一元二次方程与几何结合
- 格式:docx
- 大小:563.11 KB
- 文档页数:5
22.3 一元二次方程的实际应用学案——几何图形问题知识技能1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.2.2.能根据具体问题的实际意义,检验结果是否合理.数学思考经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
解决问题通过解决封面设计与草坪规划的实际问题,学会将实际应用问题转化为数学问题,体验解决问题策略的多样性,发展实践应用意识.情感态度通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.重难点、关键重点:列一元二次方程解有关问题的应用题难点:发现问题中的等量关系关键:根据面积与面积之间的等量关系建立一元二次方程的数学模型一、 复习引入常见的几何图形的面积公式:(1)矩形的面积=长× ; (2)正方形的面积=(3)三角形的面积=21×底× ; (4)梯形的面积=21×( )×高; (5).圆的面积公式是什么?二、 探索新知1、一个正方形的面积为362m ,若设正方形的边长为x m ,则列出方程为2、要使一块长方形场地的面积为162m ,并且长比宽多6 m , 若设长方形场地的宽为x m ,则长为 ,根据题意,列出方程为3、一个直角三角形两条直角边相差3cm ,面积为92cm ,若设较短的直角边长为xcm ,则较长的直角边长为 ,根据题意,列出方程为 三、例题选讲:例1、在长为60cm ,宽为40cm 的矩形的四个角上截去四个全等的小正方形,折成一个无盖的长方体水槽,使它的底面积为8002cm ,求所截去小正方形的边长。
解:设所截去小正方形的边长为x cm ,则底面长方形的长为 ,宽为 ,根据题意,得答:例2、生物小组有一块长32m ,宽20m 的矩形试验地,为了管理方便,准备沿平行于两边的方向纵、横各开辟一条等宽的小道.要使种植面积为5402m ,小道的宽应是多少?解:设小道的宽为x m ,根据题意,得把两条道路平移到靠近矩形的一边上,用含x 的代数式表示草坪的长为米,宽为 米,根据草坪的面积为300平方米可列出方程 。
用一元二次方程解决几何图形问题含答案用一元二次方程解决几何图形问题基础题知识点1:一般图形的问题1.绿苑小区在规划设计时,准备在两幢楼房之间设置一块面积为900平方米的矩形绿地,并且长比宽多10米。
设绿地的宽为x米,根据题意,可列方程为x(x+10)=900.2.从一块正方形的木板上锯掉2m宽的长方形木条,剩下的面积是48平方米,则原来这块木板的面积是64平方米。
3.一个直角三角形的两条直角边相差5cm,面积是7平方厘米,则它的两条直角边长分别为2cm和7cm。
4.一块矩形菜地的面积是120平方米,如果它的长减少2米,那么菜地就变成正方形,则原菜地的长是12米。
5.一个矩形周长为56厘米。
1) 当矩形面积为180平方厘米时,长、宽分别为18厘米和10厘米。
2) 不能围成面积为200平方厘米的矩形,因为方程y^2-28y+200=0无实数根。
知识点2:边框与甬道问题6.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花,原空地一边减少了1米,另一边减少了2米,剩余空地的面积为18平方米。
求原正方形空地的边长,设原正方形空地的边长为x米,则可列方程为(x-1)(x-2)=18.7.在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644平方米,则道路的宽应为22米,因为可列方程为100×80-100x-80x=7644.10.某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.设道路的宽为x m,则草坪的面积为(32-2x)(20-x),因此正确的方程是A:(32-2x)(20-x)=570.11.在长为70 m,宽为40 m的长方形花园中,欲修宽度相等的观赏路(阴影部分所示),要使观赏路面积占总面积的1/8,则路宽x应满足的方程是C:(40-2x)(70-3x)=2450.。
一元二次方程解决问题的各种形式一元二次方程解决问题的各种形式一元二次方程是中学数学学习中的重要内容,它不仅在数学中有着广泛的应用,还能帮助我们解决实际生活中的问题。
在本文中,我们将从多个不同的角度探讨一元二次方程解决问题的各种形式,帮助读者更全面地理解这一重要的数学概念。
1. 一元二次方程的基本形式一元二次方程是指只含有一个未知数的二次方程,通常写作ax²+bx+c=0,其中a、b、c分别是常数且a≠0。
解一元二次方程的方法有很多种,如配方法、公式法、完全平方公式等。
我们先来看一个简单的例子,通过配方法来解一元二次方程。
我们要解方程x²+6x+5=0,我们可以通过配方法将其写成(x+1)(x+5)=0,进而得出方程的解为x=-1或x=-5。
这是解一元二次方程的基本形式,但实际问题往往不止这一种形式。
2. 几何解法除了代数方法外,一元二次方程还可以通过几何方法来解决实际问题。
一条电线和一根铁管构成一个角,已知铁管的长度比电线的长度多5米,且电线和铁管的夹角是45度。
我们可以建立一个关于铁管长度的一元二次方程,并通过几何解法求出铁管的长度。
这种几何解法可以帮助我们更直观地理解一元二次方程在实际问题中的应用。
3. 时间、速度与距离的问题在物理和工程学科中,一元二次方程经常用于描述时间、速度与距离之间的关系。
一个运动员以8m/s的速度沿着一条笔直的跑道奔跑,30秒后他跑了240米的路程。
我们可以建立一个关于时间和距离的一元二次方程,通过分析这个方程来解决实际问题。
这种应用形式使得一元二次方程成为了解决实际问题的重要工具。
4. 经济与商业问题一元二次方程也被广泛地应用于经济学和商业领域。
某公司生产一种产品,生产成本和销售数量之间存在着一定的关系。
我们可以建立一个关于销售数量的一元二次方程,通过求解这个方程来找到最优的生产数量,使得利润最大化。
这种经济与商业问题的应用形式,让一元二次方程成为了决策分析中的有力工具。
二次函数与几何综合1.已知关于x 的一元二次方程a x 2+bx +1=0,中,b+m +1; (1)若a =4,求b 的值;(2)若方程a x 2+bx +1=0有两个相等的实数根,求方程的根.2.如图,利用一面增(墙EF 最长可利用28米),围成一个矩形花园ABCD .与培平行的一边 BC 上要预留2米宽的入口(如图中AN 所示,不用砌墙)用60米长的墙的材料,当矩形 的长BC 为多少米时,矩形花园的面积为30平方米:能否围成430平方米的矩形花为 什么?3.如图,直线AB :y =kx +3过点(-2,4)与抛物线y =交于A 、B 两点; (1)直接写出点A 、点B 的坐标;(2)在直线AB 的下方的抛物线上求点P ,使△ABP 的面积等于5.N4.如图,抛物线y=(x-1) 2+m的图象与x轴交于A、B两点与y轴交于点C,且AB=4;(1)求抛物线的解析式;(2)将抛物线沿对称轴向上平移k个单位长度后与线段BC交于D、E两个不同的点,求k 的取值范围;(3)M为线段QB上一点(不含O、B两点)过点M作y轴的平行线交抛物线于点M,交线段BC于点P,若△PCN为等腰三角形,求M点的坐标.图1图2图35.利用一面长为22米的墙和46米的篱笆围成如图所示的矩形菜地菜地有2个2米宽的门,门用其它材料.(1)如何搭建使矩形菜地的面积方200平方米?(2)如何搭建使矩形菜地的面积最大,最大为多少平方米?6.如图1,边长为4的正方形ABCD 中,点E 在AB 边上(不与点A ,B 重合),点F 在BC 边上(不与点B 、C 重合).第一次操作:将线段EF 绕点F 断时针旋转,当点E 落在正方形上时,记为点G ;第二次操作:将线段FG 绕点G 顺时针旋转,当点F 落在正方形上时,记为点H ;依此橾作下去…(1)图2中的△EFD 是经过两次操作后得到的,其形状为 ,求此时线段EF 的长; (2)若经过三次操作可得到四边形EFGH .①请判断四边形EFGH 的形状为 ,此时AE 与BF 的数蜇关系是 ;②以①中的结论为前提,设AE 的长为x ,四边形EFGH 的面积为y ,求y 与x 的函数关系式及面积y 的取值范围.图1 图2 备用图EF A B CDEFA B C DHF A BC DEG7.如图,一次函数122y x=+分别交y轴、x轴于A、B两点,抛物线2y x bx c=-++过A、B两点.(1)求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A,M、N、D为项点作平行四边形,求第四个项点D的坐标.8.某商场在1月至12月份经销某种品牌的服装,由于受到时令的影明,该种服装的销售情況 如下:销售价格1y (元/件)与销售月份x (月)的关系大致满足如图的函数,销售成本2y (元/件)与销售月份x (月)满足2y =10100(16)14(612)3x x x x x x -+⎧⎪⎨⎪⎩≤<且为整数≤<且为整数,月销售量3y (件)与销售月份x (月)満足3y =1Ox -20.(1)根据图象求出销售价格1y (元/件)与销售月份x (月)之间的函数关系式:(6≤x ≤12且x 为整数)(2)求出该服装月销售利润W (元)与月份x (月)之向的函数关系式,并求出哪个月份的销售利润最大?最大利润是多少?(6≤x ≤12且x 为整数)9.如图,等边△ABC 和等边△DEC ,CE 和AC 重合.CEB .(1)求证:AD =BE ;(2)若CE 绕点C 顺时针旋转30°,连BD 交AC 于点G ,取AB 的中点F 连FG ,求证:BE =2FG ; (3)在(2)的条件下AB =2,则AG =________.(直接写出结果)备用AB C DEFG G FEDCBAEDCBA10..如图开口向下的抛物线y=a2x+bx+c交x轴于A(−1,0)、B(5,0)两点,交y轴于点C(0,5)(1)求抛物线的解析式;(2)设抛物线的顶点为D,求△BCD的面积;(3)在(2)的条件下,P、Q为线段BC上两点(P左Q右,且P、Q不与B、C重合),PQ=,在第一象限的抛物线上是否存在这样的点R,使△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.备用图2备用图1。
解一元二次方程的几何意义与实际应用一、引言二、一元二次方程的几何意义1. 直线与抛物线的交点2. 抛物线的顶点三、一元二次方程的实际应用1. 抛物线的轨迹2. 物体的自由落体运动3. 生活中的应用举例四、结论一、引言一元二次方程是形如ax^2+bx+c=0(其中a≠0)的方程,它是高中数学中一个重要的知识点。
解一元二次方程除了可以推算出方程的根之外,还有着丰富的几何意义和实际应用。
本文将探讨解一元二次方程的几何意义以及它在实际生活中的应用。
二、一元二次方程的几何意义1. 直线与抛物线的交点当一元二次方程表示一条直线与一条抛物线的交点时,解方程的根对应于这两条曲线的交点的横坐标。
通过解方程,我们可以确定直线与抛物线的交点在平面直角坐标系中的位置。
2. 抛物线的顶点对于一元二次方程y=ax^2+bx+c,其中a>0,它表示一个开口朝上的抛物线。
解方程可以得到抛物线的顶点坐标(-b/2a, -Δ/4a),其中Δ=b^2-4ac是方程的判别式。
顶点是抛物线的最低点或最高点,通过解方程,我们可以精确地确定抛物线的顶点位置。
三、一元二次方程的实际应用1. 抛物线的轨迹抛物线是一种常见的曲线,在物理学、弹道学和工程学等领域有着广泛的应用。
例如,在计算机图形学中,抛物线常用于描述自然界中的物体运动轨迹,如子弹、火箭等的飞行轨迹。
2. 物体的自由落体运动物体在重力作用下进行自由落体运动时,其运动轨迹为抛物线。
通过解一元二次方程,我们可以确定物体的运动方程,从而计算出物体在不同时间下的位置、速度和加速度等参数。
这对于工程设计、运动模拟等方面都具有重要意义。
3. 生活中的应用举例一元二次方程在生活中也有着许多实际应用。
比如,在建筑学中,用一元二次方程可以计算出拱形建筑物的高度和宽度等参数;在金融学中,一元二次方程可以用来模拟股票价格的变化趋势;在电子工程中,一元二次方程可以用于设计天线的辐射特性。
四、结论通过解一元二次方程,我们不仅可以推算出方程的根,还可以获得方程的几何意义和实际应用。
已知线段AB的长为a,以AB为边在AB的下方作正方形ACDB.取AB边上一点E,以AE为边在AB的上方作正方形AENM.过E作EF丄CD,垂足为F点.若正方形AENM与四边形EFDB 的面积相等,則AE的长为?如图,矩形ABCD的周长是20cm,以AB,CD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和ADGH的面积之和68cm2,那么矩形ABCD的面积是?如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为1cm2,则它移动的距离AA′等于?如图,正方形ABCD的边长为1,E、F分别是BC、CD上的点,且△AEF是等边三角形,则BE 的长为?一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2米,坡角∠A=30°,∠B=90°,BC=6米.当正方形DEFH运动到什么位置,即当AE为多少米时,有DC2=AE2+BC2.如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm.(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形;(3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由.如图,在矩形ABCD中,BC=20cm,P、Q、M、N分别从A、B、C、D出发,沿AD、BC、CB、DA 方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止、已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm,(1)当x为何值时,点P、N重合;(2)当x为何值时,以P、Q、M、N为顶点的四边形是平行四边形.如图,有一块塑料矩形模板ABCD,长为10cm,宽为4cm,将你手中足够大的直角三角板PHF 的直角顶点P落在AD边上(不与A、D重合),在AD上适当移动三角板顶点P.(1)能否使你的三角板两直角边分别通过点B与点C?若能,请你求出这时AP的长;若不能,请说明理由;(2)再次移动三角板位置,使三角板顶点P在AD上移动,直角边PH始终通过点B,另一直角边PF与DC延长线交于点Q,与BC交于点E,能否使CE=2 cm?若能,请你求出这时AP 的长;若不能,请你说明理由.如图,Rt△ABC中,∠B=90°,AC=10cm,BC=6cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以2cm/s的速度,沿AB向终点B移动;点Q以1cm/s的速度沿BC向终点C移动,其中一点到终点,另一点也随之停止.连接PQ.设动点运动时间为x秒.(1)用含x的代数式表示BQ、PB的长度;(2)当x为何值时,△PBQ为等腰三角形;(3)是否存在x的值,使得四边形APQC的面积等于20cm2?若存在,请求出此时x的值;若不存在,请说明理由.如图,△ABC中,∠C=90°,AC=8cm,BC=4cm,一动点P从C出发沿着CB方向以1cm/S的速度运动,另一动点Q从A出发沿着AC方向以2cm/S的速度运动,P,Q两点同时出发,运动时间为t(s).(1)当t为几秒时,△PCQ的面积是△ABC面积的14?(2)△PCQ的面积能否为△ABC面积的一半?若能,求出t的值;若不能,说明理由.如图所示,甲、乙两人开车分别从正方形广场ABCD的顶点B、C两点同时出发,甲由C向D 运动,乙由B向C运动,甲的速度为1km/min,乙的速度为2km/min;若正方形广场的周长为40km,问几分钟后,两人相距10?ABQC P如图,矩形ABCD 中,AB=6cm ,BC=12cm,点P 从A 开始沿AB 边向点B 以1厘米/秒的速度移动,点Q 从点B 开始沿BC 边向点C 以2厘米/秒的速度移动,当点P 到达B 点或点Q 到达C 点时,两点停止移动,如果P 、Q 分别是从A 、B 同时出发,t 秒钟后, (1)求出△PBQ 的面积;(2)当△PBQ 的面积等于8平方厘米时,求t 的值.(3)是否存在△PBQ 的面积等于10平方厘米,若存在,求出t 的值,若不存在,说明理由.例1、如图,在△ABC 中,∠B =90°,BC =12cm ,AB =6cm ,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动,如果P 、Q 分别从A 、B 同时出发,几秒后△PBQ 的面积等于8cm 2?学生练习、在△ABC 中,∠B=90°,AB=6cm,BC=8cm ,点P 从点A 开始沿边AB 向点B 以1cm/s 的速度移动,点Q 从点B 开始沿边BC 向点C 以2cm/s 的速度移动,如果点P 、Q 分别从点A 、B 同时出发,(1)多长时间后,点P 、Q 的距离等于24 cm ?(2)如果点P 到点B 后,又继续在边BC 上前进,点Q 到点C 后,又继续在边CA 上前进,经过多长时间后,△PCQ 的面积等于12.6 cm 2?P C ABQ ↑例2、如图,在△ABC 中,∠B =90°,BC =12cm ,AB =6cm ,点P 从点A 开始沿AB 边向点B 以2cm/s 的速度移动(不与B 点重合),动直线QD 从AB 开始以2cm/s 速度向上平行移动,并且分别与BC 、AC 交于Q 、D 点,连结DP ,设动点P 与动直线QD 同时出发,运动时间为t 秒,(1)试判断四边形BPDQ 是什么特殊的四边形?如果P 点的速度是以1cm/s , 则四边形BPDQ 还会是梯形吗?那又是什么特殊的四边形呢?(2)求t 为何值时,四边形BPDQ 的面积最大,最大面积是多少?学生练习:某海关缉私艇在C 处发现在正北方向30km 的A 处有一艘可疑船只,测得它正以60km/h 的速度向正东方向航行,缉私艇随即以75km/H 的速度在B 处拦截,问缉私艇从C 处到B 处需航行多长时间?例3、如图,A 、B 、C 、D 为矩形的4个顶点,AB =16cm,BC =6cm,动点P 、Q 分别从点A 、C 同时出发,点P 以3cm/s 的速度向点B 移动,一直到达点B 为止;点Q 以2cm/s 的速度向点B 移动,经过多长时间P 、Q 两点之间的距离是10cm?例4、如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒, (1)当t 为何值时,△APQ 与△AOB 相似? (2)当t 为何值时,△APQ 的面积为524个平方单位?C A B C A B P QD ← ↑ QPB D A CA C D B例5、有一边为5cm 的正方形ABCD 和等腰三角形PQR ,PQ =PR =5cm,QR =8cm,点B 、C 、Q 、R 在同一直线l 上,当C 、Q 两点重合时,等腰三角形PQR 以1cm/s 的速度沿直线l 按箭头方向匀速运动,(1)t 秒后正方形ABCD 与等腰三角形PQR 重合部分的面积为5,求时间t ; (2)当正方形ABCD 与等腰三角形PQR 重合部分的面积为7,求时间t ;例6、如图所示,在平面直角坐标中,四边形OABC 是等腰梯形,CB ∥OA,OA=7,AB=4,∠COA=60°,点P 为x 轴上的—个动点,点P 不与点0、点A 重合.连结CP ,过点P 作PD 交AB 于点D ,(1)求点B 的坐标;(2)当点P 运动什么位置时,△OCP 为等腰三角形,求这时点P 的坐标;(3)当点P 运动什么位置时,使得∠C PD=∠OAB, 且58BD BA ,求这时点P 的坐标;1、如图,小刚在C 处的船上,距海岸AB 为2km ,划船的速度为4km/h ,在岸上步行时的速度为5km/h,小刚要在1。