与数列有关的恒成立问题
- 格式:docx
- 大小:318.12 KB
- 文档页数:13
专题4 数列中的存在性与恒成立问题1.(2021·湖北·襄阳四中模拟预测)已知正项数列{}n a 的前n 项和n S 满足()2*41,nna S n N +=∈.数列{}nb 满足2*1221,n n b b n n n N ++=++∈(1)求数列{}n a 的通项公式;(2)试问:数列{}n n b S -是否构成等比数列(注:n S 是数列{}n a 的前n 项和)?请说明理由;(3)若11,b =是否存在正整数n,使得211155(1)1111nnk k k k k kkk b b b ==+-≤≤++∑成立?若存在求所有的正整数n ;否则,请说明理由.【答案】(1)21n a n =-;(2)不构成,理由见解析;(3)存在,10n =. 【解析】 【分析】(1)由11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,得到{}n a 是等差数列,即可得解;(2)首先求出n S ,则2n n n b S b n -=-,即可得到11n n b S ++-,再由1n n b b ++,即可得到11()n n n n b S b S ++-=--,即可得证;(3)由(2)可得2k b k =,所求不等式即2424211155(1)11111nnkk k k kk k k k ==+-≤≤++++∑∑.设21()1f k k k =-+,利用裂项相消法可得到4211((1)(1))12nk k f f n k k ==-+++∑,同理,有24211((1)(1)),21,*12(1)11((1)(1)),2,*2nk k f f n n m m N k k k f f n n m m N =⎧++=-∈⎪+⎪-=⎨++⎪-+=∈⎪⎩∑,再由题意求出n 的值; 【详解】解:(1)由于2(1),4n n a S n N *+=∈,故2111(1)14a S a +=⇒=;2n ≥时22114(1),4(1)n n n n S a S a --=+=+;作差得,221114(1)(1)()(2)0n n n n n n n a a a a a a a ---=+-+⇔+--=.由于{}n a 是正项数列,故12n n a a --=,{}n a 是等差数列,21n a n =-;所以222(1)(211)44n n a n S n +-+=== (2)由于22111,(1)n n n n n n b S b n b S b n +++-=--=-+,2221221(1)n n b b n n n n ++=++=++,故11()n n n n b S b S ++-=--.由于1111b S b -=-,所以 当11b ≠时,111n n n nb S b S ++-=--,数列{}n n b S -构成等比数列;当11b =时,数列{}n n b S -不构成等比数列.(3)若11b =,由(2)知2k b k =,于是,所求不等式即2424211155(1)11111nnkk k k kk k k k ==+-≤≤++++∑∑.设21()1f k k k =-+,则21(1).1f k k k +=++ 故224222222111121(1)(1)12(1)2(1)(1)nn n k k k k k k k k k k k k k k k k k ===++--+==+++-++-+∑∑∑()11()(1)2nk f k f k ==-+∑ 1((1)(1))2f f n =-+ 同理,有22242221111(1)(1)(1)(1)12(1)(1)nnkkk k k k k k k k k k k k k ==++++-+-=-++++-+∑∑ ()11((1)(1)),21,*12(1)()(1)12((1)(1)),2,*2k k nf f n n m m N f k f k f f n n m m N =⎧++=-∈⎪⎪=∑-++=⎨⎪-+=∈⎪⎩由于11155((1)(1))(1)222111f f n f ++>=>,故而只能有2,*n m m N =∈.于是,2424211155(1)11111nnkk k k kk k k k ==+-≤≤++++∑∑ 1551((1)(1))((1)(1)),(2,*)21112f f n f f n n m m N ⇔-+≤≤-+=∈ 155((1)(1)),(2,*)2111f f n n m m N ⇔-+==∈ 21111,(2,*)10n n n m m N n ⇔++==∈⇔=综上所述,所有符合条件的正整数n 只有10n = 【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.2.(2021·全国·模拟预测)从①()()126n n n a a S ++=,且12a <;①11a =,()1122n n n a a a n -++=≥,且存在2m ≥,*m ∈N 使得5m S =,()()11111311m m m S m S m -+++-=-;①若1n n a a d --=(常数),且()*162+⋅=+∈N n n n n a S a ,12a <,这三个条件中任选一个,补充在下面题目的横线中,并解答.已知各项均为正数的数列{}n a 的前n 项和为n S ,______. (1)求数列{}n a 的通项公式; (2)设12nn n a b -=,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分. 【答案】(1)条件选择见解析,32n a n =-;(2)118(34)2n n T n -⎛⎫=-+⋅ ⎪⎝⎭. 【解析】 【分析】(1)选①:根据n S 与n a 的关系式可求出数列{}n a 的通项公式;选①:根据题意可得出数列{}n a 是等差数列,数列n S n ⎧⎫⎨⎬⎩⎭是首项为1a ,公差为2d 的等差数列,从而可求出数列{}n a 的通项公式;选①:令1n =,可求出1a ;然后根据n S 与n a 的关系式可求出数列{}n a 的公差,从而可求出数列{}n a 的通项公式;(2)根据(1)中求出的数列{}n a 的通项公式,然后利用错位相减法可求出数列{}n b 的前n 项和n T . (1)选①:当n =1时,()()111126a a a ++=,因为12a <,所以解得11a =; 当2n ≥时,因为()()126n n n a a S ++=,所以()()111126n n n a a S ---++=,两式相减,得2211336n n n n n a a a a a ---+-=,即()()1130n n n n a a a a --+--=,因为0n a >,所以13n n a a --=,所以数列{}n a 是首项为1,公差为3的等差数列, 故()13132n a n n =+-=-.选①:由()1122n n n a a a n -++=≥,知数列{}n a 是等差数列, 因为()111122nn n na dS n a dnn -+-==+, 所以数列n S n ⎧⎫⎨⎬⎩⎭是首项为1a ,公差为2d 的等差数列,所以11211m m m S S S m m m -++=-+,即111011m m S S m m m-++=-+, 所以21311110m m m-=-,又因为2m ≥,*m ∈N ,所以解得m =2; 设等差数列{}n a 的公差为d ,则2125S a d =+=,因为11a =,所以解得d =3,所以()13132n a n n =+-=-. 选①:因为1n n a a d --=,所以数列{}n a 是等差数列, 因为162+⋅=+n n n a a S ,所以()11622n n n S a n a --⋅=+≥,两式相减,得()116n n n n a a a a +-=-,即()622n n a a n d ⋅≥=,又0n a >,所以d =3.当n =1时,11262⋅=+S a a ,即()111623a a a ⋅+=+,因为12a <,所以解得11a =, 故()13132n a n n =+-=-,即32n a n =-. (2)由(1)得()1113222n n n n a b n --⎛⎫==-⋅ ⎪⎝⎭,所以()01211111147322222n n T n -⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以()123111111473222222nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相减,得()2111111133222222n nn T n -⎡⎤⎛⎫⎛⎫⎛⎫=+⨯+++--⋅⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦11112213112n -⎛⎫- ⎪⎝⎭=+⋅--()()113243422n n n n ⎛⎫⎛⎫-⋅=-+⋅ ⎪ ⎪⎝⎭⎝⎭,则118(34)2n n T n -⎛⎫=-+⋅ ⎪⎝⎭.3.(2021·上海静安·一模)对于数列{}n a :若存在正整数0n ,使得当0n n ≥时,n a 恒为常数,则称数列{}n a 是准常数数列.现已知数列{}n a 的首项1a a =,且11,n n a a n *+=-∈N .(1)若32a =,试判断数列{}n a 是否是准常数数列; (2)当a 与0n 满足什么条件时,数列{}n a 是准常数数列?写出符合条件的a 与0n 的关系;(3)若()(,1)*∈+∈N a k k k ,求{}n a 的前3k 项的和3k S (结果用k 、a 表示).【答案】(1)取02n =时,n a 恒等于12,数列{}n a 是准常数数列;(2)答案见解析; (3)2322k k a ⎛⎫-++ ⎪⎝⎭.【解析】 【分析】 (1)将32a =代入已知条件,即可求出()122n a n =≥; (2)根据已知条件,对a 进行分类讨论,分别写出答案即可;(3)由()(,1)*∈+∈N a k k k 和11n n a a +=-分别求出2a ,3a ,…,k a ,1k a +,2k a +,…,31k a -,3k a 的值,将前k 项放在一起,后2k 项中,从1k +项起,每相邻两项的和为定值,这样即可求解3k S .(1)由132a =得,231122a =-=,当2n ≥时,n a 恒等于12,数列{}n a 是准常数数列,取02n =即可;(2)①11,11=1,1n n n n nn a a a a a a +-≥⎧=-⎨-+<⎩,①1n a ≥时,1+≠n n a a ,而当1n a <时,若存在0n ,当0n n ≥时,1n n a a +=,则必有12n a =, 若01a <<时,则211a a =-,3211a a a a =-==,此时只需2111a a a =-=,112a =, 故存在12a =,12n a =,取01n =(取大于等于1的正整数也可以),数列{}n a 是准常数数列. 若11a a =≥,不妨设[),1a m m ∈+,m *∈N ,则[)10,1m a a m +=-∈, 2111m m a a a m ++=-=-+,若21m m a a ++=,则1a m a m -+=-,所以221m a =-或12a m =+,取01n m =+,当0n n ≥时,12n a =(0221a n =-,取大于等于12a +的0n 皆可)若10a a =<,不妨设(],1a l l ∈-+,l *∈N ,则(]1,a l l -∈-,所以(]21,1a a l l =-+∈+,321a a a =-=-,41a a =--,…,()(]210,1l a a l +=---∈,所以()32111l l a a a l ++=-=----⎡⎤⎣⎦,若32l l a a ++=,则221a l =-+或12a l =-+, 取02n l =+,当0n n ≥,12n a =( 0232n a -+=,取大于等于32a -+的0n 皆可以) 存在a 和0n :112a =,12n a =,01n ≥;112a m =+,01n m ≥+;112a m =-+, 02n m ≥+(其中m N *∈,n *∈N ),(a 为某个整数m 加上12时,数列{}n a 是准常数数列).(3)①()(,1)*∈+∈N a k k k ,且11n n a a +=-,①21a a =-,32a a =-,…,()1k a a k =--,()10,1k a a k +=-∈,2111k k a a k a ++=-=+-,321k k a a a k ++=-=-, 4311k k a a k a ++=-=+-,…,31k a a k -=-,31k a k a =+-.所以312312313k k k k k k S a a a a a a a a ++-=+++⋅⋅⋅++++⋅⋅⋅+()()()()1231234313k k k k k k k a a a a a a a a a a ++++-=+++⋅⋅⋅++++++⋅⋅⋅++ ()()()121a a a a k k =+-+-+⋅⋅⋅+--+()1112k ka k k +-=+--2322k k a ⎛⎫=-++ ⎪⎝⎭.4.(2021·四川自贡·一模(理))已知等差数列{}n a 的前n 项和为n S ,{}n b 是各项均为正数的等比数列,14a b =,________,28b =,1334b b -=.在以下三个条件中任选一个①530S =,①425S a =,①3523a a b -=,补充在上面横线上,并作答.(1)求数列{}n a ,{}n b 的通项公式;(2)是否存在正整数k .使得数列1n S ⎧⎫⎨⎬⎩⎭的前k 项和34k T >?若存在,求k 的最小值;若不存在,说明理由.注:如果选择多个条件分别解答,按第一个解答计分. 【答案】(1)条件选择见解析,2n a n =,11162n n b -⎛⎫=⨯ ⎪⎝⎭(2)存在,且k 的最小值为4 【解析】 【分析】(1)根据已知条件求得等差数列{}n a 的首项和公差,求得等比数列{}n b 的首项和公比,从而求得数列{}n a ,{}n b 的通项公式.(2)先求得,n k S T ,由34k T >求得k 的最小值. (1)设等比数列{}n b 的公比为q ,0q >,则1211834b q b b q =⎧⎨-=⎩解得11216q b ⎧=⎪⎨⎪=⎩,所以11162n n b -⎛⎫=⨯ ⎪⎝⎭. 31411622a b ⎛⎫==⨯= ⎪⎝⎭,设等差数列{}n a 的公差为d ,若选①,则()1510101030,2,2122n a d d d a n n +=+===+-⨯=.若选①,则()()()11465,8652,2,2122n a d a d d d d a n n +=++=+==+-⨯=. 若选①,则()()()1113248,228,2,2122n a d a d a d d a n n +-+=+===+-⨯=. (2)由于12,2n a a n ==,所以()2212n nS n n n +=⋅=+, 1111n S n n =-+, 所以111111311223114k T k k k =-+-++-=->++,11,14,341k k k >+>>+,所以正整数k 的最小值为4. 5.(2022·天津·南开中学二模)已知数列{an }的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列{an }前n 项和为Sn ,且满足S 3=a 4,a 3+a 5=2+a 4 (1)求数列{an }的通项公式; (2)求数列{an }前2k 项和S 2k ;(3)在数列{an }中,是否存在连续的三项am ,am +1,am +2,按原来的顺序成等差数列?若存在,求出所有满足条件的正整数m 的值;若不存在,说明理由.【答案】(1)*12,21,.23,2n n n n k a k N n k -=-⎧⎪=∈⎨⎪⋅=⎩ (2)213k k -+ (3)存在,1 【解析】 【分析】(1)设等差数列的公差为d ,等比数列的公比为q ,由已知条件列方程组求得,d q 后可得通项公式; (2)按奇数项与偶数项分组求和;(3)按m 分奇偶讨论,利用122m m m a a a ++=+,寻找k 的解. (1)设等差数列的公差为d ,等比数列的公比为q , 则a 1=1,a 2=2,a 3=1+d ,a 4=2q ,a 5=1+2d . ①S 3=a 4,①1+2+(1+d )=2q ,即4+d =2q ,又a 3+a 5=2+a 4,①1+d +1+2d =2+2q ,即3d =2q ,解得d =2,q =3. ①对于k ①N *,有a 2k -1=1+(k -1)•2=2k -1,故*12,21,.23,2n n n n k a k N n k -=-⎧⎪=∈⎨⎪⋅=⎩ (2)S 2k =(a 1+a 3+…+a 2k -1)+(a 2+a 4+…+a 2k )=[1+3+…+(2k -1)]+2(1+3+32+…+3k -1)=()2213(121)13213kk k k k -+-+=-+-.(3)在数列{an }中,仅存在连续的三项a 1,a 2,a 3,按原来的顺序成等差数列,此时正整数m 的值为1,下面说明理由若am =a 2k ,则由am +am +2=2am +1,得2×3k -1+2×3k =2(2k +1). 化简得4•3k -1=2k +1,此式左边为偶数,右边为奇数,不可能成立. 若21m k a a -=,则由am +am +2=2am +1,得(2k -1)+(2k +1)=2×2×3k -1 化简得k =3k -1,令()*13k k k T k N -=∈,则111120333k k k k k k k kT T +-+--=-=<. 因此,1=T 1>T 2>T 3>…,故只有T 1=1,此时k =1,m =2×1-1=1.综上,在数列{an }中,仅存在连续的三项a 1,a 2,a 3,按原来的顺序成等差数列,此时正整数m 的值为1. 6.(2022·辽宁·鞍山一中模拟预测)已知n S 是等差数列{}n a 的前n 项和,0n a >,315S =,公差1d >,且___________.从①21a -为11a -与31a +等比中项,①等比数列{}n b 的公比为3q =,1124,b a b a ==这两个条件中,选择一个补充在上面问题的横线上,使得符合条件的数列{}n a 存在并作答. (1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:16n T <.【答案】(1)选择条件见解析,21n a n =+ (2)证明见解析 【解析】 【分析】(1)根据选择条件求解(2)数列求和后证明,使用裂项相消法 (1)若选①,21a -为11a -与31a +的等比中项,则()()()2132111a a a -+=-,由{}n a 为等差数列,315S =,得2315a =,①25a =,把25a =代入上式,可得()()4616d d -+=,解得2d =或4d =-(舍) ①13a =,21n a n =+;若选①,3q =为等比数列{}n b 的公比,且1124,b a b a ==, 可得213b b =,即413a a =,即有113)3a d a +=(,即123a d =; 又315S =,可得11332152a d +⨯⨯=,即15a d +=,解得12,3d a ==, 此时21n a n =+; (2) ①()()111111212322123n n a a n n n n +⎛⎫==- ⎪++++⎝⎭, ①11111111112355721232323n T n n n ⎛⎫⎛⎫=-+-+⋅⋅⋅+-=- ⎪ ⎪+++⎝⎭⎝⎭; ①16n T <,得证 7.(2022·浙江绍兴·模拟预测)已知数列{}n a 是公差不为0的等差数列,11a =,且1a ,2a ,4a 成等比数列;数列{}n b 的前n 项和是n S ,且21n n S b =-,*n ∈N .(1)求数列{}n a ,{}n b 的通项公式; (2)设1n n n c +m ,使得()22221232313n m n n a c c c c x b +-++++>对任意*n ∈N 恒成立?若存在,求m 的最小值;若不存在,请说明理由.【答案】(1)n a n =,12n n b -=;(2)存在,5﹒ 【解析】 【分析】(1)设等差数列{}n a 的公差为()0d d ≠,根据1a ,2a ,4a 成等比数列求出d 即可求其通项公式;根据n S 与n b 关系即可求{}n b 的通项公式通项公式; (2)利用裂项相消法求{2nc }前m 项和,设()2313n n n a d b +-=,根据1n n d d +-正负判断{n d }单调性,求出其最大项,{2nc }前m 项和大于该最大值即可求出m 的范围和最小值. (1)设等差数列{}n a 的公差为()0d d ≠,①1a ,2a ,4a 成等比数列,①2214a a a =. ①()2113d d +=+,解得1d =,①()11n a a n d n =+-=.当1n =时,11121b S b ==-,①11b =.当2n ≥时,1122n n n n n b S S b b --=-=-,①12n n b b -=.①{}n b 是以1为首项,以2为公比的等比数判,①12n n b -=.(2)由题意得n c =()()22222211111n n c n n n n +==-++. ①22212m c c c +++()()2222222211111111122311m m m m =-+-++-+--+()2111m =-+.设()()123133132n n n n a n d b ++--==,则()()()1212312313314222n n n n n n n n d d ++++----=-=,①当1n =,2,3时,1n n d d +>;当4n =时,45d d =;当5n ≥时,1n n d d +<, ①数列{}n d 的最大项为453132d d ==, ①()21311321m ->+,整理得()2132m +>,①存在正整数m ,且m 的最小值是5.8.(2022·辽宁辽阳·二模)①{}2nn a 为等差数列,且358a =;①21n a n ⎧⎫⎨⎬-⎩⎭为等比数列,且234a =.从①①两个条件中任选一个,补充在下面的问题中,并解答. 在数列{}n a 中,112a =,________. (1)求{}n a 的通项公式;(2)已知{}n a 的前n 项和为n S ,试问是否存在正整数p ,q ,r ,使得n n r S p qa +=-?若存在,求p ,q ,r 的值;若不存在,说明理由. 【答案】(1)212n nn a -=; (2)存在,3p =,4q =,2r =﹒ 【解析】 【分析】(1)若选①,则可根据等差数列性质求出{}2nn a 的公差d ,根据等差数列通项公式可求2n n a ,从而求得n a ;若选①,则可证明等比数列概念求出21n a n ⎧⎫⎨⎬-⎩⎭的公比,根据等比数列通项公式可求21n a n -,从而求得n a ; (2)根据n a 通项公式的特征,采用错位相减法即可求其前n 项和,将其化为n n r S p qa +=-形式即可得p 、q 、r 的值. (1) 若选①:设等差数列{}2nn a 的公差为d ,则33122512312a a d --===-,①()1222121nn a a n n =+-=-,即212n nn a -=. 若选①:设等比数列21n a n ⎧⎫⎨⎬-⎩⎭的公比为q ,则2112212211a q a⨯-==⨯-, ①11112121122n nn a a n -⎛⎫⎛⎫=⨯= ⎪ ⎪-⨯-⎝⎭⎝⎭, 即212n nn a -=; (2) 21321222n nn S -=+++,231113212222n n n S +-=+++, 则两式相减得,23111111212222222n nn n S +-⎛⎫=+⨯+++- ⎪⎝⎭ 12n S =111121214212212n n n ++⎛⎫- ⎪-⎝⎭=+--12n S =132322n n ++=-,①2332n nn S +=-. ①()22221233343422n n n n n n S a +++-+=-=-⨯=-, ①存在正整数p ,q ,r ,使得n n r S p qa +=-,且3p =,4q =,2r =.9.(2021·河北衡水中学三模)已知数列{}n a 的前n 项和为n S ,且满足13a =,()122n n a xa n n -=+-≥,其中x ∈R .(1)若1x =,求出n a ;(2)是否存在实数x ,y 使{}n a yn +为等比数列?若存在,求出n S ,若不存在,说明理由.【答案】(1)2382n n n a -+=;(2)存在,()21242n n n n S ++=--.【解析】 【分析】(1)将1x =代入,由递推关系求出通项公式,并检验当1n =时是否满足,即可得到结果;(2)先假设存在实数x ,y 满足题意,结合已知条件求出满足数列{}n a yn +是等比数列的实数x ,y 的值,运用分组求和法求出n S 的值. 【详解】(1)由题可知:当1x =时有:12n n a a n --=-,当2n ≥时,()()()()()()121321213012232n n n n n a a a a a a a a n ---=+-+-+⋅⋅⋅+-=++++⋅⋅⋅+-=+,又13a =满足上式,故()()22138322nn n n n a ---+=+=. (2)假设存在实数x ,y 满足题意,则当2n ≥时,由题可得:()()111n n n n a yn x a y n a xa xy y n xy --+=+-⇔=+--⎡⎤⎣⎦, 和题设12n n a xa n -=+-对比系数可得:1xy y -=,22xy x -=-⇔=,1y =.此时121n n a na n -+=+-,114a +=, 故存在2x =,1y =使得{}n a yn +是首项为4,公比为2的等比数列. 从而()()1112121224122nn n n n n n n n a n a n S a a a ++-++=⇒=-⇒=++⋅⋅⋅+=--. 所以()21242n n n n S ++=--. 【点睛】方法点睛:数列求和方法:(1)等差等比公式法(2)错位相减法(3)分组求和法(4)倒序相加法(5)裂项相消法.10.(2022·浙江·模拟预测)已知递增的等差数列{}n a 满足:11a =,且5813,,a a a 成等比数列.数列{}n b 满足:()32n n S b n *=+∈N ,其中n S 为{}n b 的前n 项和.(1)求数列{}{},n n a b 的通项公式; (2)设n n c T =为数列{}n c 的前n 项和,是否存在实数λ,使得不等式n n T S λ≤≤对一切n *∈N 恒成立?若存在,求出λ的值;若不存在,说明理由.【答案】(1)21n a n =-,()112n n b n -*⎛⎫=-∈ ⎪⎝⎭N(2)存在,12λ= 【解析】 【分析】(1)设{}n a 的公差为(0)d d >,根据5813,,a a a 成等比数列,由2(17)(14)(112)d d d +=++求解,由()32n n S b n *=+∈N ,利用数列的通项与前n 项和的关系求解;得()1132*--=+∈n n S b n N ,(2)由(1)23n n b S +=,得到()min 12n S =,nc 12=,利用裂项相消法求得n T ,再由不等式n n T S λ≤≤对一切n *∈N 恒成立求解. (1)解:设{}n a 的公差为(0)d d >, 则2(17)(14)(112)d d d +=++, 所以2,21n d a n ==-. 当1n =时,11b =;当2n ≥时,由()32n n S b n *=+∈N ,得()1132*--=+∈n n S b n N ,两式相减得:12n n b b -=-, 所以{}n b 是以1为首项,以12-为公比的等比数列,所以()112n n b n -*⎛⎫=-∈ ⎪⎝⎭N(2)23n n b S +=,显然()2min 12n b b ==-, 所以()min 12n S =, 由21n a n =-得==n c1122==,故1112222n T ⎛=+++ ⎝, 112⎛= ⎝. 显然12n T <恒成立,且当n →∞时,12n T →,所以存在唯一实数12λ=.11.(2022·江西·二模(理))已知等差数列{}n a 中,12a =,公差0d >,其前四项中去掉某一项后(按原来的顺序)恰好构成一个等比数列. (1)求d 的值. (2)令11n n n b a a +=,数列{}n b 的前n 项和为n S ,若212n S λλ<--对n +∀∈N 恒成立,求λ取值范围. 【答案】(1)2; (2)12λ≤-或32λ≥.【解析】 【分析】(1)根据给定条件,写出等差数列{}n a 前4项,按去掉的项讨论求解作答.(2)由(1)求出等差数列{}n a 的通项,再利用裂项相消法求出n S 并讨论其单调性,列式计算作答. (1)等差数列{}n a 的前四项为2,2,22,23d d d +++,若去掉第一项,则有2(22)(2)(23)d d d +=++,解得0d =,不符合题意, 若去掉第二项,则有2(22)2(23)d d +=+,解得0d =,或12d =-,不符合题意,若去掉第三项,则有2(2)2(23)d d +=+,解得0d =(舍去),或2d =, 若去掉第四项,则有2(2)2(22)d d +=+,解得0d =,不符合题意, 所以2d =. (2)由(1)知22(1)2na n n =+-=,11(2(22411))1n n b n n n ==+-+,于是得1111111111[(1)()()()](1)422334141n S n n n =-+-+-++-=-++,显然数列{}n S 是递增数列,恒有14n S <,因212n S λλ<--对n +∀∈N 恒成立,于是有21124λλ--≥,解得12λ≤-或32λ≥,所以λ取值范围是12λ≤-或32λ≥.12.(2022·浙江·效实中学模拟预测)已知等差数列{}n a 中,公差0d ≠,35a =,2a 是1a 与5a 的等比中项,设数列{}n b 的前n 项和为n S ,满足()*41n n S b n =-∈N .(1)求数列{}n a 与{}n b 的通项公式;(2)设n n n c a b =,数列{}n c 的前n 项和为n T ,若118n T λ⎛⎫+≤ ⎪⎝⎭对任意的*n ∈N 恒成立,求实数λ的取值范围.【答案】(1)21n a n =-,13nn b ⎛⎫=- ⎪⎝⎭(2)2485λ-≤≤ 【解析】 【分析】(1)对于等差数列{}n a 直接列方程322155a a a a =⎧⎨=⋅⎩求解,数列{}n b 根据11,1,2n n n S n b S S n -=⎧=⎨-≥⎩求解;(2)利用错位相减法可得1411883nn n T +⎛⎫=-+- ⎪⎝⎭,根据题意讨论得:当n 是奇数时,min8341n n λ⎛⎫⋅-≤ ⎪+⎝⎭;当n 是偶数时,min 8341n n λ⎛⎫⋅≤ ⎪+⎝⎭,再通过定义证明数列8341n n ⎧⎫⋅⎨⎬+⎩⎭的单调性,进入确定相应情况的最值. (1)①322155a a a a =⎧⎨=⋅⎩ 则()()12111254a d a d a a d +=⎧⎪⎨+=⋅+⎪⎩,解得112a d =⎧⎨=⎩或150a d =⎧⎨=⎩(舍去)①()12121n a n n =+-=-. 又①41n n S b =-,当1n =时,1141b b =-,则113b =-,当2n ≥时,1141n n S b --=-,则14n n n b b b -=-,即113n n b b -=-, 则数列{}n b 是以首项113b =-,公比为13-的等比数列,①1111333n nn b -⎛⎫⎛⎫⎛⎫=-⋅-=- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. (2)()1213nn c n ⎛⎫=-- ⎪⎝⎭,()()123111111135232133333n nn T n n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-+⋅⋅⋅+--+-- ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,()()23411111111352321333333nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=⨯-+⨯-+⨯-+⋅⋅⋅+--+-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭两式相减得:()231411111221333333n n n T n +⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋅⋅⋅+---- ⎪ ⎪⎡⎤⎢⎥⎢ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎥⎣⎦()111111111112123633623n n n n n -++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-+-----=--+-⎢⎥ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦=①1411883nn n T +⎛⎫=-+- ⎪⎝⎭①118n T λ⎛⎫+≤ ⎪⎝⎭对任意的*n ∈N 恒成立,即411183n n λ+⎛⎫-≤ ⎪⎝⎭对任意的*n ∈N 恒成立 ①当n 是奇数时,411183n n λ+-⋅≤任意的*n ∈N '恒成立 ①8341nn λ⋅-≤+对任意的*n ∈N 恒成立①当n 是偶数时,411183n n λ+⋅≤对任意的*n ∈N 恒成立 ①8341nn λ⋅≤+对任意的*n ∈N 恒成立令8341nn c n ⋅=+,()()()11164138383045414541n n n n n n c c n n n n ++-⋅⋅-=-=>++++对任意的*n ∈N 恒成立 ①{}n c 为递增数列 ①当n 是奇数时,则245λ-≤,即245λ≥-①当n 是偶数时,则8λ≤ ①2485λ-≤≤. 13.(2022·浙江省临安中学模拟预测)各项均为正数的数列{}n a 的前n 项和为n S ,21122n n n S a a =+,数列{}n b 为等比数列,且1224,==b a b a . (1)求数列{}n a 、{}n b 的通项公式;(2)记()232,3,nn n n n n b n a a c n b +⎧-⋅⎪⋅⎪=⎨⎪⎪⎩为奇数为偶数,n T 为数列{}n c 的前n 项和,对任意的n *∈N .2λ≥n T 恒成立,求2n T 及实数的λ取值范围.【答案】(1)n a n =,2nn b =(2)212211214n n n T n +=--+,1712λ≤【解析】 【分析】(1)先求出1a ,再当2n ≥时,由21122n n n S a a =+,得21111122n n n S a a ---=+,两式相减化简可得11n n a a --=,从而可得数列{}n a 是公差为1,首项为1的等差数列,则可求出n a ,从而可求出12,b b ,进而可求出n b , (2)当n 为奇数时,利用裂项相消求和法可求出1321n c c c -++⋯+,当n 为偶数时,利用等比数列的求和公式求出242n c c c ++⋯+,从而可求出2n T ,进而可求出实数的λ取值范围 (1)①21122n nn S a a =+①, ①21111122a a a =+,①10a ≠,①11a = 当2n ≥时,21111122n n n S a a ---=+①, 由①-①得221111112222n n n n n a a a a a --+-=- ①2211n n n n a a a a --+=-,又0n a >,①11n n a a --=,①数列{}n a 是公差为1,首项为1的等差数列. ①n a n =①122b a ==,244==b a ,数列{}n b 为等比数列, ①2,2n n q b ==(2)n 为奇数时,212121(65)222(21)(21)2121-+--⋅==-+-+-+k k k k k c k k k k①131321272(65)21335(21)(21)-⨯-⋅++⋯+=++⋯+⨯⨯-+nn n c c c n n 133521211212122222222221335212112121-+++⎛⎫⎛⎫⎛⎫=-++-++⋯+-+=-+=- ⎪ ⎪ ⎪-+++⎝⎭⎝⎭⎝⎭n n n n n n n n n 为偶数时,223324==k k kc ①2421231133314411444414⎛⎫⨯- ⎪⎝⎭++⋯+=++⋯+==--n n n n c c c①()()2121213212422121211214214++-=++⋯++++⋯+=-+-=--++n n n n n n n T c c c c c c n n①0n c >,①{}2n T 单调递增, ①221712≥=n T T ,①1712λ≤ 14.(2022·江苏·阜宁县东沟中学模拟预测)已知正项等差数列{}n a 满足:()33n n a a n *=∈N ,且1382,1,a a a +成等比数列.(1)求{}n a 的通项公式;(2)设()()1121212n n n a n a a c ++=++,n R 是数列{}n c 的前n 项和,若对任意n *∈N 均有n R λ<恒成立,求λ的最小值. 【答案】(1)n a n = (2)最小值为23【解析】 【分析】(1)设等差数列的公差为d ,由33n n a a =及等差数列的通项公式得到1a d =,则n a nd =,再根据等比中项的性质得到方程,求出d ,即可得解;(2)由(1)可得11121212n n n c +⎛⎫=- ⎪++⎝⎭,利用裂项相消法求和得到n R ,即可得到23n R <,从而求出λ的取值范围,即可得解; (1)解:设等差数列的公差为d ,由33n n a a =得[]11(31)3(1)a n d a n d +-=+-,则1a d =, 所以1(1)n a a n d nd =+-=.因为12a 、31a +、8a 成等比数列,所以()231812a a a +=⋅,即2(31)28d d d +=⋅,所以27610d d --=,解得1d =或17d =-,因为{}n a 为正项数列,所以0d >,所以1d =,所以n a n =.(2)由(1)可得()()()()1111122112121212121212n n n a n n n n a a n n c +++++⎛⎫===- ⎪++++++⎝⎭,所以1223111111111122121212121212312n n n n R ++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪ ⎪⎢⎥+++++++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 因为对任意n *∈N 均有23n R <,所以23λ≥,所以实数λ的最小值为2315.(2022·山东潍坊·模拟预测)已知{}n a 和{}n b 均为等差数列,111a b ==,312a a a =+,542b b a =+,记{11max n c b na =-,22b na -,…,}n n b na -(n=1,2,3,…),其中{1max x , 2x ,⋯,}s x 表示1x ,2x ,⋯,sx 这s 个数中最大的数.(1)计算1c ,2c ,3c ,猜想数列{}n c 的通项公式并证明;(2)设数列()()132n n c c ⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭的前n 项和为n S ,若24n S m m <-+对任意n *∈N 恒成立,求偶数m 的值.【答案】(1)10c =,21c =-,32c =-,1n c n =-,证明见解析 (2)2m = 【解析】 【分析】(1)设等差数列{}n a ,{}n b 的公差分别为1d ,2d ,利用111a b ==,312a a a =+,542b b a =+,利用通项公式可得11122d d +=+,211d d =+,可得n a ,n b .根据10c =,21c =-,32c =-.猜想数列{}n c 的通项公式1n c n =-,证明数列{}k k b na -为单调递减数列,即可得出结论.(2)1111(3)(2)(1)(2)12n nc c n n n n ==---++++,利用裂项求和方法即可得出n S ,根据24n S m m <-+对任意*n N ∈恒成立即可得出m 的取值范围.(1)解:设等差数列{}n a 和{}n b 的公差为1d 、2d , 那么()()()11221121114131d d d d d ⎧+=++⎪⎨+=+++⎪⎩,解得1212d d =⎧⎨=⎩,①n a n =,21n b n =-,那么,111110c b a =-=-=,{}{}21122max 2,2max 121,3221c b a b a =--=-⨯-⨯=-,{}{}3112233max 3,3,3max 131,332,5332c b a b a b a =---=-⨯-⨯-⨯=-,猜想{}n c 的通项公式为1n c n =-,当3n ≥时,()()()()111120k k k k k k k k b na b na b b n a a n ++++---=---=-<,所以数列{}k k b na -关于*N k ∈单调递减, 所以{}112211max ,,,1n n n c b na b na b na b na n =---=-=-;(2) 解:()()()()()()111113221123121n n c c n n n n n n ===---++++----⎡⎤⎡⎤⎣⎦⎣⎦,所以1111111123341222⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭n S nn n , 因为24n S m m <-+对任意n *∈N 恒成立,所有2142m m -+≥,解得4422m +≤≤,所以2m =. 16.(2022·天津·耀华中学一模)设数列{}()*n a n ∈N 是公差不为零的等差数列,满足369a a a +=,25796a a a +=.数列{}()*n b n ∈N 的前n 项和为n S ,且满足423n n S b +=.(1)求数列{}n a 和{}n b 的通项公式;(2)在1b 和2b 之间插入1个数11x ,使1b ,11x ,2b 成等差数列;在2b 和3b 之间插入2个数21x ,22x ,使2b ,21x ,22x ,3b 成等差数列;……;在n b 和1n b +之间插入n 个数1n x ,2n x ,…,nn x ,使n b ,1n x ,2n x ,…,nn x ,1n b +成等差数列.(i )求()()()11212231323312n n n nn T x x x x x x x x x =++++++++++;(ii )是否存在正整数m ,n ,使12m n ma T a +=成立?若存在,求出所有的正整数对(),m n ;若不存在,请说明理由.【答案】(1)n a n =;11123n n b -⎛⎫=⨯ ⎪⎝⎭.(2)(i )n T 123343n n +⎛⎫=- ⎪⎝⎭;(ii )存在;(9,2)和(3,3).【解析】 【分析】(1)设}n a {的公差为d ,根据题意列式求出1a 和d 即可求出n a ;根据11n n n b S S ++=-可求出n b ; (2)(i )根据等差中项的性质得到()123411357(21)2n n n T b b b b n b nb +=+++++-+,再根据错位相减法可求出n T ;(ii )根据n T 和{}n a 的通项公式得到23213n n m +=-,推出211,13m ⎡⎫-∈⎪⎢⎣⎭,令233n nn c +=,推出{}n c 的单调性,根据单调性可知,只有2c 和31,13c ⎡⎫∈⎪⎢⎣⎭,由此可求出结果.(1)设}n a {的公差为d ,0d ≠,则()111211125846648a d a d a d a d a d a d +++=+⎧⎪⎨+++=+⎪⎩,解得11a d ==, 所以1(1)11n a a n d n n =+-=+-=. 由423n n S b +=得11423b b +=,得112b =, 11423n n S b +++=,所以114()2()330n n n n S S b b ++-+-=-=,所以11422n n n b b b +++=,即113n n b b +=,所以11123n n b -⎛⎫=⨯ ⎪⎝⎭.综上所述:n a n =;11123n n b -⎛⎫=⨯ ⎪⎝⎭.(2)(i )依题意得12112b b x +=,2321222()2b b x x ++=,343132333()2b b x x x +++=, 45414243444()2b b x x x x ++++=,,123n n n nn x x x x ++++1()2n n n b b ++=, 所以()()()11212231323312n n n nn T x x x x x x x x x =++++++++++2334451122()3()4()()22222n n b b b b b b n b b b b ++++++=+++++()123411357(21)2n n b b b b n b nb +=+++++-+012311111111111111()3()5()7()(21)()()2232323232323n n n n -⎛⎫=⨯+⨯⨯+⨯⨯+⨯⨯++-⋅⨯+⋅⨯ ⎪⎝⎭012311111111()3()5()7()(21)()()4333333n n n n -⎛⎫=+⨯+⨯+⨯++-⋅+⋅ ⎪⎝⎭令0123111111()3()5()7()(21)()33333n n R n -=+⨯+⨯+⨯++-⋅,则1234111111()3()5()7()(21)()333333n n R n =+⨯+⨯+⨯++-⋅,所以13n n R R -=12311111112()()()()(21)()33333n n n -⎛⎫+++++--⋅ ⎪⎝⎭, 所以1111()213312(21)()13313n n n R n -⎛⎫- ⎪⎝⎭=+⨯--⋅-, 所以113(1)()3n n R n -=-+⋅,所以11()43n n n T R n ⎛⎫=+⋅ ⎪⎝⎭1113433n n n n -+⎛⎫=-+ ⎪⎝⎭123343n n +⎛⎫=- ⎪⎝⎭,(ii )假设存在正整数m ,n ,使12m n m a T a +=,即12313432n n m m ++⎛⎫-= ⎪⎝⎭,即23213n n m+=-成立, 因为210m->,所以2m >,所以3m ≥,所以211,13m ⎡⎫-∈⎪⎢⎣⎭,令233n nn c +=,则1125253233(23)3n n n nn c n n c n ++++==++2512544n n n +=<+++, 所以数列{}n c 单调递减,1513c =>,279c =,313c =,当4n ≥时,4111813n c c ≤=<,所以由27219c m ==-,得9m =;由31213c m==-,得3m =, 所以存在正整数m ,n ,使12m n ma T a +=,且所有的正整数对(,)m n 为:(9,2)和(3,3). 17.(2022·天津河北·一模)设数列{}n a 的前n 项和14n n S -=, (1)求数列{}n a 的通项公式; (2)令19(3)(3)nn n n a b a a +=++,记数列{}n b 前n 项和为n T ,求n T ;(3)利用第二问结果,设λ是整数,问是否存在正整数n ,使等式13758n n T a λ++=成立?若存在,求出λ和相应的n 值;若不存在,说明理由.【答案】(1)21,134,2n n n a n -=⎧=⎨⨯≥⎩;(2)171841n --+(3)当4λ=时,存在正整数2n =,使等式13758n n T a λ++=成立,当4,λ≠时,不存在正整数n 使等式13758n n T a λ++=成立. 【解析】 【分析】(1)直接由n a 与n S 的关系求解;(2)将(1)中求得的结果代入n b ,化简后利用裂项相消法求和; (3)将λ表示为含n 的等式,利用λ是整数,找出符合条件的n 即可. 【详解】(1)令n =1得,111a S ==;当n 2≥时,2134n n n n a S S --=-=⨯,所以21,134,2n n n a n -=⎧=⎨⨯≥⎩ (2)当2n ≥时,234n n a -=⨯,此时22119934(3)(3)(343)(343)n n n n n n n a b a a ---+⨯⨯==++⨯+⨯+ 21114141n n --=-++,又111293(3)(3)8a b a a ==++①213,1811,24141n n n n b n --⎧=⎪⎪=⎨⎪-≥⎪++⎩.故1138T b ==,当2n ≥时,2221323131111()()841414141n T ----=+-+-+++++ 32211111()()41414141n n n n ----+-+-++++171841n -=-+.(3)若1n =, 则等式13758n n T a λ++=为37858λ+=,52λ=不是整数,不符合题意; 若2n ≥,则等式13758n n T a λ++=为11717841548n n λ---+=+⨯,11154554141n n n λ---⨯==-++ ①λ是整数, ①141n -+必是5的因数, ①2n ≥时1415n -+≥ ①当且仅当2n =时,1541n -+是整数,从而4λ=是整数符合题意.综上可知,当4λ=时,存在正整数2n =,使等式13758n n T a λ++=成立, 当4,λ≠时,不存在正整数n 使等式13758n n T a λ++=成立 【点睛】本题考查了数列的通项与前n 项和的关系,考查了裂项求和法,考查了分析问题解决问题的能力及逻辑思维能力,属于难题.18.(2022·四川达州·二模(理))已知数列{}n a 满足11a =,12n n a a +=+,n S 为{}n a 的前n 项和. (1)求{}n a 的通项公式;(2)设()1nn n b S =-,数列{}n b 的前n 项和n T 满足20n T mn ->对一切正奇数n 恒成立,求实数m 的取值范围.【答案】(1)21n a n =-; (2)1m <-. 【解析】 【分析】(1)利用等差数列的定义可得数列{}n a 是首项为1,公差为2的等差数列,即求; (2)由题可得当 n 为奇数时,()12n n n T +=-,进而可得21122n n n T m <=--对一切正奇数n 恒成立,即得. (1)①11a =,12n n a a +=+, ①12n n a a +-=,①数列{}n a 是首项为1,公差为2的等差数列, ①()12121n a n n =+-=-; (2)由题可得()21212n n n S n +-==,①()()211nnn n b S n =-=-,①()221121n n b b n n n ++=-++=+,n 为奇数, ①当 n 为奇数,且3n ≥时,()22222123451nn T n =-+-+-++-()()()221212372322n n n n n n n -⋅+=+++--=-=-, 当1n =时,11T =-也适合, 故当 n 为奇数时,()12n n n T +=-, 又20n T mn ->对一切正奇数n 恒成立,①2111222n T m n n n n+<=-=--对一切正奇数n 恒成立, 又11122n--≥-, ①1m <-.19.(2022·天津市宁河区芦台第一中学模拟预测)设数列{}n a 的前n 项和为n S ,且满足()*N n n a S n -=∈321.(1)求数列{}n a 的通项公式;(2)记()()n n n n n b n n a ⎧⎪-+⎪=⎨⎪⎪⎩12123,为奇数,为偶数,数列{}n b 的前2n 项和为2n T ,若不等式()nnn n nT n λ⎛⎫-<+⋅- ⎪+⎝⎭2241132941对一切*N n ∈恒成立,求λ的取值范围. 【答案】(1)13-=n n a (2)⎛⎫- ⎪⎝⎭3546,. 【解析】【分析】(1)利用n a 与n S 的关系即可求解;(2)根据裂项相消法和错位相减法求出数列{}n b 的前2n 项和为2n T ,再将不等式的恒成立问题转化为求最值问题即可求解.(1)由题意,当1n = 时,1113211a a a -=⇒=, 当2n ≥ 时, 11321n n a S ---=,所以()n n n n a a S S -----=113320, 即 13n n a a -=, ∴ 数列{}n a 是首项为1,公比为3的等比数列,11133n n n a --∴=⨯=故数列{}n a 的通项公式为13-=n n a . (2)()()12123n n n n n b n n a ⎧⎪-+⎪=⎨⎪⎪⎩,为奇数,为偶数,由 (1),得当n 为偶数时,13n n n n nb a -==, 当n 为奇数时, 11142123n b n n ⎛⎫=- ⎪-+⎝⎭,设数列{}n b 的前2n 项中奇数项的和为n A ,所以n nA n n n ⎛⎫=-+-+⋯+-=⎪-++⎝⎭11111114559434141, 设数列{}n b 的前2n 项中偶数项的和为n B , n n B n -⎛⎫⎛⎫⎛⎫∴=⨯+⨯+⋯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1321111242333①n n B n +⎛⎫⎛⎫⎛⎫=⨯+⨯+⋯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭352111112429333②,由-①②两,得()n n n n n n B n ++-⎛⨯⎫⎛⎫=⨯+⋯-⎛⎫=-⨯ ⎪++-⎪⎝⎭⨯ ⎪ ⎝⎭⎝⎭-21211321111139281111229332331319, 整理得()nn n B +⎛⎫=-⋅ ⎪⎝⎭38927132329,故,()nn n n n n T A B n +⎛⎫=+=+-⋅ ⎪+⎝⎭23892714132329,n nn n n T n ⎛⎫⎛⎫∴+⋅-=-⋅ ⎪ ⎪+⎝⎭⎝⎭2241272713294132329.∴ 不等式()nnn n n T n λ⎛⎫-<+⋅-⎪+⎝⎭2241132941对一切*N n ∈恒成立, 即不等式()nnλ⎛⎫-<-⋅ ⎪⎝⎭27271132329对一切*N n ∈恒成立,()xf x ⎛⎫=-⋅ ⎪⎝⎭2727132329在R 上是单调增。
(1)恒成立问题若不等式f(x)>A 在区间D 上恒成立,则等价于在区间D 上f(x)min >A ; 若不等式f(x)<B 在区间D 上恒成立,则等价于在区间D 上f(x)max <B ; (2)能成立问题若在区间D 上存在实数x 使不等式f(x)>A 成立,则等价于在区间D 上f(x)max >A ; 若在区间D 上存在实数x 使不等式f(x)<B 成立,则等价于在区间D 上f(x)min <B ; (3)恰成立问题若不等式f(x)>A 在区间D 上恰成立,则等价于不等式f(x)>A 的解集为D ; 若不等式f(x)<B 在区间D 上恰成立,则等价于不等式f(x)<B 的解集为D. 二.典型问题例 区分下列问题的类型,并思考如何进行有效转化 组一1.若关于x 的不等式34x x a -+-<的解集不是空集,则实数a 的取值范围是 。
2.若存在实数x 使|x -a|+|x -1|≤3成立,则实数a 的取值范围是________3.若不等式|kx -4|≤2的解集为{x|1≤x ≤3},则实数k =______4.若关于x 的不等式|x -m|≤|2x +1|解集为R ,则实数m 的取值为________5.在R 上定义运算⊗:x ⊗y =x(1-y).若不等式(x -a)⊗(x -b)>0的解集是(2,3),则a +b 的值是A .1B .2C .4D .86.函数f(x)=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2, x <0,则不等式f(2-x 2)>f(x)的解集是________ 7.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是( )A .(,0)-∞B .1(0,)2 C .(0,1) D .(0,)+∞8.设l 为曲线C :ln xy x=在点(1,0)处的切线. (I)求l 的方程; (II)证明:除切点(1,0)之外,曲线C 在直线l 的下方 组二1.已知函数x x x f ln )(=,(1)求)(x f 的最小值; (2)若对所有1≥x 都有1)(-≥ax x f ,求实数a 的取值范围.2.已知函数32()()f x ax bx b a x =++-(a ,b 是不同时为零的常数),其导函数为()f x ',当13a =时, 若不等式()0f x '<对任意x [3,1]∈--恒成立,求b 的取值范围;3.已知函数3()sin (),2f x ax x a R =-∈且在,0,2π⎡⎤⎢⎥⎣⎦上的最大值为32π-, (1)求函数f(x)的解析式; (2)判断函数f(x)在(0,π)内的零点个数,并加以证明。
数列的单调性以及恒成立的问题一、数列的单调性(一)数列的单调性与函数的单调性的区别【例题1】已知()2*n a n n n N λ=+∈是单调递增数列,则λ的取值范围是 【例题2】给定函数y =f (x )的图像在下列图中,并且对任意a 1()0,1∈,由关系a n+1=f (a n )得到a n+1>a n (n *N ∈),则该函数的图像是(二)a n =f (n )的单调性【例题3】已知{a n }的通项a n =(n 2-1)c n +c n-1(n *N ∈),其中实数c ≠0,若对一切k *N ∈有a 2k >a 2k-1,求c 的取值范围.【例题4】已知a 1=a ,a n+1=S n +3n,若a n+1≥a n (n *N ∈),求a 的取值范围.【变式训练】设数列{a n }满足a 1=2,11n n na a a +=+(n *N ∈). (I )证明:21n a n >+对一切正整数n 成立;(II )令n b =n *N ∈),试判断b n 和b n+1的大小,并说明理由.【例题5】已知数列{a n }中,a 1=2,对于任意的p ,q *N ∈,有a p+q =a p +a q . (I )求数列{a n }的通项公式; (II )若数列{b n }满足()112121212121n nn n b b b a -=-++-+++,求数列{b n }的通项公式; (III )若3nn n c b λ=+,是否存在实数λ,使得当n *N ∈时,c n+1>c n 恒成立?【变式训练】设数列{a n }的各项都是正数,且对任意的n *N ∈,都有333212n n a a a S +++=,其中,S n 为数列{a n }的前n 项和.(I )求证:2112n n n a S a ++=+;(II )求数列{a n }的通项公式; (III )设()1312n n a n n b λ-=+-⋅⋅为非零整数,n *N ∈,试确定λ的值,使得对任意的n *N ∈,都有b n+1>b n 成立.(三)a n+1=f (a n )的单调性【知识点】对于迭代数列a n+1=f (a n ),如果有y=f (x )是非递减函数,那么:①若a 1<a 2,则数列{a n }递增;②若a 1=a 2,那么数列{a n }是常数列;③若a 1>a 2,则数列{a n }递减. 特别地,对于迭代数列a n+1=f (a n ),若f (x )是二次函数,则数列单调递增的充要条件是a 1<a 2<a 3,且对于任意的n ≥2,n *N ∈,在[a 2,a n ]上,函数f (x )为单调递增函数.【例题6】已知数列{}n a 满足1a =12且1n a +=n a -2n a (n ∈*N ) (1)证明:112nn a a +≤≤(n ∈*N ); (2)设数列{}2n a 的前n 项和为n S ,证明112(2)2(1)n S n n n ≤≤++(n ∈*N ).【变式训练】在数列{}n a 中,13a =,2110n n n n a a a a λμ++++=,()n N +∈(1)若0,2,λμ==-求数列{}n a 的通项公式; (2)若()0001,2,1,k N k k λμ+=∈≥=-证明:010*********k a k k ++<<+++【变式训练】数列{x n }满足:x 1=0,x n+1= -x n 2+x n +c (n *N ∈) (I )证明:数列{x n }单调递减的充分必要条件是c <0; (II )求c 的取值范围,使数列{x n }是单调递增数列.二、数列的单调性应用 (一)数列的最值问题【例题7】数列{a n }和数列{b n }满足:①a 1=a<0,b 1=b>0;②当k ≥2时,若a k -1+b k -1≥0,则a k =a k -1,112k k k ab b --+=;若a k -1+b k -1<0,则111,2k k k k k a b a b b ---+==. (1)若a= -1,b=1,求a 2,b 2,a 3,b 3的值;(2)设S n =(b 1 –a 1)+(b 2 –a 2)+…+(b n -a n ),求S n (用a ,b 表示);(3)若存在n *N ∈,对任意的正整数k ,当2≤k ≤n 时,恒有b k -1>b k 成立,求n 的最大值(用a ,b 表示).【变式训练】在数列{a n }中,a 1=3,a n b n =a n +2,n =2,3,4,… (I)求a 2,a 3,判断数列{a n }的单调性并证明; (II)求证|a n -2|<1124n a --(n =2,3,4,…); (III)是否存在常数M ,对任意n ≥2,有b 2b 3…b n ≤M ?若存在,求出M 的值;若不存在,说明理由.(二)数列中的恒成立问题【例题8】如图,在平面直角坐标系xOy 中,设a 1=2,有一组圆心在x 轴的正半轴上的圆A n (n *N ∈)与x 轴的交点分别为A 0(1,0)和A n+1(a n +1,0),过圆心A n 作x 轴的垂线l n 在第一象限与圆A n 交于点B n (a n ,b n ). (1)求数列{a n }的通项公式;(2)设曲边形A n+1B n B n+1(阴影部分所示)的面积为S n ,若对于任意n *N ∈,12111nm S S S +++≤恒成立,试求实数m 的取值范围.【变式训练】已知数列{}n a 与{}n b 满足()112n n n n a a b b ++-=-,n *∈N .(1)若35n b n =+,且11a =,求数列{}n a 的通项公式;(2)设{}n a 的第0n 项是最大项,即0n n a a >(n *∈N ),求证:数列{}n b 的第0n 项是最大项;(3)设10a λ=<,n n b λ=(n *∈N ),求λ的取值范围,使得{}n a 有最大值M 与最小值m ,且()2,2mM∈-.【课时作业】1、设数列{}n a 的前n 项和12n n S a a =-,且123,1,a a a +成等差数列. (1)求数列{}n a 的通项公式; (2)记数列1{}n a 的前n 项和n T ,求得1|1|1000n T -<成立的n 的最小值.2、设数列{a n }的前n 项和为S n ,已知a 1=a (a ≠3),a n+1=S n +3n,n *N ∈. (I )设b n =S n -3n,求证:数列{b n }是等比数列,并写出{b n }的通项公式; (II )若数列{a n }是单调递增数列,求a 的取值范围.3、设数列{a n }的前n 项和为S n ,()24*,n n S a n n N R λλ=+-∈∈,且数列|a n -1|为等比数列.(I )求实数λ的值,并写出数列{a n }的通项公式; (II )(i )判断数列111n n a a ⎧⎫-⎨⎬-⎩⎭(n *N ∈)的单调性;(ii )设()11n n nb a --=,数列{b n }的前n 项和为T n ,求证:229n T <.4、已知数列{a n },{b n }中,a 1=1,b n =221111nn n a a a ++⎛⎫-⋅ ⎪⎝⎭,n *N ∈,数列{b n }的前n 项和为S n .(I )若a n =2n -1,求S n ;(II )是否存在等比数列{a n },使得b n+2=S n 对于任意的n *N ∈恒成立?若存在,求出所有满足条件的数列{a n }的通项公式;若不存在,请说明理由. (III )若{a n }是单调递增数列,求证:S n <2.5、已知数列{a n }的前n 项和为S n ,其中,a 1=1,且1nn nS a a λ+=(n *N ∈). (I )求常数λ的值,并写出{a n }的通项公式; (II )记3nn n a b =,数列{b n }的前n 项和为T n ,求最小的正整数k ,使得对任意的n ≥k ,都有3144n T n-<成立.6、数列{a n },a n ≥0,a 1=0,a n+12+a n+1-1=a n 2(n *N ∈),求证:当n *N ∈时,a n <a n+1.7、【变式训练】设a 1=1,11n a +=(n *N ∈),问:是否存在实数c ,使得a 2n <c <a 2n+1对所有的n *N ∈成立?证明你的结论.8、首项为正数的数列a n 满足:a n+1=()2134n a +. n *N ∈ (I)证明:若a 1为奇数,则对于任意的n ≥2,a n 为奇数; (II)若对于任意的n *N ∈,都有a n+1≥a n ,求a 1的取值范围.。
与数列有关的恒成立问题(一)根据与数列通项有关的不等式恒成立,求参数范围。
【例1】(2020·广东华南师大附中高二期末)已知数列满足,,那么成立的的最大值为______,所有,公差,解,得,所以成立的的最大值为5,故答案为:5【例2】(2020·黑龙江高三(理))已知数列满足,且,(Ⅰ)求证:数列是等比数列;(Ⅰ)若不等式对恒成立,求实数的取值范围.【解】(Ⅰ)证明:∵a n+1−12=3a n −32=3(a n −12), 所以数列是以1为首项,以3为公比的等比数列; (Ⅰ)解:由(1)知,,由b n +1bn+1−1≤m 得3n−1+13n −1≤m ,即13+43(3n −1)≤m设c n =13+433−1,所以数列{c n }为减数列,(c n )max =c 1=1,∴m ≥1 【巩固训练】若数列{a n },{b n }的通项公式分别为a n =(−1)n+2018a,b n =2+(−1)n+2019n,且a n <b n ,对任意n ∈N +恒成立,则实数a 的取值范围是( ) A .[−1,12)B .[−1,1)C .[−2,1)D .[−2,32)【解】因为a n <b n ,故(−1)n+2018a <2+(−1)n+2019n,当n 为奇数,-a<2+1n ,又2+1n 单调递减,故2+1n <2,故- a ≤2,解a ≥−2,当n 为偶数,a <2−1n ,又2-1n 单调递增,故2-1n ≥32,故a <32,综上−2≤a <32,故选D{}n a 11a =0n a >1=32n a <n 1=1=d 1=n =2n a n =232n a n =<n <32n a <n(二) 根据与数列前n 项和有关的不等式恒成立求参数范围【例3】2020·湖北高三月考(理))已知数列的前项和,设,为数列的前项和,若对任意的,不等式恒成立,则实数的取值范围为( ) A .B .C .D .【解】由数列的前项和, 可得,故, 故, 故=,不等式恒成立, 即恒成立,即, 由,可得,(当n =1时等号成立),所以,故选:A . 【例4】数列{a n }的前n 项和S n =2−12n−1(n ∈N ∗).(1)求数列{a n }的通项公式;(2)数列{b n }满足b n =na n ,求数列{b n }的前n 项和T n ; (3)对于(2)中的T n ,若不等式(−1)n λ<T n +n2n−1对一切n ∈N ∗恒成立,求λ的取值范围. 【详解】(1)数列{a n }的前n 项和S n =2−12n−1(n ∈N ∗)①.当n ≥2时,S n−1=2−12n−2②, ①−②得:a n =S n −S n−1=2−12n−1−2+12n−2=12n−1.当n =1时,S 1=a 1=2−120=1,{}n a n 23122n S n n =-11n n n b a a +=n T {}n b n*n N ∈93n T n λ<+λ(,48)-∞(,36)-∞(,16)-∞(16,)+∞{}n a n 23122n S n n =-22113131(1)(1)()312222n n n S n n n n a n S ++==+-+--=+-32n a n =-111111()(32)(31)33231n n n b a a n n n n +===--+-+111111(1...)34473231n T n n =-+-+++--+11(1)33131n n n -=++93n T n λ<+2min3(31)n n λ⎡⎤+<⎢⎥⎣⎦min 1396n n λ⎛⎫<++ ⎪⎝⎭*n N ∈1910n n+≥48λ<符合上式,故:a n =12n−1.(2)由于:a n =12n−1,则:b n =na n =n2n−1,则:T n =120+221+322+⋯+n2n−1①,12T n=121+222+323+⋯+n 2n ②,①−②得:12T n =1−12n 1−12−n 2n,故:T n =4−4+2n 2n.(3)由于不等式(−1)n λ<T n +n2n−1对一切n ∈N ∗恒成立,所以:不等式(−1)n ⋅λ<4−22n−1对一切n ∈N ∗恒成立.由于f(n)=4−22n−1在n ∈N +为递增函数.若n 为偶数时,λ<f(2)=3,所以λ<3,当n 为奇数时−λ<f(1)=2,所以:λ>−2,故:−2<λ<3.【巩固训练】(2020·黑龙江牡丹江一中高一月考)已知不等式对一切正整数恒成立,则实数的范围为( ) A .B .C .D .【解析】∵,所以不等式对一切正整数恒成立,化为>, 所以>,因为是增函数,所以的最小值是,∴log 2(a ﹣1)+a ﹣,所以4﹣a >log 2(a ﹣1),所以4>a+log 2(a ﹣1),所以因为是增函数(增+增=增),观察选项所以1<a <3,故选B.点睛:本题用到了两次恒成立问题,第一次是>得到log 2(a ﹣1)+a ﹣,第二次是4>a+log 2(a ﹣1)得到.恒成立问题实质就是最值问题,所以恒成立问题一般转化成最值问题.()()211117...log 112233412a a n n ++++>-+-⨯⨯⨯+n a ()0,3()1,3()2,4()3,+∞111(1)1n n n n =-++()()211117...log 112233412a a n n ++++>-+-⨯⨯⨯+n 11111112231n n -+-++-+()27log 12a a -+-1111n -+()27log 12a a -+-1111n -+1111n -+11122-=12>722max 4[log (1]a a >+-)2log (1y a a =+-)1111n -+()27log 12a a -+-12>722max 4[log (1]a a >+-)(三)与数列前n 项和通有关的不等式的证明。
【例5】(2019·海南高二期末(理))设等比数列的前项和为,已知,且成等差数列.(1)求数列的通项公式;(2)令,设数列的前项和为,求证:.【解】(1)依题意得,即,化简得,即,所以. (2)由(1)知,则, 所以……, ,因为单调递增,且, 所以,而,即. 【巩固训练】(2017·广西高考模拟(理))已知数列的前项和满足: , .(1)求数列的通项公式;(2)记数列的前项和为,求证: . 【解】(1)当时, .当时, ..而也满足.∴数列的通项公式为.(2)∵,∴..{}n a n n S 12a =1234,3,2S S S {}n a 1(1)(1)n n n n a b a a +=--{}n b n n T 213n T ≤<213642S S S =+()()121123642a a a a a a +=+++232a a =322a q a ==2n n a =2nn a =()()1121121212121n n n n n n b ++==-----1223111121212121n T ⎛⎫⎛⎫=-+-+⎪ ⎪----⎝⎭⎝⎭1112121n n +⎛⎫+- ⎪--⎝⎭1111111212121n n ++=-=----1121n +⎧⎫-⎨⎬-⎩⎭11021n +-<-11n T T ≤<12121213T =-=-213n T ≤<{}n a n n S 22n S n n =+*n N ∈{}n a 11n n a a +⎧⎫⎨⎬⎩⎭n n T 16nT <1n =13a =2n ≥1n n n a S S -=-()()222121n n n n =+----21n =+13a =21n a n =+{}n a 21n a n =+()()1112123n n a a n n +=++11122123n n ⎛⎫=- ⎪++⎝⎭则... (四)导数与数列不等式的交汇。
【例6】设f (x )=e x -a (x +1).(1)若a >0,f (x )≥0对一切x ∈R 恒成立,求a 的最大值;(2)设g (x )=f (x )+ae x ,A (x 1,y 1),B (x 2,y 2)(x 1≠x 2)是曲线y =g (x )上任意两点,若对任意的a ≤-1,直线AB 的斜率恒大于常数m ,求m 的取值范围;(3)是否存在正整数a ,使得1n+3n+…+(2n -1)n<ee -1(an )n 对一切正整数n 都成立?若存在,求a 的最小值;若不存在,请说明理由.【解】(1)∵f (x )=e x -a (x +1),∴f ′(x )=e x -a ,∵a >0,f ′(x )=e x -a =0的解为x =ln a .∴f (x )min =f (ln a )=a -a (ln a +1)=-a ln a . ∵f (x )≥0对一切x ∈R 恒成立,∴-a ln a ≥0,∴a ln a ≤0,∴a max =1.(2)∵f (x )=e x-a (x +1),∴g (x )=f (x )+a e x =e x+ae x -ax -a .∵a ≤-1,直线AB 的斜率恒大于常数m ,∴g ′(x )=e x -ae x -a ≥2e x·⎝⎛⎭⎫-a e x -a =-a +2-a =m (a ≤-1),解得m ≤3,∴实数m 的取值范围是(-∞,3].(3)设t (x )=e x -x -1,则t ′(x )=e x -1,令t ′(x )=0得:x =0.在x <0时t ′(x )<0,f (x )递减;在x >0时t ′(x )>0,f (x )递增.∴t (x )最小值为t (0)=0,故e x ≥x +1, 取x =-i 2n ,i =1,3,…,2n -1,得1-i 2n ≤e -i 2n ,即⎝⎛⎭⎫2n -i 2n n≤e -i 2,累加得⎝⎛⎭⎫12n n +⎝⎛⎭⎫32n n+…+⎝⎛⎭⎫2n -12n n <e -2n -12+e -2n -32+…+e -12=e -121-e -n 1-e -1<e e -1. ∴1n+3n+…+(2n -1)n<e e -1·(2n )n ,故存在正整数a =2.使得1n +3n +…+(2n -1)n<e e -1·(an )n .1111111235572123n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦1112323n ⎛⎫=- ⎪+⎝⎭11646n =-+16<【巩固训练】【湖北省2020届高三期末】已知函数f(x)=2lnx −x 2, (1)求函数y =f(x)图象上一点A(1,f(1))处的切线方程.(2)若方程f(x)−2a =0在[1e ,e]内有两个不等实根,求实数a 的取值范围(e 为自然对数的底数). (3)求证1ln2+1ln3++1lnn ≥32−2n+1n(n+1)(n ∈N ,且n ≥2) 【解】(1)∵f(x)=2lnx −x 2,∴f′(x)=2x−2x =2(1−x 2)x,∴k =f′(1)=0,f(1)=−1,函数图象上一点A(1,f(1))处的切线方程为y =−1;(2)∵方程f(x)−2a =0在[1e ,e]内有两个不等实根,∴y =f(x)与y =2a 有两个交点, ∵f′(x)=2(1−x 2)x,x ∈[1e ,e],令f′(x)=0,解得x =1,当x ∈[1e ,1]时,f′(x)>0,函数f(x)单调的递增,当x ∈[1,e]时,f′(x)<0,函数f(x)单调的递减, ∴f(x)max =f(1)=−1,∵f(1e )=2ln 1e −1e 2=−2−1e 2,f(e)=2lne −e 2=2−e 2, ∴f (1e )>f(e),∵y =f(x)与y =2a 有两个交点,∴−2−1e 2≤2a <−12∴−1−12e 2≤a <−12 (3)证明:由(2)知f(x)在(0,1)上递增,在(1,+∞)上递减,则f(x)=2lnx −x 2≤f(1)=−1, 则2lnx ≤x 2−1对x >0恒成立, ∴2x 2−1=1x−1−1x+1≤1lnx 对x >1恒成立, 令x =2,3,,n ,代入上式并相加可得,∴1ln2+1ln3++1lnn ≥1−13+12--14+13−15+1n−2−1n +1n−1−1n+1 =1+12−1n −1n+1=32−2n+1n(n+1),n ∈N ,且n ≥2.三、跟踪训练1.设,定义,如果对任意的且,不等式恒成立,则实数的取值范围是( )A .B .C .D .【解】由, ,单调递增,最小值为,又,则,由图像可知b>1,选D2.已知数列的前项和为,且,若, 恒成立,则的最小值是( ) A .1 B .2 C .D . 【解析】利用错位相减法求得,要使, 恒成立,就要找的最大值满足,观察式子,从而求得的最小值是,故选D. 3.【重庆市2020届高三第三次教学质量检测】已知{a n }是公比不为1的等比数列,数列{b n }满足:a 2,a b n ,a 2n 成等比数列,c n =1b2n b 2n+2,若数列{c n }的前n 项和T n ≥λ对任意的n ∈N ∗恒成立,则λ的最大值为( )A .13 B .16 C .115D .215解析】由a 2,a b n ,a 2n 成等比数列得ab n2=a 2a 2n ,又{a n }是公比不为1的等比数列,设公比为q,则a 12q 2b n −2=a 12q 2n ,整理得b =n n +1 ,c n =1b 2n b 2n+2=1(2n+1)(2n+3)=12(12n+1−12n+3), 1a >111()122f n n n n=+++++*n N ∈2n ≥112()7log 7log 7a a f n b b ++>+b 292,17⎛⎫ ⎪⎝⎭(0,1)(0,4)(1,)+∞111()122f n n n n =+++++11221121)()1(+-+++=-+n n n n f n f 0221121>+-+=n n )(n f 127)2(=f 112()7log 7log 7a a f n b b ++>+b b a a 1log log +>{}n a n n T 13n n na -=n T M <*n N ∈M 839419314423n n n T -⎛⎫=-+ ⎪⎝⎭n T M <*n N ∈n T M 94数列{c n }的前n 项和T n =12(13−15+15−17+⋅⋅⋅+12n+1−12n+3)=12(13−12n+3),数列{T n }是单调递增数列,则当n=1时取到最小值为115,可得λ≤115,即λ的最大值为115,故选:C 4.已知数列的前项和为,且, ,若对任意恒成立,则实数的取值范围是__________.【解析】由可得,可验证,也适合,易得,由对任意恒成立,当偶数时,可得;当奇数时,可得,故答案为. 5.【晋冀鲁豫名校2018-2019年度高三上学期期末联考】已知数列{a n }的前n 项和为S n , a 1=a, a n+1=S n +3n ,若a n+1≥a n 对∀n ∈N ∗成立,则实数a 的取值范围是______________.【解析】据题意,得:S n+1−S n =S n +3n , ∴S n+1=2S n +3n , ∴S n+1−3n+1=2(S n −3n ). 又S 1−31=a −3,∴S n −3n =(a −3)⋅2n−1.当n =1时,a 1=a ;当n ≥2时:a n =S n −S n−1=3n +(a −3)×2n−1−3n−1−(a −3)×2n−2=2×3n−1+(a −3)×2n−2,∴a n+1−a n =4×3n−1+(a −3)×2n−2.又当n ≥2时,a n+1≥a n 恒成立,∴a ≥3−12×(32)n−2对∀n ∈N ∗,且n ≥2成立,∴a ≥−9.又a 2=a 1+3, ∴a 2≥a 1成立.综上,所求实数a 的取值范围是[−9,+∞).6.【河南省洛阳市2019届高三上学期尖子生第二次联考】已知数列{a n }的前n 项和为S n ,对任意n ∈N ∗,S n =(−1)n a n +12n+n −3,且(t −a n+1)(t −a n )<0恒成立,则实数t 的取值范围是__________.【解析】由S n =(−1)n a n +12n +n −3,令n =1,得a 1=−34;当n ⩾2时,a n =S n −S n−1=(−1)n a n +12n +n −3−[(−1)n−1a n−1+12n−1+n −1−3]{}n a n n S 110a =()*1910N n n a S n +=+∈()20161lg 10lg n n n m a a +-<()20171n ++-*N n ∈m 11910{910n n n n a S a S +-=+=+110n n a a +=1n =10n n a =()()201620171lg 10lg 1n n n n m a a ++-<+-*N n ∈n 11910,2m m n <-<n 11910,10,10,2m m m n ⎡⎫>--≥-∴∈-⎪⎢⎣⎭1910,2m ⎡⎫∈-⎪⎢⎣⎭=(−1)n a n +(−1)n a n−1−12n+1,若n 为偶数,则a n−1=12n −1,∴a n =12n+1−1(n 为正奇数);若n 为奇数,则a n−1=−2a n −12n +1=−2(12n+1−1)−12n +1=3−12n−1∴a n =3−12n (n 为正偶数).函数a n =12n+1−1 (n 为正奇数)为减函数,最大值为a 1=−34, 函数a n =3−12n (n 为正偶数)为增函数,最小值为a 2=114,若(t −a n+1)(t −a n )<0恒成立,则a 1<t <a 2,即−34<t <114.故答案为:(−34,114). 7.【宁夏石嘴山市第三中学2019届高三下学期三模】已知数列{a n }满足a 1=1,且点(a n ,2a n+1)(n ∈N ⋆)在直线x −12y +1=0上.若对任意的n ∈N ∗,1n+a 1+1n+a 2+1n+a 3+⋯+1n+a n≥λ恒成立,则实数λ的取值范围为______.【解析】将点(a n ,2a n+1)代入直线x −12y +1=0可得:a n+1−a n =−1.所以数列{a n }是以a 1=1为首项,公差为−1的等差数列.所以a n =a 1+(n −1)d =1−(n −1)=2−n所以1n+a 1+1n+a 2+1n+a 3+⋯+1n+a n=1n+1+1n +1n−1+⋯+12≥12,当且仅当n =1时,等号成立要使得1n+a 1+1n+a 2+1n+a 3+⋯+1n+a n≥λ恒成立,则12≥λ,所以λ≤128.若数列{a n }是公差为2的等差数列,数列{b n }满足b 1=1,b 2=2,且a n b n +b n =nb n +1. (1)求数列{a n },{b n }的通项公式; (2)设数列{c n }满足c n =a n +1b n+1,数列{c n }的前n 项和为T n ,若不等式(-1)n λ<T n +n2n−1对一切n ∈N *恒成立,求实数λ的取值范围.【解析】 (1) ∵数列{b n }满足b 1=1,b 2=2,且a n b n +b n =nb n +1.∴ n =1时,a 1+1=2,解得a 1=1. 又数列{a n }是公差为2的等差数列,∴a n =1+2(n -1)=2n -1. ∴ 2nb n =nb n +1,化为2b n =b n +1, ∴数列{b n }是首项为1,公比为2的等比数列.∴b n =2n -1.(2)由数列{c n }满足c n ===,数列{c n }前n 项和为T n =1+++…+,∴ T n =++…++,两式作差,得∴T n =1+++…+-=-=2-,∴T n =4-.不等式(-1)n λ<T n +,化为(-1)n λ<4-,当n =2k (k ∈N *)时,λ<4-,取n =2,∴λ<3.当n =2k -1(k ∈N *)时,-λ<4-,取n =1,∴λ>-2.综上可得:实数λ的取值范围是(-2,3).9.已知数列的前项和为,并且满足 ,, (1)求的通项公式;(2)令,问是否存在正整数,对一切正整数,总有,若存在,求值;若不存在,说明理由.【分析】(1)当时可求出,由可得当时有,两式相减得,再验证当时是否成立即可.(2)先由(1)求出,然后求 ,再求出满足的,从而得出答案.【详解】(1)当时,由 及,可得 ,故 当时,由题有,所以整理得,当时,,所以数列是以为首项,为公差的等差数列,所以 (2)由(1)得,所以{}n a n n S 12a =()11n n na S n n +=++{}n a 45nn n T S ⎛⎫=⋅ ⎪⎝⎭m n n m T T ≤m 1n =2a ()11n n na S n n +=++2n ≥()()111n n n a S n n --=+-()122n n a a n +-=≥1n =n T 11,n n T T +-11n n nn T T T T +-≥⎧⎨≥⎩n 1n =12a =()11n n na S n n +=++24a =212a a -=2n ≥()()111n n n a S n n --=+-()112n n n na n a a n +--=+()122n n a a n +-=≥1n =212a a -={}n a 222n a n =()1n S n n =+()24455n nn n T S n n ⎛⎫⎛⎫=⋅=+ ⎪ ⎪⎝⎭⎝⎭所以,令 即 ,解得 故故存在正整数对一切正整数,总有,此时或10.(2019·江苏高二期末)已知数列中,,是数列的前项和,且. (1)求,,并求数列的通项公式; (2)设,数列的前项和为,若 对任意的正整数都成立,求实数取值范围.【解】(1)在中,,则,即,得,由得:当时,, 化简得,即,所以数列是以2为首项,2为公比的等差数列,所以.又因为,所以,所以,. 当时,, 对也成立,所以数列的通项公式为.(2)因为,所以.因为,所以在上单调递增,()()1214115n n T n n --⎛⎫⎡⎤=-+- ⎪⎣⎦⎝⎭()()121441155n nn n T S n n ++⎛⎫⎛⎫⎡⎤=⋅=+++ ⎪ ⎪⎣⎦⎝⎭⎝⎭11n n n n T T T T +-≥⎧⎨≥⎩()()()()()()22122441155441155n nn n n n n n n n n n -⎧⎛⎫⎛⎫⎡⎤+≥+++⎪ ⎪ ⎪⎣⎦⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪⎡⎤+≥-+- ⎪ ⎪⎪⎣⎦⎝⎭⎝⎭⎩89n ≤≤12891011T T T T T T <<<=>>>m n n m T T ≤8m =9m ={}n a 0n a >n S {}n a n 22n n na S a +=2S 3S {}n a n a 21n n n b S S +=+{}n b n nT 0n k -≥n k 22n n na S a +=1n =11122a S a +=11122S S S +=1S 22n n na S a +=2n ≥1122n n n n n S S S S S ---+=-()()112n n n n S S S S --+⋅-=()22122n n S S n --=≥{}2n S ()22212n S n n =+-=0n a>n S =22S=3S =2n≥1n n n a S S -=-==1a ={}na n a =21n n n b S S +===+12n n T b b b =+++12=+-⋅⋅⋅+1=10n n T T +-=>n T *n N ∈所以的最小值为.因为对任意的正整数都成立,所以,即.所以实数的取值范围是.11.(2020·安徽高三月考(理))设正项数列的前项和为,且满足,,.(1)求数列的通项公式;(2)若正项等比数列满足,且,数列的前项和为.①求;②若对任意,,均有恒成立,求实数的取值范围.【解】(1) ,,∴,∴ 且各项为正,∴又,所以,再由得,所以∴是首项为1,公差为3的等差数列,∴(2)∴,①,②∴ ,恒成立∴ ,即恒成立.设,,当时,;时, ∴,∴. 12.(2019·江西南昌二中高三月考)设公差不为0的等差数列的首项为1,且,,构成等比数列.求数列的通项公式,并求数列的前n 项和为;令,若对恒成立,求实数t 的取值范围.【解】(Ⅰ)设等差数列的公差为,首项,由题意,nT )11T =0n k -≥n ()minnk≤11k ≤=k 1k ≤{}n a n n S 37a =21691n n a S n +=++n *∈N {}n a {}n b 1132,b a b a ==n n n c a b =⋅{}n c n n T n T 2n ≥n *∈N 2(5)63135n T m n n --+≥m 2n 1n a 6S 9n 1+=++()()2n n 1a 6S 9n 11n 2-=+-+≥()22n 1n n a a 6a 9n 2+-=+≥()22n 1n a a 3+=+()n 1n a a 3n 2+=+≥3a 7=2a 4=221a 6S 91=++1a 1=21a a 3-={}n a n a 3n 2=-13b 1,b 4==n 1n b 2-=()n 1n n n c a b 3n 22-=⋅=-⋅()01n 1n T 12423n 22-=⋅+⋅++-⋅()12n n 2T 12423n 22=⋅+⋅++-⋅()12n 1n T 13222--=++++()n 3n 22--⋅()n n T 3n 525=-⋅+()n 3n 52m -⋅⋅≥()2*6n 31n 35n 2,n N -+≥∈()2n 6n 31n 35m 3n 52-+≥-⋅()()()nn 3n 52n 72n 73n 522---==-⋅n 2n 7m 2-≥n n 2n 7k 2-=n 1n n 1nn 12n 52n 792nk k 222+++----=-=n 4≤n 1n k k +>n 5≥n 1n k k +<()n 55max 33k k 232===3m 32≥{}n a 2a 5a 14a ()1{}n a 12n n a+⎧⎫⎨⎬⎩⎭n T ()2()12cos 1n n n c a a n π++=+212n c c c tn ++⋯+≥*n N ∈{}n a d 11a =25214a a a =则,解得.则.①, ②, ①-②得. (2), 当为奇数时,,当为偶数时,,综上所述,()()()2141113d d d +=++2d =()12121n a n n =+-=-23211221231212222n nn T ⨯+⨯+⨯++=++++()2341211121122123121222222n nn n n T +⨯-+⨯+⨯+⨯++=+++++2311322221222222n n n n T ++=++++-152522n n ++=-2552n nn T +∴=-()()()2123cos 1n c n n n π=+++n ()cos 11n π+=()()123557799112123n c c c n n +++=⨯-⨯+⨯-⨯+++⨯+()35471121n =⨯+⨯++++()()2811544n n +-=+⨯2267.n n =++2,n T tn ≥22267,n n tn ∴++≥227613527,77t n n n ⎛⎫∴≤++=++ ⎪⎝⎭ 2.t ∴≤n ()cos 11n π+=-()()123557799112123n c c c n n +++=⨯-⨯+⨯-⨯+-+⨯+()2459132126.n n n =-⨯+++++=--2,n T tn ≥22626,2,n n tn t n∴--≥∴≤-- 5.t ∴≤- 5.t ≤-。