运动学第9讲 质点动力学的基本方程 -1
- 格式:pdf
- 大小:487.46 KB
- 文档页数:9
动力学引言动力学是研究物体的机械运动与作用力之间关系的科学。
工程中的许多问题,如高速转动机械的动力计算、结构的动力计算。
宇宙飞行器和火箭轨道的计算等等,都需要应用动力学的理论。
在动力学中,物体的抽象模型有质点和质点系。
质点是具有一定质量而几何形状和尺寸大小可以忽略不计的物体。
如研究人造地球卫星的轨道时,卫星形状和大小对所研究的问题不起主要作用,可以忽略。
顾客警卫星抽象唯一的质量集中在重心的质点。
刚体作平动时,也可以抽象为一个质点系来研究。
如果物体的形状和大小在所研究的问题中不可忽略,或刚体不作平动,则应抽象为质点系。
所谓质点系是由几个或无限个相互有联系的质点所组成的系统。
我们常见的固体、流体、气体以及由几个物体组成的机构,都是质点系。
刚体是一种特殊的质点系,其中任意两个质点间的距离保持不变,也成为不变质点系。
动力学可分为质点动力学和质点系动力学。
我们以后各章都以质点动力学入手,然后再研究质点系问题。
第十章质点动力学的基本方程§10-1 动力学的基本定律质点动力学的基础是三个基本定律,这些定律是牛顿在总结前人研究成果的基础上提出的,称为牛顿三大定律:第一定律(惯性定律)不受力的指点,将永远保持静止或做匀速直线运动。
即:不受力作用的质点,不是处于静止状态,就是永远保持其原有的速度不变。
这种性质称为惯性。
第一定律阐述了物体做惯性运动的条件,故又称为惯性定律。
由此可知,质点如受到不平衡力系作用时,其运动状态一定改变。
则作用力与物体的运动状态改变的定量关系将由第二定律给出。
第二定律(力与加速度之间关系定律)质点的质量与加速度的乘积等于作用于质点的力的大小。
加速度方向与力的方向一致,即:am=F此式建立了质点的的质量、加速度与力之间的关系。
该式表明:1.加速度矢a与力矢F的方向相同。
2.力与加速度之间的关系时瞬时关系。
即:只要其瞬时有力作用于质点,则在该瞬时质点必有确定的加速度。
3.如在某段时间内没有力作用于质点,则在该段时间内质点没有加速度,质点做惯性运动。
质点运动学方程质点运动学方程是物理学中一种基本的微分方程,它用来描述任意物体在一个恒定的外界力作用下的运动。
质点运动学方程的形式如下:\begin{equation} m \frac{d^2x}{dt^2} = F(x,t) \end{equation}其中,$m$代表质量,$x$代表位置,$F(x,t)$代表外力。
可以看出,该方程表明了质量、位置和外力之间的关系,即质点在外力作用下的运动是由质量和位置决定的。
从物理角度来看,质点运动学方程是一种受外力作用的动态系统,它可以描述物体的运动状态,而不需要考虑物体的形状、体积或其他特征。
因此,质点运动学方程在物理学中具有重要的地位,它可以描述任意物体在恒定的外力作用下的运动状态,而实际的物理对象的运动可以由调整外力的大小和方向来实现。
质点运动学方程也是传统力学中最常用的方程之一,它描述了两种力之间的相互作用,这两种力是:外力和惯性力(又称惯性力或内力)。
其中,外力又可以分为三类:引力、斥力和流体力,各自都是物体的外力,而惯性力则是物体自身的力,是物体的惯性(或惯量)所激发出来的力。
质点运动学方程表明,当外力改变时,物体的运动状态也会随之改变,这是因为外力会改变物体的加速度,而加速度又会改变物体的速度,从而改变物体的运动状态。
同时,质点运动学方程也可以用来描述惯性力和外力之间的关系,即惯性力可以抵消外力,当惯性力大于外力时,物体会保持原来的运动状态;当外力大于惯性力时,物体的运动状态会发生变化。
质点运动学方程不仅可以用来描述物体在外力作用下的运动,而且还可以用来描述物体在惯性力作用下的运动。
例如,可以使用质点运动学方程来描述弹簧的运动,弹簧的运动受到弹簧的弹性力和惯性力的作用,这两种力的大小受到弹簧的长度和弹性系数等因素的影响。
总之,质点运动学方程是物理学中一种基本的微分方程,它可以用来描述物体在外力和惯性力作用下的运动状态。
它不仅可以用来描述宏观上物体的运动状态,而且也可以用来描述微观上物体的运动状态,这样就可以更好地理解物理系统的运动规律。