4-5圆锥曲线形成与画法
- 格式:ppt
- 大小:1.44 MB
- 文档页数:27
《几何画板》课件制作圆锥曲线的形成选题:圆、椭圆、抛物线、双曲线这四种曲线可以看作不同的平面截圆锥面所得到的截线,故它们统称为圆锥曲线。
在中学数学教学中,很难用实物教具演示圆锥曲线的形成过程。
在学习之初,学生很难对圆锥曲线的形成有一个直观的认识。
现利用几何画板模拟不同的平面截圆锥面的过程,动态演示不同圆锥曲线及截面的形成,为高中数学圆锥曲线的学习作引入。
这样设计使学生对抽象的圆锥曲线概念有一个更感性的认识,更便于学生理解圆锥曲线的实际意义。
原理:圆锥面被一平面所截所得的曲线形有:圆、椭圆、抛物线、双曲线。
制作过程:圆锥曲线的构造1.构造能够控制截面作移动和倾斜变化的示意图1作小椭圆:利用同心圆法作椭圆,椭圆的长半轴为OA,短半轴为OB;(1)过O作OA的垂线,在垂线的上方任取一点H,作线段HO并隐藏垂线。
用线段连接AH,分别在线段 HO和AH上任取点C和点D,连接CD;(2)作截面:以点C为圆心,以小线段r为半径作圆。
在上半圆上任取一点E,隐藏小圆。
依次选定点E和点C并标记为向量,把点C 按标记向量平移得到点E′,再依次选定点C和点D并标记为向量,把点E和E′按标记向量平移得到点F和F′。
同时选定点E、F、F′和E′,用线段相连得截面EFF′E′,并涂上浅黄色,如图 1所示:Br b ()a ()圆锥截面的形成'<图 1> <图 2>注意:利用示意图控制截面作移动和倾斜变化:1)拖动点A 或点B ,可以改变椭圆的大小;2)拖动点C 或点D ,可以使截面EFF ′E ′上下移动或上下倾斜;3)拖动点E ,可以使截面左右倾斜或翻转。
2.构造圆锥面被截面所截形成圆锥截面曲线的过程(1)做大椭圆:利用同心圆法作椭圆,椭圆的长半轴O ′A ′=2|OA|,短半轴O ′B ′=2|OB|,椭圆中心为O′;(2)作圆截面:依次选定点O 和点H 并标记为向量,把点O ′按标记向量平移两次得点H ′,使O ′H ′=2 |OH|。
《几何画板》课件制作——圆锥曲线的形成和画法作者:马现岭摘要《几何画板》是一个适用于几何(平面几何,解析几何,射影几何,立体几何)、部分物理、天文教学的专业学科优秀平台软件,它能辅助教师在教学中使用现代化教育技术并进行教学试验,也可以帮助学生在实际操作中把握学科的内在实质,培养其观察能力,问题解决能力,并发展思维能力。
它代表了当代专业工具平台类教学软件的发展方向。
在对《几何画板》进行系统的学习之后,我利用有关知识制作了两大类综合的数学课件。
主要包括:用动态效果展示圆锥曲线及截面的形成和圆锥曲线的画法。
这两类课件在教学上都有很重要的应用。
最新的《普通中学数学课程标准》中强调“教师应向学生展示平面截圆锥得到的椭圆的过程,使学生加深对圆锥曲线的理解,有条件的学校应充分发挥现代教育技术的作用,利用计算机演示平面截圆锥所得的圆锥曲线。
”这表明圆锥曲线的教学在以往的教学过程中存在着很大的困难,由于以往教育技术的落后,无法生动直观的进行讲解。
现在有了这个课件,我们就能达到既生动又直观的教学效果。
第二类利用《几何画板》实现了轨迹、函数图像的变换以及图像变换的动态演示,并由此法制作了几个有关函数图像变换的课件。
第二类课件系统介绍了圆锥曲线的画法,为在教学中提高学生学习兴趣,开展对圆锥曲线的研究,提供了良好的方法和方便的途径。
全文由三部分组成:第一部分:《几何画板》课件制作的选题原则。
第二部分:详细介绍了我所选择制作的数学课件及其制作过程。
第三部分:学习及应用《几何画板》的体会。
关键词:几何画板、标记向量、椭圆、圆锥曲线、圆锥截面、轨迹。
AbstractThe Geometer' s Sketchpad is an excellent platform for teaching of geometry (plane geometry, analytic geometry, projection geometry and solid geometry). It also applies to teaching of partial physics and astronomy. This platform not only can help teachers use the modern education technology in the course of teaching, but also can help students grasp the inwardness of science, and cultivate their ability of observation, solving question, and progressing their ideation. It represents the developing direction of the educative tool software.After I learn the Geometer’s Sketchpad, I have made kinds of comprehensive mathematics course wares, mainly including: Demonstrate the development of cone curve. These kinds of course wares have very important application on teaching. In "The newest ordinary middle school mathematics course standard ", it is emphasized that " teacher should demonstrate to student the plane section ellipse that cone gets, make student deepen the understanding for cone curve, under certain condition schools should play the role of modern educational technology fully, using computer to demonstration incoming of cone curve from cone by the plane. It shows that the teaching of cone curve has great difficulty in former teaching course, just because that educating technology fall behind before, and it can not be active and visual to explain. Now, here are these course wares, we can reach active and visual teaching effect. The second kind of side spread out problem is concerned with in former lesson, but the method to produce is fussy. The biggest advantage of my lesson lies in the method that I have used a unification to carry out, so that the time to produce is shortened greatly, and has reached very good demonstration effect.The paper text is composed of three parts:In the first part: I write some fundamental about what kinds of problem we can make the coursewares in the Geometer’s Sketchpad.In the second part: The mathematics coursewares and its produce course thatI select to makeare introduced in detail.In the last part: I relate the experience study by using the Geometer’s Sketchpad.Keywords:The Geometer’s Sketchpad、 mark vector、 ellipse、 cone curve、cone section、trace.引言The Geometer’s Sketchpad 是美国优秀的教育软件。
《几何画板》课件制作第二类课件圆锥曲线的画法一、由第二定义出发统一构造椭圆、抛物线和双曲线原理:到定点和定直线的距离之比等于定值m的点的轨迹:当0<m<1时,轨迹为椭圆;当=1时,轨迹为抛物线;当m>1时,轨迹为双曲线。
制作过程:1)如图(3)所示:打开一个新画板,画一条竖直的直线j(定直线)和直线外一点A(定点)。
在直线j上取点C,过点A,C作直线j的垂线l,k,点B,C 为垂足。
<图 3>2)取点C,B作圆C1,交直线k于E。
3)新建参数t,并标记比值,让点E以C为中心,按标记比进行缩放得E'。
4)取C,E'作圆C2,取CA的中点G和点C作圆C3,交C2于F。
5)用直线连接A,F交直线k于D,则AD/CD=CE/CE'=1/t。
6)选中C,D作轨迹,作点D关于直线l的对称点D',选中C,D'作轨迹,最后隐藏不必要的对象。
说明:(1)在圆C1中,CB=CE,在圆C2中,CF=CE',在⊿BCF和⊿ADC中,因为∠CFB=∠ACD=∠BAC,∠CBF=∠DAC(同弧上的圆周角相等),所以⊿BCF和⊿ADC 为相似三角形。
则CB/CF=AD/CD=CE/CE'=m=1/t,即定点A和定直线j距离之比等于定值m。
(2)单击"运动参数t"按钮,比值m 随之改变,这时可以动态地看到,当m 小于1的值逐渐变为1时,轨迹由椭圆变成抛物线;当m 大于1时,轨迹变成双曲线。
二、由第一定义出发,构造椭圆和双曲线及抛物线原理:椭圆(双曲线)——到定点的距离和定直线的距离之和(差)等于定值的点的轨迹;抛物线——到定点的距离和定直线的距离相等的点的轨迹。
制作过程:1.椭圆(或双曲线)的制作:<图 4> <图 5>()()1211221121,2()()x F x F F M F M MN N F M F N MN A B AB F F A F B 作出平面直角坐标系,在轴上任取两点作圆标记圆心的点记为,另一点隐藏。
运用几何画板动态构造圆锥曲线的方法贵州省平塘民族中学刘光宜(558300)摘要本文根据圆锥曲线的第一定义、第二定义以及标准方程,运用尺规作图原理结合几何画板动态生成轨迹的功能,详尽而系统地阐述圆锥曲线的画法和构造。
每一类画法及构造的步骤,极富操作性和实践性。
直接运用于教学,能够达到激活数学课堂,启迪学生思维,拓展学生数学视野,提升数学教学效率的目的。
关键词圆锥曲线尺规作图原理几何画板动态生成轨迹一、根据圆锥曲线的第一定义构造圆锥曲线(一)椭圆1、椭圆第一定义一般地,平面内到两个定点F1、F2的距离之和等于常数2a(2a>︱F1F2︱)的点M的轨迹叫做椭圆。
其中,定点F1、F2叫做椭圆的焦点,两定点F1、F2间的距离︱F1F2︱叫做椭圆的焦距,常数2a叫做椭圆的长轴的长。
特别地,当2a=︱F1F2︱时,点M的轨迹是线段F1F2;当2a<︱F1F2︱时,点M的轨迹不存在。
2、画法步骤(1)按住shift 键,在画图区上部画一条直线l(隐藏控制点)。
再在直线l上构造线段AB,度量线段AB的长度并改为用2a表示。
(2)在线段AB上取一点C,并构造线段AC 和线段BC。
(3)按住shift键在画图区中部画一条线段F 1F2,隐藏线段,保留端点,然后度量两端点的距离︱F1F2︱,并调整大小使之小于2a。
(4)以F1为圆心,线段AC为半径画圆,以F2为圆心,线段BC为半径画圆。
构造两圆的交点M和M',并设置成“追踪交点”。
(5)构造线段MF1、MF2并度量长度,然后计算MF1+MF2。
(6)设置点C双向在线段AB上滑动,并编辑生成操作按钮“动画生成轨迹”。
或用选择工具拖动点C 在线段AB上滑动生成椭圆(如图1-1)。
(7)用选择工具拖动点B或点A调整线段AB与F1F2的大小关系:当2a=︱F1F2︱时,动点M与两个定点F1、F2共线,其轨迹是线段F1F2;当2a<︱F1F2︱时,动点M消失,表示其轨迹不存在。
高中数学圆锥曲线知识点高中数学圆锥曲线知识点圆锥曲线,在高考中一直作为压轴大题的形式出现,其实圆锥曲线很简单,那么从哪些地方下手才能轻松学好圆锥曲线呢?下面是高中数学圆锥曲线知识点的内容,欢迎阅读!圆锥曲线之所以叫做圆锥曲线,是因为它是从圆锥上截出来的。
古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。
用垂直于锥轴的平面去截圆锥,得到了圆;把平面渐渐倾斜,得到了椭圆;当平面倾斜到"和且仅和"圆锥的一条母线平行时,得到了抛物线;用平行圆锥的轴的平面截取,可得到双曲线的一边,以圆锥顶点做对称圆锥,则可得到双曲线。
那么接下来,我们就就着这两个问题来说啦~(一)曲线与方程首先第一个问题,我们想到的就是曲线与方程的这部分内容了。
在学习圆锥曲线这部分内容之前,我们最早接触到的就是曲线与方程这部分内容。
在这部分呢,我们要注意到的是几种常见求轨迹方程的方法。
在这里呢,简单的说一下,一共有四种方法:1。
直接法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法。
2。
定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法。
这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件。
3。
相关点法若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程。
这种方法称为相关点法(或代换法)。
4。
待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求(二)椭圆,双曲线,抛物线这部分就可以研究第二个问题了呢。
在椭圆,双曲线以及抛物线里,最最重要的就是他们的标准方程,因为我们可以从它们的标准方程中看到许多东西,包括顶点,焦点,图形的画法等等等等,所以这个呢是要求我们必须要会的。