一元二次方程与几何图形的面积问题教材
- 格式:ppt
- 大小:757.00 KB
- 文档页数:21
21.3 实际问题与一元二次方程(3)教学内容根据面积与面积之间的关系建立一元二次方程的数学模型并解决这类问题.教学目标掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.利用提问的方法复习几种特殊图形的面积公式来引入新课,解决新课中的问题.重难点关键1.•重点:根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.2.•难点与关键:根据面积与面积之间的等量关系建立一元二次方程的数学模型.教具、学具准备小黑板教学过程一、复习引入(口述)1.直角三角形的面积公式是什么?•一般三角形的面积公式是什么呢?2.正方形的面积公式是什么呢?长方形的面积公式又是什么?3.梯形的面积公式是什么?4.菱形的面积公式是什么?5.平行四边形的面积公式是什么?6.圆的面积公式是什么?(学生口答,老师点评)二、探索新知现在,我们根据刚才所复习的面积公式来建立一些数学模型,解决一些实际问题.例1.某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,•上口宽比渠深多2m,渠底比渠深多0.4m.(1)渠道的上口宽与渠底宽各是多少?(2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?分析:因为渠深最小,为了便于计算,不妨设渠深为xm,则上口宽为x+2,•渠底为x+0.4,那么,根据梯形的面积公式便可建模.解:(1)设渠深为xm则渠底为(x+0.4)m,上口宽为(x+2)m依题意,得:12(x+2+x+0.4)x=1.6整理,得:5x2+6x-8=0解得:x1=45=0.8m,x2=-2(舍)∴上口宽为2.8m,渠底为1.2m.(2)1.675048⨯=25天答:渠道的上口宽与渠底深各是2.8m和1.2m;需要25天才能挖完渠道.学生活动:例2.如图,要设计一本书的封面,封面长27cm,宽21cm,•正中央是一个与整个封面长宽比例相同的矩形,•如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,•应如何设计四周边衬的宽度(精确到0.1cm)?九年级 练数学 习同步老师点评:依据题意知:中央矩形的长宽之比等于封面的长宽之比=9:7,•由此可以判定:上下边衬宽与左右边衬宽之比为9:7,设上、下边衬的宽均为9xcm,•则左、右边衬的宽均为7xcm,依题意,得:中央矩形的长为(27-18x)cm,宽为(21-14x)cm.因为四周的彩色边衬所点面积是封面面积的14,则中央矩形的面积是封面面积的.所以(27-18x)(21-14x)=34×27×21整理,得:16x2-48x+9=0解方程,得:x=64±,x1≈2.8cm,x2≈0.2所以:9x1=25.2cm(舍去),9x2=1.8cm,7x2=1.4cm因此,上下边衬的宽均为1.8cm,左、右边衬的宽均为1.4cm.三、巩固练习有一张长方形的桌子,长6尺,宽3尺,有一块台布的面积是桌面面积的2倍,并且铺在桌面上时,各边垂下的长度相同,求台布的长和宽各是多少?(精确到0.1尺)四、应用拓展例3.如图(a)、(b)所示,在△ABC中∠B=90°,AB=6cm,BC=8cm,点P从点A•开始沿AB边向点B以1cm/s的速度运动,点Q从点B开始沿BC边向点C以2cm/s的速度运动.(1)如果P、Q分别从A、B同时出发,经过几秒钟,使S△PBQ=8cm2.(2)如果P、Q分别从A、B同时出发,并且P到B后又继续在BC边上前进,Q到C•后又继续在CA边上前进,经过几秒钟,使△PCQ的面积等于12.6cm2.(友情提示:过点Q•作DQ⊥CB,垂足为D,则:DQ CQ AB AC)(a)BACQP(b)BACQ DP分析:(1)设经过x秒钟,使S△PBQ=8cm2,那么AP=x,PB=6-x,QB=2x,由面积公式便可得到一元二次方程的数学模型.(2)设经过y秒钟,这里的y>6使△PCQ的面积等于12.6cm2.因为AB=6,BC=8,由勾股定理得:AC=10,又由于PA=y,CP=(14-y),CQ=(2y-8),又由友情提示,便可得到DQ,那么根据三角形的面积公式即可建模.解:(1)设x秒,点P在AB上,点Q在BC上,且使△PBQ的面积为8cm2.则:12(6-x)·2x=8整理,得:x2-6x+8=0解得:x1=2,x2=4∴经过2秒,点P到离A点1×2=2cm处,点Q离B点2×2=4cm处,经过4秒,点P到离A点1×4=4cm处,点Q离B点2×4=8cm处,所以它们都符合要求.(2)设y秒后点P移到BC上,且有CP=(14-y)cm,点Q在CA上移动,且使CQ=(2y-8)cm,过点Q作DQ⊥CB,垂足为D,则有DQ CQ AB AC=∵AB=6,BC=8∴由勾股定理,得:∴DQ=6(28)6(4) 105y y--=则:12(14-y)·6(4)5y-=12.6整理,得:y2-18y+77=0解得:y1=7,y2=11即经过7秒,点P在BC上距C点7cm处(CP=14-y=7),点Q在CA上距C点6cm处(CQ=•2y-8=6),使△PCD的面积为12.6c m2.经过11秒,点P在BC上距C点3cm处,点Q在CA上距C点14cm>10,∴点Q已超过CA的范围,即此解不存在.∴本小题只有一解y1=7.五、归纳小结本节课应掌握:利用已学的特殊图形的面积公式建立一元二次方程的数学模型并运用它解决实际问题.六、布置作业1.教材P53综合运用5、6 拓广探索全部.2.选用作业设计:一、选择题1.直角三角形两条直角边的和为7,面积为6,则斜边为().AB.5 C.72.有两块木板,第一块长是宽的2倍,第二块的长比第一块的长少2m,宽是第一块宽的3倍,已知第二块木板的面积比第一块大108m2,这两块木板的长和宽分别是().A.第一块木板长18m,宽9m,第二块木板长16m,宽27m;B.第一块木板长12m,宽6m,第二块木板长10m,宽18m;C.第一块木板长9m,宽4.5m,第二块木板长7m,宽13.5m;D.以上都不对3.从正方形铁片,截去2cm宽的一条长方形,余下的面积是48cm2,则原来的正方形铁片的面积是().A.8cm B.64cm C.8c m2 D.64cm2二、填空题1.矩形的周长为,面积为1,则矩形的长和宽分别为________.2.长方形的长比宽多4cm,面积为60cm2,则它的周长为________.3.如图,是长方形鸡场平面示意图,一边靠墙,另外三面用竹篱笆围成,若竹篱笆总长为35m,所围的面积为150m2,则此长方形鸡场的长、宽分别为_______.三、综合提高题1.如图所示的一防水坝的横截面(梯形),坝顶宽3m,背水坡度为1:2,迎水坡度为1:1,若坝长30m,完成大坝所用去的土方为4500m2,问水坝的高应是多少?(说明:•背水坡度CFBF=12,迎水坡度11DEAE)(精确到0.1m)BACEDF2.在一块长12m,宽8m的长方形平地中央,划出地方砌一个面积为8m2•的长方形花台,要使花坛四周的宽地宽度一样,则这个宽度为多少?3.谁能量出道路的宽度:如图22-10,有矩形地ABCD一块,要在中央修一矩形花辅EFGH,使其面积为这块地面积的一半,且花圃四周道路的宽相等,今无测量工具,•只有无刻度的足够长的绳子一条,如何量出道路的宽度?请同学们利用自己掌握的数学知识来解决这个实际问题,相信你一定能行.答案:一、1.B 2.B 3.D二、1.2.32cm3.20m 和7.5m 或15m 和10m 三、1.设坝的高是x ,则AE=x ,BF=2x ,AB=3+3x ,依题意,得:12(3+3+3x )x ×30=4500 整理,得:x 2+2x-100=0 解得x ≈220.102-+即x ≈9.05(m ) 2.设宽为x ,则12×8-8=2×8x+2(12-2x )x 整理,得:x 2-10x+22=0解得:x 1,x 2=3.设道路的宽为x ,AB=a ,AD=b 则(a-2x )(b-2x )=12ab 解得:x=14[(a+b )量法为:用绳子量出AB+AD (即a+b )之长,从中减去BD 之长(对角线,得L=•AB+AD-BD ,再将L 对折两次即得到道路的宽4AB AD BD +-.~。
第3课时几何图形与一元二次方程教学目标:1.掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.2.继续探究YI实际问题中的数量关系,列出一元二次方程解应用题.3.通过探究体会列方程的实质,提高灵活处理问题的能力.教学过程:一、情境导入如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,你能求出所截去小正方形的边长吗?二、合作探究探究点:用一元二次方程解决图形面积问题【类型一】利用面积构造一元二次方程模型(2014·甘肃陇南)用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为( ) A.x(5+x)=6 B.x(5-x)=6C.x(10-x)=6 D.x(10-2x)=6解析:设一边长为x米,则另外一边长为(5-x)米,根据它的面积为6平方米,即可列出方程得:x(5-x)=6,故选择B.方法总结:理解题意,恰当的设未知数,把题中相关的量用未知数表示出来,用相等关系列出方程.(2014·黑龙江农垦)现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为x cm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,求小正方形的边长.解析:设小正方形的边长为x cm,则长方体盒子底面的长、宽均可用含x的代数式表示,再根据面积,即可建立等量关系,列出方程.解:设小正方形的边长为x cm ,则可得这个长方体盒子的底面的长是(80-2x )cm ,宽是(60-2x )cm ,根据矩形的面积的计算方法即可表示出矩形的底面积,方程可列为(80-2x )(60-2x )=1500,整理得x 2-70x +825=0,解得x 1=55,x 2=15.又60-2x >0,∴x =55(舍).∴小正方形的边长为15cm.方法总结:要从已知条件中找出关键的与所求问题有关的信息,通过图形求出面积,解题的关键是熟记各种图形的面积公式,列出符合题意的方程,整理即可. 【类型二】整体法构造一元二次方程模型(2014·甘肃兰州)如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路分别与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.设道路宽为x 米,根据题意可列出的方程为______________.解析:解法一:把两条道路平移到靠近矩形的一边上,用含x 的代数式表示草坪的长为(22-x )米,宽为(17-x )米,根据草坪的面积为300平方米可列出方程(22-x )(17-x )=300.解法二:根据面积的和差可列方程:22×17-22x -17x +x 2=300.方法总结:解答与道路有关的面积问题,可以根据图形面积的和差关系,寻找相等关系建立方程求解;也可以用平移的方法,把道路平移构建特殊的图形,并利用面积建立方程求解. 【类型三】利用一元二次方程解决动点问题如图所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A 出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s 的速度移动.(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC 的面积的一半.若存在,求出运动的时间;若不存在,说明理由.解析:这是一道动态问题,可设出未知数,表示出PC与CQ的长,根据面积公式建立方程求解.解:(1)设x s后,可使△PCQ的面积为8cm2,所以AP=x cm,PC=(6-x)cm,CQ=2x cm.则根据题意,得12·(6-x)·2x=8.整理,得x2-6x+8=0,解这个方程,得x1=2,x2=4.所以P、Q同时出发,2s或4s后可使△PCQ的面积为8cm2.(2)设点P出发x秒后,△PCQ的面积等于△ABC面积的一半.则根据题意,得12(6-x)·2x=12×12×6×8.整理,得x2-6x+12=0.由于此方程没有实数根,所以不存在使△PCQ的面积等于△ABC面积一半的时刻.板书设计教学反思与图形有关的问题是一元二次方程应用的常见题型,解决这类问题的关键是将不规则图形分割或补全成规则图形,找出各部分面积之间的关系,运用面积等计算公式列出方程;对图形进行分割或补全的原则:转化成为规则图形时越简单越直观越好.。
第2课时 图形面积和动点几何问题知|识|目|标1.通过讨论、探究,会用一元二次方程解决图形面积问题.2.在理解直角三角形面积计算的基础上,能够建立一元二次方程解决与动点有关的几何问题.目标一 能利用一元二次方程解决图形面积问题例1 教材例3针对训练如图2-5-2,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一块长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a 米.(1)用含a 的式子表示花圃的面积;(2)如果通道所占面积是整个长方形空地面积的38,求出此时通道的宽. 图2-5-2【归纳总结】利用图形的面积建立一元二次方程模型的步骤(1)设元;(2)用未知数表示各边的长度;(3)利用面积公式列一元二次方程;(4)解一元二次方程;(5)针对实际情况舍去负根和超X围的根,从而得出结果.目标二利用一元二次方程解决动点几何问题例2 教材补充例题在矩形ABCD中,AB=5 cm,BC=6 cm,点P从点A开始沿边AB向终点B以1 cm/s的速度移动,与此同时,点Q从点B开始沿边BC向终点C以2 cm/s的速度移动.如果点P,Q分别从点A,B同时出发,当点Q运动到点C时,两点同时停止运动.设运动时间为t s(t>0).(1)填空:BQ=________ cm,PB=________ cm(用含t的代数式表示).(2)当t为何值时,PQ的长度等于5 cm?(3)是否存在t的值,使得五边形APQCD的面积等于26 cm2?若存在,请求出此时t的值;若不存在,请说明理由.【归纳总结】利用一元二次方程解决动点问题的方法(1)构造直角三角形法,利用勾股定理建立一元二次方程.(2)等线段法,利用三角形全等构造两线段相等,建立一元二次方程;(3)等面积法,利用三角形面积(或三角形高)的变化建立面积等式.实现将几何问题转化为代数问题,从而加以解决.知识点利用一元二次方程解几何图形问题常用的等量关系有:(1)勾股定理;(2)面积的等量关系.[点拨] 在建立一元二次方程模型解几何图形实际问题的过程中,必须检验方程的根的实际意义,所求得的根应该保证几何图形的存在.如图2-5-3,某农场有一块长40 m ,宽32 m 的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植面积为1140 m 2,求小路的宽.图2-5-3解:解法1:设小路的宽为x m ,则东西方向小路的面积为40x m 2,南北方向小路的面积为32x m 2. 则40×32-40x -32x =1140,解得x =3518. 所以小路的宽为3518m. 解法2:设小路的宽为x m ,将4块种植地平移为一个矩形,其长为(40-x )m ,宽为(32-x )m.根据矩形面积公式,得(40-x )(32-x )=1140,整理得x 2-72x +140=0.解得x 1=2,x 2=70.答:小路的宽应是2 m 或70 m.以上两种解法正确吗?若不正确,出现错误的原因是什么?请给出正确的答案.详解详析【目标突破】例1 解:(1)由图可知,花圃的面积为(40-2a)(60-2a)平方米.(2)由已知可列方程:60×40-(40-2a)(60-2a)=38×60×40,解得a 1=5,a 2=45(舍去).答:此时通道的宽为5米.例2 解:(1)2t (5-t)(2)由题意得(5-t)2+(2t)2=52,解得t 1=0(不合题意,舍去),t 2=2.∴当t =2时,PQ 的长度等于5 cm .(3)存在.∵矩形ABCD 的面积是5×6=30(cm 2),五边形APQCD 的面积等于26 cm 2,∴△PBQ 的面积为30-26=4(cm 2),∴(5-t)×2t×12=4, 解得t 1=4(不合题意,舍去),t 2=1.即当t =1时,五边形APQCD 的面积等于26 cm 2.备选题型 用一元二次方程解决存在性问题例 用一根长22 cm 的铁丝,能不能恰好折成一个面积为32 cm 2的矩形?试分析你的结论.解:设折成的矩形的长为x cm ,则宽为(11-x)cm ,矩形的面积为x(11-x)cm 2,依题意,得x(11-x)=32,化简为x 2-11x +32=0, Δ=b 2-4ac =(-11)2-4×1×32=121-128=-7<0,因此方程无实数根,则用长为22 cm 的铁丝不能折成一个面积为32 cm 2的矩形.【总结反思】[反思] 解:两种解法都不正确,解法1多减去了两条小路交叉重叠的小正方形的面积,因此正确的方程是40×32-40x -32x +x 2=1140;解法2没有考虑方程的根是否符合实际意义,因为x<32,显然x=70不符合题意.正确的答案为x=2,即小路的宽为2 m.。
用一元二次方程解几何问题一、内容和内容解析1.内容用一元二次方程解决几何问题.2.内容解析本节课是22. 3实际与探索的第一节课,本节课设置的目的是让学生经历建立和求解一元二次方程模型的完整过程,从而把模型思想、应用意识的培养落在实处.在现实世界中,有许多可以用一元二次方程作为数学模型分析解决几何图形的问题原型.问题1以矩形试验田为问题背景,讨论小道的宽度.在探究过程中正确建立方程模型依然是本节课的重点.二、目标和目标解析3.教学目标(1)会用一元二次方程解决几何问题;(2)经历分析和解决实际问题的过程,体会一元二次方程的数学模型作用,进一步提高运用方程这种重要数学工具解决实际问题的基本能力.4.目标解析(1)能根据具体的“图形面积问题”正确设“元”,找出可以作为列方程依据的主要等量关系,并根据它列出一元二次方程,正确求解一元二次方程,能根据实际问题检验结果是否正确,进而找出合乎实际的结果;(2)完整地经历“问题情境一一建立模型一一求解验证”的数学活动过程, 积累数学活动经验,培养模型思想,会用一元二次方程解决简单的“图形面积问题”.三、教学过程设计5.弄清题意问题1学校生物小组有一块长32m,宽20m的矩形试验田,为了管理方便, 准备沿平行于两边的方向纵、横各开辟一条等宽的小道,要使种植面积为540/, 小道的宽应是多少?师生活动教师提问,学生思考、回答.根据学生的回答情况,教师可通过追问:问题中的等量关系很明显,即抓住种植面积为540n?来列方程,设小道的宽为xm,如何来表示种植面积?【设计意图】使学生初步体会未知之间、已知与未知之间的联系.问题2题目中还有哪些已知量、未知量,它们之间存在怎样的数量关系?师生活动学生读题,思考,可以适当讨论.根据学生的回答情况,教师可通过追问加以引导.【设计意图】培养学生读题、审题能力.6.实现由文字语言、图形语言到数学符号语言的转换问题3如何把文字语言、图形语言翻译成数学符号语言?师生活动学生思考并回答问题.这里要让学生充分表达自己的观点,教师可根据学生的回答,适时提示学生关注题目中的未知量、未知量之间的关系,以及它们与己知量的关系.这是这节课的一个难点,要给学生充分的时间独立思考,如学生确有困难,教师可适时提示。
一元二次方程的应用复习教学目标【知识技能】能根据几何图形找出问题中的等量关系,列出一元二次方程解决实际问题,并检验解的合理性。
【过程与方法】经历读题、审题和解题,让学生进一步体会“问题情境--建立模型--求解--解释与应用”的过程。
【情感、态度与价值观】获得运用数学知识分析和解决实际问题的方法和经验,更好的体会数学的价值观。
教学重点、难点重点:将实际问题转化为一元二次方程的数学模型,并根据实际问题检验解的合理性。
难点:建立数学模型解决实际问题,借助方程验证方案的可行性。
突破方法:引导学生用不同图形的面积公式列出方程。
教法与学法教学方法:启发引导,创设情境,利用多媒体课件激发学生学习兴趣;引导学生分析设计方案,借助方程验证方案的可行性。
学习方法:小组合作探究,组内讨论交流教学准备教师准备:多媒体课件学生准备:完成导学案教学过程一、前置诊断1.在长a米,宽b米的一块草坪上修了一条1米宽的笔直小路,则余下的草坪面积可表示为米2,为了增加美感,把这条小路改为宽恒为1米的弯曲小路,则剩余草坪的面积可表示为米2。
2.幼儿园活动教室矩形地面的长为8米,宽为5米,现准备在地面的正中间铺设一块面积为18m2的地毯,四周未铺地毯的条形区域的宽度都相同,求四周的宽度是多少。
3.如图,学校准备在校园里利用围墙的一段,围成一个矩形花园ABCD(围墙MN最长可利用25米),现有50米的栅栏,请设计一种围法,使矩形花园的面积为300米2。
【设计说明】:本环节的目的是发挥教材的引领作用。
把教材、学生和教师三个方面有机地结合起来,帮助学生回顾应用一元二次方程解决应用题的一般步骤,解决图形公式型应用题的基本方法,纠正学生解答过程中出现的问题。
【学生活动】:独立思考和交流合作相结合,完成学案中的问题。
【题后反思】列方程解应用题的基本步骤:【拓展应用】幼儿园活动教室矩形地面的长为8米,宽为5米,现准备在地面的正中间铺设两块地毯,四周未铺地毯的条形区域的宽度都相同,若地毯面积是教室矩形地面面积的32,求四周的宽度是多少。
初中数学“一元二次方程与几何图形问题”全解析一、引言一元二次方程与几何图形问题是初中数学中的重要内容,也是考试中的常见题型。
这类问题结合了代数与几何的知识,旨在考察学生的综合分析和解决问题的能力。
本文将详细解析一元二次方程与几何图形问题的基本概念、解题方法及应用,帮助同学们更好地掌握这一知识点。
二、基本概念1.一元二次方程:形式为ax²+bx+c=0(a≠0)的方程称为一元二次方程。
2.几何图形:初中数学中常见的几何图形有直线、角、三角形、四边形、圆等。
3.方程与图形的关联:在几何问题中,常利用一元二次方程来表示某些特定的条件或关系,如长度、面积、角度等。
三、解题方法1.建立方程:根据几何问题的条件,设定未知数并建立与问题相关的一元二次方程。
这一步是关键,要求能正确理解和转化几何条件为代数表达式。
2.解方程:利用一元二次方程的求解方法(如配方法、公式法等)解出未知数。
3.回归几何:将求得的代数解回归到原几何问题中,解释其实际意义,并验证其合理性。
四、应用举例1.直线与圆的位置关系:已知圆的半径r和圆心到直线的距离d,判断直线与圆的位置关系(相离、相切、相交)。
可通过比较d与r的大小来判断,若d=r,则直线与圆相切;若d<r,则直线与圆相交;若d>r,则直线与圆相离。
在此过程中,可通过建立一元二次方程求解d或r。
2.三角形的形状判断:已知三角形的三边a、b、c(满足a²+b²=c²),判断三角形的形状。
由勾股定理知,若满足上述条件,则三角形为直角三角形。
若不满足,则可通过比较a²+b²与c²的大小关系,进一步判断三角形为锐角三角形或钝角三角形。
在此过程中,也可能涉及到一元二次方程的求解。
3.面积问题:在求解某些特定形状(如矩形、梯形等)的面积时,可能会遇到需要利用一元二次方程来解决的问题。
例如,已知矩形的周长和一条边的长度,求矩形的面积。