拌釜式反应器的流动模型的检验和模型参数的测定方法。
通过实验对于停留时间分布与返混的概念,以及有关流动特性教学模型的概念、原理和研究方法会有更具体的了解和更加深入的理解。
二、原理
在连续流动的反应器内,不同停留时间的物料之间的混和称为返混。
返混程度的大小,~般很难直接测定,通常是利用物料停留时间分布的测定来研究。
然而测定不同状态的反应器内停留时间分布时,我们可以发现,相同的停留时间分市可以有不同的返混情况,即返混与停留时间分布不存在一~对应的关系,因此不能用停留时间分布的实验测定数据直接表示返混程度,而要借助于反应器数学模型来间接表达。
物料在反应器内的停留时间完全是一个随机过程,须用概率分布方法来定量描述。
所用的概率分布函数为停留时间分布密度函数ƒ(t)和停留时间分布函数F(t)。
停留时间分布密度函数ƒ(t)的物理意义是:同时进入的N个流体粒子中,停留时间介于t到t+dt间的流体粒子所占的分率d N/为ƒ(t)dt。
停留时间分布函数F(t)的物理意义是:流过系统的物料中停留时间小于t的物料的分率。
停留时间分布的测定方法有脉冲法,阶跃法等,常用的是脉冲法。
所谓脉冲法,当系统达到稳定后,在系统的入口处瞬间注入一定量Q的示踪物料,并于此瞬间开始计时(t=0),同时用某种方法检测出口处流体中示踪剂的浓度C(t)随时间的变化,得C(t)-t曲线。
同时开始在出口流体中检测示踪物料的浓度变化。
由停留时间分布密度函数的物理含义,可知
ƒ(t)dt=V·C(t)dt/Q (1)
Q=∫0∞VC(t)dt (2)
ƒ(t)= VC(t)/∫0∞VC(t)dt=C(t)/∫0∞C(t)dt (3)
由此可见f (t)与示踪剂浓度C(t)成正比。
因此,本实验中用水作为连续流动的物料,以饱和KCl作示踪剂,在反应器出口处检测溶液电导值。
在一定范围内,KCl浓度与电导值成正比,则可用电导值来表达物料的停留时间变化关系,即ƒ(t)∝L(t),这里L(t)=L t-L∞为t时刻的电导值,L∞为无示踪剂时电导值。
停留时间分布密度函数f (t)在概率论中宥二个特征值,平均停留时间(数学期望)t和方差σ
t的表达式为:
采用离散形式表达,并取相同时间间隔Δt,则:
的表达式为:
也用离散形式表达,并取相同Δt,则:
若用无因次对比时间θ来表示,即θ=t/t,
无因次方差。
在测定了一个系统的停留时间分布后,如何来评介其返混程度,则需要用反应器模型来描述,这里我们采用的是多釜串联模型。
所谓多釜串联模型是将一个实际反应器中的返混情况作为与若干个全混釜串联时的返混程度等效。
这里的若干个全混釜个数n是虚拟值,并不代表反应器个数,n称为模型参数。
多釜串联模型假定每个反应器为全混釜,反应器之间无返混,每个全混釜体积相同,则可以
推导得到多釜串联反应器的停留时间分布函数关系,并得到无因次方差与模型参数n存在关系为
n=1/
当n=l,=l,为全混釜特征;
当n→∞,→0,为平推流特征;
这里n是模型参数,是个虚拟釜数,并不限于整数。
三、装置技术指标及控制精度
釜式反应器规格:1L,Φ110×120mm
马达额定转速:0~600 r/min
液体流量:6-60 L/h 控制精度±1%
电导仪:0~2000µS/cm 测量精度±l% (F·S)
四、工艺流程说明及操作面板
检查设备安装无误后,将水打入储槽,保持水位恒定。
开阀门使水充满反应釜,用转子流量计调节水的流量,保持流量稳定。
通电,开启电源,开动搅拌器,并注意控制转速稳定。
开启电导电极按钮。
待绘出稳定直线(此时在基线位置)后,同时记录此时刻的位置。
装置工艺流程见附图。
五、操作步骤
1.准备工作
(1)开工前明确试验任务、目的和意义。
明确试验条件、分析项目及注意事项。
(2)连接好入水管线,打开自来水阀门,通过观察水槽上的液位计将进料水槽和进料水泵灌满水,启动进料水泵,向反应釜内注水,以排尽泵、反应釜和管线内的气体。
(3)按实验计划调节水的流量(30-60L/h),再由釜底排水阀调节釜内液面高度,以每个釜出口高度为准。
(4)检查电极导线连接是否正确。
启动电路控制器、电导率仪和电子计算机,并调好数据采篥程序。
调节和校正电导率仪,直至屏幕上显示的电导率值稳定。
(注:初次使用应对电导电极参数进行设定)
(5)配置KCI饱和溶液,使用注射针管反复吸取饱和溶液,进行排气处理。
最后将注射针管吸满待用。
2.测定停留时间分布
(1)分别开启釜1、釜2、釜3搅拌马达开关,后再调节马达转速的旋钮,使三釜搅拌程度在200转左右。
(2)用注射针管将适量示踪剂(KCI饱和溶液)迅速由l釜顶的注入口注入釜内。
同时,在计算机键盘上按下数据采集指令键。
示踪剂注入量应与主体流体的流量相适应,以屏幕上显示最高电导率值不超过2000µS/cm为准(一般3ml左右)。
注入口根据试验要求,单釜、双釜或三釜串联实验,分别由第3釜、第2釜或第1釜釜顶注入口注入。
(3)当采集的电导值再次重复出现初值时,按下终止采集数据的指令键,终止采集。
将采集的数据付于文件名存入机内待用。
若欲改变操作条件(如改变水的流量或搅拌速度)则可按上述实验步骤重复实验。
3.停工
(1)先关闭计算机,再关闭电导率仪,并将转数缓慢调至零,最后关闭电路控制器的电源;
(2)先关闭泵的出口阀,最后停泵;如长期停止实验;通过放空阀将水槽和泵中液体全部放掉。
(3)将反应釜内液体全部排尽,使用去离子水冲洗电导电极;
(4)关掉装置总电源;
六、实验注意事项
1.实验过程中.要保持水的流量和釜内液面高度稳定,并保证各釜有效容积相等。
若液面高度不能维持恒定,则需检查是否有漏气的地方。
2.实验过程中要保持操作条件恒定和测试仪器性能稳定。
每次实验前,须检查校正电导率仪的零点:保持电极插头干净,用前最好用丙酮擦拭干净,防止电极上气泡的形成,一旦有气泡必须及时清除,否则会影响测量的准确性和稳定性,以致造成实验的失败。
3.搅拌器的启动和调速必须缓慢操作,切忌动作过猛,以防损坏设备。
七、工艺流程图
八、实验结果
1.记录实验设备与操作基本参数
(1)实验设备参数
搅拌釜的直径:D=100mm
高度:H=120mm
搅拌器的形式:旋桨式
桨叶直径:d=40mm
桨叶宽度:b=10mm
桨叶高度:h1= mm
(2)操作参数
搅拌釜的级数:n=
料液高度:h= mm
有效容积:V= L
水的体积流率:V s,o= m3·s-1
示踪剂注入量:Vi= ml
搅舞速度:R= r·min-1
操作温度:T= ℃
操作压力:P= MPa
初始电导率值L0= µS/cm;起峰电导率值Lr= µS/cm;
最高电导率值L max= µS/cm。
3.参考下列步骤整理实验数据。
计算式:
L(t)=L(n)-L0
(2)由上列实验数据计算停留时间的主要数字特征和模型参数。
列出表中各项的计算公式。
(3)根据每次实验结果,检验是否已接近理想流动模型。
进而从一系列实验结果中得出实现理性流动模型的主要操作条件的数值范围。