常见统计学错误
- 格式:pptx
- 大小:578.39 KB
- 文档页数:68
小组分工组长:房军伟:整个报告的统筹安排组员:王利苹 、郑宁宁:PPT的制作 周文斌:演讲涂亮星及其他组员:解答问题组长:房军伟(22011043)组员:涂亮星(22011037)、王利苹(22011038)、 周文斌(22011039)、郑宁宁(22011044)报告内容实验设计存在的典型错误统计方法误用实验设计原则均衡重复对照随机违反均衡性原则“重复取样”替代“独立重复”缺乏对照、对照不全或不当未遵循随机原则未遵循随机原则实例:在一般治疗的基础上加用小剂量干扰素及三氮唑核苷治疗流行性乙型脑炎 99 例,采用同期的、接受一般治疗的 73 例该病患者作为对照,治疗组选择发病在 5 d 以内的患者,加用干扰素和三氮唑核苷静滴,疗程 5 ~7 d 。
两组比较疗效差异有显著意义,结论是在一般治疗的基础上加用小剂量干扰素及三氮唑核苷治疗流行性乙型脑炎的疗效优于一般治疗的疗效两组治疗效果比较组别例数治愈好转死亡病死率(%)治疗组9988101 1.01对照组736085 6.85丁思美.小剂量干扰素加三氮唑核苷治疗流行性乙型脑炎 99 例分析[J].江苏医药,1997,23(6):428.未遵循随机原则辨析作者人为地选择发病在 5 d 以内的患者进入治疗组,而对照组则没有此限制根据常识,早期治疗对疾病的预后具有重要影响,往往具有较高的治愈率和较低的病死率因而治疗组和对照组由于人为因素的干扰和影响,在病程这一重要的非实验因素上并没有达到均衡,不具有可比性正确做法对照组也应选择发病在 5 d 以内的患者在实验分组时遵循随机的原则,使患者都有相同的机会进入治疗组和对照组对照不全实例:将24只大鼠随机分成3组,每组8只。
正常对照组用生理盐水灌胃,激素组用氢化可的松灌胃,补骨1号合用激素组用氢化可的松灌胃的同时加用补骨1号。
实验一段时间后,测定骨小梁面积等定量指标,经分析认为补骨1号有防治类固醇性骨质疏松的作用辨析此实验涉及两个因素,即“激素用与否”和“补骨1号用与否”若此两因素存在着交互作用,则第三组的效应就包括激素的效应、 补骨1号 的效应 、以及他们共同作用的效应本实验只安排了激素组,并没有安排单用补骨1号组,实际分析时就 不能将两因素之间可能存在的交互作用的效应反映出来,而有可能 将交互作用的效应归结为单用补骨1号的效应对照不全实例:将24只大鼠随机分成3组,每组8只。
统计学常见的三种误差
抽样误差指的是抽取样本时,由于样本的随机性,导致样本与总体存在偏差的情况。
解决抽样误差的方法是增加样本容量、使用更好的抽样方法和减少样本的偏倚。
测量误差是指测量工具本身存在的误差,如人的主观判断、仪器的误差、实验方法的误差等。
解决测量误差的方法是使用更准确的测量工具、改进实验方法和使用多种测量方法。
非随机误差是指由于未知因素的影响,导致数据存在偏差的情况,如偏差选择、数据处理不当等。
解决非随机误差的方法是在实验设计中减少偏差选择、使用合适的数据处理方法和进行数据验证。
- 1 -。
医学论文中常用统计分析方法错误大全在医学研究领域,准确合理地运用统计分析方法对于得出可靠的研究结论至关重要。
然而,在实际的医学论文中,却存在着各种各样的统计分析方法错误,这些错误可能会导致研究结果的偏差,甚至得出错误的结论。
下面,我们就来详细探讨一下医学论文中常见的统计分析方法错误。
一、数据类型判断错误数据类型的正确判断是选择合适统计分析方法的基础。
医学研究中常见的数据类型包括计量资料、计数资料和等级资料。
然而,很多研究者在数据类型判断上出现失误。
例如,将原本应该是计数资料的数据(如疾病的治愈、好转、无效等)当成计量资料进行分析,错误地使用了均值和标准差等统计指标,而应该使用频率和百分比等指标,并采用卡方检验等方法。
二、样本量计算不合理样本量的大小直接影响到研究结果的可靠性和准确性。
一些医学论文在研究设计阶段没有充分考虑样本量的计算,导致样本量过小或过大。
样本量过小,可能会使研究结果缺乏统计学意义,无法检测出真实存在的差异;样本量过大,则会造成资源的浪费,同时增加研究的难度和成本。
正确的样本量计算应该综合考虑研究的设计类型、预期效应大小、检验水准和检验效能等因素。
三、选择错误的统计方法这是医学论文中常见的错误之一。
例如,对于两组独立样本的均数比较,应该使用 t 检验,但如果两组数据的方差不齐,就需要使用校正的 t 检验或者非参数检验方法(如 Wilcoxon 秩和检验)。
然而,很多研究者在这种情况下仍然使用了普通的 t 检验,导致结果不准确。
再比如,对于多组均数的比较,如果方差分析结果有统计学意义,还需要进一步进行多重比较。
但有些研究在这一步没有进行恰当的多重比较方法选择,导致结论不够准确。
四、忽视数据的正态性检验在进行某些统计分析(如 t 检验、方差分析等)时,要求数据服从正态分布。
然而,很多研究者在使用这些方法之前,没有对数据进行正态性检验。
如果数据不服从正态分布,却仍然使用基于正态分布假设的统计方法,就会得出错误的结论。
统计学中的误差类型统计学是一门研究数据收集、分析和解释的学科,它在各个领域都有广泛的应用。
在进行统计分析时,我们常常会遇到误差。
误差是指由于各种原因导致的数据与真实值之间的差异。
了解误差类型对于正确解释和使用统计数据至关重要。
本文将介绍统计学中常见的误差类型。
一、抽样误差抽样误差是由于样本选择不完全代表总体而引起的误差。
在统计学中,我们通常通过从总体中随机选择样本来进行研究。
然而,由于样本的随机性,样本可能无法完全代表总体。
因此,样本统计量与总体参数之间会存在差异,这就是抽样误差。
抽样误差的大小取决于样本的大小和抽样方法的选择。
二、测量误差测量误差是由于测量工具或测量方法的不准确性而引起的误差。
在统计学中,我们经常需要测量各种变量,如身高、体重、温度等。
然而,由于测量工具的限制或人为因素的影响,测量结果可能与真实值存在差异。
测量误差可以通过校准仪器、提高测量技术和减少人为因素来减小。
三、随机误差随机误差是由于随机因素引起的误差。
在统计学中,我们经常使用概率模型来描述随机现象。
然而,由于随机性的存在,我们无法预测每次实验或观察的具体结果。
随机误差是由于随机因素的影响而导致的数据波动。
通过多次重复实验或观察,我们可以通过统计方法来估计随机误差的大小。
四、系统误差系统误差是由于系统性因素引起的误差。
与随机误差不同,系统误差是由于固定因素的影响而导致的数据偏差。
系统误差可能是由于测量仪器的偏差、实验条件的变化或操作者的主观判断等原因引起的。
系统误差是一种常见的误差类型,它可能导致数据的偏差和不准确性。
减小系统误差的方法包括校准仪器、标准化实验条件和培训操作者等。
五、非响应误差非响应误差是由于样本中某些个体选择不回答或提供不准确信息而引起的误差。
在调查研究中,我们通常通过问卷、访谈等方式收集数据。
然而,由于个体的主观意愿或其他原因,一些个体可能选择不回答或提供不准确的信息,从而导致非响应误差。
非响应误差可能导致样本的代表性受到影响,从而影响统计结果的准确性。
医学论文中常用统计分析方法错误大全在医学研究领域,准确和恰当的统计分析是得出可靠结论的关键。
然而,在众多医学论文中,却存在着各种各样的统计分析方法错误,这些错误可能会导致研究结果的偏差甚至错误解读,从而影响医学研究的质量和临床实践的指导价值。
接下来,我们就来详细探讨一下医学论文中常见的统计分析方法错误。
一、样本量计算错误样本量的合理计算对于研究的可靠性和有效性至关重要。
许多研究在设计阶段未能充分考虑研究的主要目的、预期效应大小、检验效能以及显著性水平等因素,导致样本量过小或过大。
样本量过小可能使研究无法检测到真实存在的差异,从而得出假阴性结论;样本量过大则会造成资源浪费,同时可能增加研究的复杂性和误差。
例如,在一项比较新药物与传统药物疗效的临床试验中,如果预期的疗效差异较小,而研究者没有充分考虑这一点,计算出的样本量不足,那么即使新药物实际上更有效,也可能由于样本量的限制而无法得出有统计学意义的结果。
二、数据类型错误医学研究中数据类型多样,包括计量资料(如身高、体重、血压等)、计数资料(如疾病的发生例数、治愈例数等)和等级资料(如疾病的严重程度分为轻、中、重)。
错误地判断数据类型会导致选择错误的统计分析方法。
例如,将原本属于计数资料的数据(如疾病的治愈与未治愈),错误地当作计量资料进行 t 检验,这样得出的结果是不准确的。
反之,将计量资料当作计数资料处理,也会造成同样的问题。
三、选择错误的统计检验方法不同的研究问题和数据类型需要相应的统计检验方法。
常见的错误包括:在多个组间比较时,错误地使用 t 检验而不是方差分析;在非正态分布的数据中使用参数检验方法;在不符合独立性假设的情况下使用独立样本检验等。
比如,在比较三种不同治疗方法对患者生存率的影响时,应该使用方差分析或非参数的KruskalWallis 检验,而不是多次进行两两t 检验,因为这样会增加一类错误(即假阳性)的概率。
四、忽视方差齐性检验在进行 t 检验和方差分析时,通常需要先进行方差齐性检验。