若当 0 时, Sn 有确定的极限值 I, 且 I 与区间[a, b]的
分法和 i 的取法无关, 则称函数ƒ(x)在区间[a, b]上可积,
并称此极限值I为ƒ(x)在区间[a, b]上的定积分, 记为
b
f (x)dx
b
a
n
即
a
f (x)dx I
lim 0 i1
f (i )xi
其中ƒ(x)为被积函数, ƒ(x)d x称为被积表达式, x 称为积分
则该窄矩形的面积 f (i )xi
近似等于 Si , 即
f (i )xi Si
III.求和、取极限
为了从近似过度到精确, 将所有的窄矩形的面积相加,
n
n
就得曲边梯形的面积的近似值, 即 S Si f (i )xi
i 1
i 1
记各小区间的最大长度为 max{x1, x2 , , xn}
当分点数n无限增大且各小区间的最大长度 m1iaxn {xi } 0
从而可用下述方法和步骤来求曲边梯形的面积:
I.化整为零(或分割)——任意划分
(如右图)用分点
y
y=ƒ(x)
a x0 x1 x2 xn1 xn b
将区间[a,b]任意地划分为n个小区间
[x0 , x1 ],[x1, x2 ], ,[xn1, xn ],
x2
o a x0 x1
xi1 xi xi
来说是一个变量, 其最大值与最小值之差较大; 但从区间
[a, b]的一个局部(小区间)来看, 它也是一个变量;
但因ƒ(x)连续, 从而当Δ x →0时, Δy→0, y
故可将此区间的高近似看为一个常量,
y=ƒ(x)
A
C
B