数学分析不定积分
- 格式:pdf
- 大小:111.32 KB
- 文档页数:5
第6章 不定积分6.1 复习笔记一、不定积分的概念和运算法则1.微分的逆运算——不定积分(1)原函数若在某个区间上,函数F (x )和f (x )成立关系F'(x )=f (x ),则称函数F (x )是f (x )的一个原函数。
(2)不定积分一个函数f (x )的原函数全体称为这个函数的不定积分,记作这里,“”称为积分号,f (x )称为被积函数,x 称为积分变量。
2.不定积分的线性性质若函数f (x )和g (x )的原函数都存在,则对任意常数k 1和k 2,函数k 1f(x )+k 2g (x)的原函数也存在,且有二、换元积分法和分部积分法1.换元积分法(1)在不定积分中,用u=g (x )对原式作变量代换,这时相应地有du=g'(x )dx ,于是,这个方法称为第一类换元积分法,也被俗称为“凑微分法”。
(2)找到一个适当的变量代换x=φ(t )(要求x=φ(t )的反函数t=φ-1(x )存在),将原式化为这个方法称为第二类换元积分法。
2.分部积分法对任意两个可微的函数u (x )、v (x ),成立关系式d[u (x )v (x )]=v (x )d[u (x )]+u(x)d[v (x )],两边同时求不定积分并移项,就有也即这就是分部积分公式。
三、有理函数的不定积分及其应用1.有理函数的不定积分(1)形如的函数称为有理函数,这里和分别是m 次和n 次多项式,n,m 为非负整数。
若m>n ,则称它为真分式;若m≤n,则称它为假分式。
(2)设有理函数是真分式,多项式有k 重实根α即则存在实数λ与多项的次数低于的次数,成立(3)设有理函数是真分式,多项式有l 重共轭复根,即其中则实数和多项式的次数低的次数,成立2.可化成有理函数不定积分的情况(1)类的不定积分。
这里R (u ,v )表示两个变量μ、υ的有理函数(即分子和分母都是关于u ,v的二元多项式)。
对作变量代换,则。
数学分析不定积分知识点总结不定积分是数学分析中的一个重要概念,它是微积分学的基础内容之一。
理解和掌握不定积分的相关知识对于进一步学习高等数学以及解决实际问题都具有重要意义。
下面我们将对不定积分的知识点进行详细总结。
一、不定积分的定义如果在区间\(I\)上,\(F'(x) = f(x)\),则称\(F(x)\)是\(f(x)\)在区间\(I\)上的一个原函数。
\(f(x)\)的原函数的全体称为\(f(x)\)在区间\(I\)上的不定积分,记为\(\int f(x)dx\)。
二、基本积分公式1、\(\int kdx = kx + C\)(\(k\)为常数)2、\(\int x^n dx =\frac{1}{n + 1}x^{n + 1} + C\)(\(n \neq -1\))3、\(\int \frac{1}{x}dx =\ln|x| + C\)4、\(\int e^x dx = e^x + C\)5、\(\int a^x dx =\frac{1}{\ln a}a^x + C\)(\(a >0\),\(a \neq 1\))6、\(\int \sin x dx =\cos x + C\)7、\(\int \cos x dx =\sin x + C\)8、\(\int \sec^2 x dx =\tan x + C\)9、\(\int \csc^2 x dx =\cot x + C\)10、\(\int \sec x \tan x dx =\sec x + C\)11、\(\int \csc x \cot x dx =\csc x + C\)这些基本积分公式是进行积分运算的基础,必须牢记。
三、不定积分的性质1、函数的和的不定积分等于各个函数不定积分的和,即\(\int f(x) + g(x)dx =\int f(x)dx +\int g(x)dx\)。
2、常数乘以函数的不定积分等于常数乘以该函数的不定积分,即\(\int kf(x)dx = k\int f(x)dx\)(\(k\)为常数)。
§3 有理函数和可化为一、有理函数的部分分式分解本节给出了求有理函数等有关类型的四、某些无理函数的不定积分三、三角函数有理式的不定积分二、有理真分式的递推公式有理函数的不定积分不定积分的方法与步骤.返回C x B +i A(ii),p t x =+令22,,p pL r q N M =-=-则2,k 时³111æö432x x x x24910 -++-11d x12x +21(22)1 x x--+对三角函数有理式的不定积分, 在某些条件下还可(iii)(,)(,),tan .R u v R u v t x --==若可作变换(i)(,)(,),cos ;R u v R u v t x -=-=若可作变换(ii)(,)(,),sin ;R u v R u v t x -=-=若可作变换?为什么以上变换可使不定积分简化(i),R 若满足条件由代数学知识可知,存在有理函0,R 数使得选用如下三种变换, 使不定积分简化.因此=--ò2(1cos ,cos )d(cos )R x x x 20(,)(,).R u v R u v u =0(ii),,R R 若满足条件则存在有理函数使得20(,)(,).R u v R u v v =类似可得2(1,)d .R t t t =--ò=òò2(sin ,cos )d (sin ,cos )sin d R x x x R x x x x2sin òx.)0(,d òab x32 31129 x t t-+33d òx22d223 x x x--注1对于本题来说,方法2 显然比方法1 简捷.作业P200:1(2)、(3)、(6);2(1)、(3)、(5)。
第八章不定积分一、不定积分概念与基本积分公式1.原函数与不定积分①定义1:设函数f 与F 在区间I 上都有定义,若F’(x)=f(x),x ∈I ,则称F 为f 在区间I 上的一个原函数。
②定理8.1:若函数f 在区间I 上连续,则f 在I 上存在原函数F ,即F’(x)=f(x),x ∈I 。
·不连续的函数也可以有原函数③定理8.2:设F 是f 在区间I 上的一个原函数,则(i)F+C 也是f 在I 上的原函数,其中C 为任意常量函数;(ii)f 在I 上的任意两个原函数之间,只可能相差一个常数。
④定义2:函数f 在区间I 上的全体原函数称为f 在I 上的不定积分,记作∫f(x)dx 。
·[∫f(x)dx]’=[F(x)+C]’=f(x);·d ∫f(x)dx=d[F(x)+C];⑤不定积分的几何意义:积分曲线2.基本积分表①∫0dx=C ;②∫1dx=∫dx=x+C ;③)0,1(11>-≠++=⎰+x C x dx x αααα;④)0(||ln 1≠+=⎰x C x dx x ;⑤∫e x dx=e x +C ;⑥)0,1(ln >≠+=⎰a C aa dx a xx α;⑦)0(sin 1cos ≠+=⎰αC ax a axdx ;⑧)0(cos 1sin ≠+-=⎰αC ax a axdx ;⑨∫sec 2xdx=tanx+C ;⑩∫csc 2xd1=-cotx+C ;⑪∫secx ·tanxdx=secx+C ;⑫∫cscx ·cotxdx=-cscx+C ;⑬12arccos arcsin 1C x C x x dx+-=+=-⎰;⑭12cot arctan 1C x arc C x x dx +-=+=+⎰。
⑮定理8.3:若函数f 与g 在区间I 上都存在原函数,k 1,k 2为两个任意常数,则k 1f+k 2g 在I 上也存在原函数,且当k 1和k 2不同时为零时,有∫[k 1f(x)+k 2g(x)]dx=k 1∫f(x)dx +k 2∫g(x)dx二、换元积分法与分部积分法1.换元积分法①定理8.4(第一换元积分法/凑微分法):设函数f(x)在区间I 上有定义,φ(t)在区间J 上可导,且φ(J)⊆I 。
8.1 不定积分概念与基本积分公式(2学时)
【教学目的】深刻理解原函数与不定积分的概念;牢记基本积分表;掌握不定积分的线形运算法则。
【教学重点】不定积分的概念,基本积分表,不定积分的线形运算法则。
【教学难点】求不定积分的技巧。
【教学过程】
一、原函数与不定积分
(一) 原函数
定义1 设函数与在区间)(x f )(x F I 上有定义。
若
)()(x f x F =′, I x ∈,
则称为在区间)(x F )(x f I 上的一个原函数。
如:331x 是在R 上的一个原函数;2x x 2cos 21−, 12cos 2
1+x ,,等都有是在R 上的原函数——若函数存在原函数,则其原函数不是唯一的。
x 2sin x 2cos −x 2sin )(x f 问题1 在什么条件下必存在原函数?若存在,其个数是否唯一;又若不唯一,则有多少个?
)(x f 问题 2 若函数的原函数存在,如何将它求出?(这是本章的重点内容)。
)(x f 定理1 若在区间)(x f I 上连续,则在)(x f I 上存在原函数。
)(x F (证明在第九章中进行。
)
说明:(1)由于初等函数在其定义域内都是连续的,故初等函数在其定义域内必存在原函数(但其原函数不一定仍是初等函数)。
(2)连续是存在原函数的充分条件,并非必要条件。
定理2 设是在在区间)(x F )(x f I 上的一个原函数,则(1)设是在在区间C x F +)()(x f I 上的原函数,其中C 为任意常量(若存在原函数,则其个)(x f
数必为无穷多个)。
(2)在)(x f I 上的任何两个原函数之间,只可能相差上个常数(揭示了原函数间的关系)。
证:(i)这是因为[]
.),()()(I x x f x F C x F ∈=′=′+(ii)设F 和G 是f 在I 上的任意两个原函数,则有
[]
I x x f x f x G x F C x F ∈=−=′−′=′+,0)()()()()(根据第六章拉格朗日中值定理的推论,知道I x C x G x F ∈≡−,)()(. 口
(二) 不定积分
定义 2 函数在区间)(x f I 上的原函数的全体称为在)(x f I 上的不定积分,记作:
∫dx x f )(
其中∫积分号;被积函数; −−−−)(x f −−dx x f )(被积表达式;−−x 积分变量。
注1: 是一个整体记号;
∫dx x f )(注2:不定积分与原函数是总体与个体的关系,即若是的一个原函数,则的不定积分是一个函数族)(x F )(x f )(x f {}C x F +)(,其中是任意常数,于是,记为:∫=。
C dx x f )(C x F +)(此时称C 为积分常数,它可取任意实数。
故有
——先积后导正好还原;
∫=′)(])([x f dx x f 或 。
∫=dx x f dx x f d )()( ∫——先导后积还原后需加上一个常数(不能完全还原)。
+=′C x f dx x f )()(或 ∫。
+=C x f x df )()(如: C x dx x +=∫332, C x xdx +−=∫2cos 212sin 。
不定积分的风何意义: 若是的一个原函数,则称的图象为的一条积分曲线。
于是,的不定积分在几何上表示的某一条)(x F )(x f )(x F y =)(x f )(x f )(x f
积分曲线沿纵轴方向任意平移所得一载积分曲线组成的曲线族,曲线和在点C x F +)(2)(C x F +x 有相同切线斜率。
如下图。
)(x f
注:在求原函数的具体问题中,往往是先求出全体原函数,然后从中确定一个满足条件00)(y x F =(称之为初始条件,一般由具体问题确定)的原函数,它就是积分曲线族中通过点的那条积分曲线。
),(00y x
二、基本积分表
由于不定积分的定义不象导数定义那样具有构造性,这就使得求原函数的问题要比求导数难得多,因此,我们只能先按照微分法的已知结果去试探。
首先,我们把基本导数公式改写成基本积分公式:
1.;
∫=C dx 02.∫∫;
+==C x dx dx 13.C x dx x ++=∫+11
ααα
,)0,1(>−≠x α; 4.C x dx x
+=∫ln 1,; )0(≠x 5.∫;
+=C e dx e x x 6.C a a dx a x
x
+=∫ln , )1,0(≠>a a ; 7.C ax a
axdx +=∫sin 1cos ,)0(≠a ; 8.C ax a axdx +−=∫cos 1sin ,)0(≠a ;
9.∫;
+=C x xdx tan sec 210.∫;
+−=C x xdx cot csc 211.∫;
+=⋅C x xdx x sec tan sec 12.∫;
+−=⋅C x xdx x csc cot csc 13.
12arccos arcsin 1C x C x x dx +−=+−∫; 14.12cot arctan 1C x arc C x x
dx +−=+=+∫。
注意:上述基本积分公式一定要牢记,因为其它函数的不定积分经运算变形后,最终归结为这些基本不定积分。
另外,还须借助一些积分法则才能求出更多函数的不定积分。
定理3 若函数与在区间)(x f )(x g I 上都存在原函数, 为两个任意常数,也存在原函数,且
21,k k )()(21x g k x f k + ∫∫∫+=+dx x g k dx x f k dx x g k x f k )()()]()([2121(积分的线性性质)。
证明:可由微分法直接验证,因为
[]()()′
+′=′+∫∫∫∫dx x g k dx x f k dx x g k dx x f k )()()()(2121 ).()(21x g k x f k += 口
注:线性法则的一般形式为: 。
∫∑∑∫===n i n
i i i i i dx x f k dx x f k 11)()(根据上述线性运算法则和基本积分公式,可求得一些简单函数的不定积分.
例1、 ,
n n n n a x a x a x a x p ++++=−−1110)(" 则C x a x a x n a x n a dx x p n n n n ++++++=−+∫211102
1)("。
例2、 C x x x dx x x dx x x ++−=++−=++∫∫arctan 23)1
21(113
2224。
例3、 ∫∫∫+=+=dx x x dx x
x x x x x dx )sec (csc sin cos sin cos sin cos 22222222
C x x ++−=tan cot 。
例4、 C x x dx x x xdx x ++−=−=⋅∫∫)2cos 2
14cos 41(21)2sin 4(sin 21sin 3cos C x x +−−=)2cos 4(cos 8
1。
例5、 ∫∫∫−+=−+=−−−−dx dx dx x x x x x x ]2)10()10[()21010()1010(22222 C x x x +−−=−2)1010(10ln 2122。
作业:P182 2,3,4 ,5。