解决与数列中不等式恒成立问题的两个基本策略
- 格式:doc
- 大小:622.50 KB
- 文档页数:5
有关恒成立问题的解题策略与技巧作者:黄翠萍来源:《中学生数理化·教与学》2015年第03期近年来,恒成立问题频繁出现在高考数学试题中,主要涉及求参变量的范围问题,考查函数、不等式、数列、导数、圆锥曲线等知识,让试题的深度与广度得到加深,并渗透着换元、化归、数形结合、函数与方程等思想与方法,能够考查学生的综合解题能力.因此,在高中数学学习过程中,学生要注重对这类题目的解题技巧的总结,通过反复练习,达到融会贯通的目的.教师要给予学生正确指导,帮助学生提高解决恒成立问题的能力.一、函数最值法函数最值法是学生比较常用的一种解题方法,适用于恒成立的相关题目.在教学过程中,教师要让学生根据题意,利用函数最值法来解决实际问题.这种方法简单省时.点评:在运用函数最值法解决恒成立问题时,要注重对题目进行变形处理.二、分离参数法在遇到含参数的不等式题目时,要将含参数的不等式进行变形,把参数分离出来,将不等式变形为一端只含参数的解析式,这种方法十分便捷有效,有利于学生快速解决问题.例2已知2a-3b=1,证明直线ax+by=5恒过定点.解:由2a-3b=1,得a=12(3b+1),带入直线方程后分离参数b,得(x-10)+b(3x+2y)=0;由方程x-10=0,3x+2y=0可得,x=10,y=-15;所以(x-10)+b(3x+2y)=0表示经过两直线x-10=0和3x+2y=0的交点(10,-15)的直线系方程.因此,当2a-3b=1时直线ax+by=5恒过定点(10,-15).点评:分离参数法主要是将参数单独放在一端,另一端则为不含参数的函数,然后将其转化为函数最值问题进行处理.这样,就能将复杂的恒成立问题简单化,教师应该向学生加强这方面的指导,让学生能够用分离参数法解决高中数学中的恒成立问题.三、数形结合法运用数形结合法也可以解决恒成立问题.首先要构造函数,作出满足已知条件的函数图形,然后找出函数与函数图形在各区间上的关系,最后得出结论,求得参数范围.点评:在这道恒成立题目中,如果直接进行求解是很困难的,但是在构造函数后,利用函数图形来分析两个函数间的关系,这样就非常直观,也便于得出最后答案.另外,学生通过观察构造的函数,能够全面掌握各函数图形代表的含义,这样学生就能加深对已知条件的理解,今后在遇到类似的题目时,也能轻易解决.总之,高中数学恒成立题型很多,解法也很多,在实际的解题过程中,要充分了解给定函数的特点和性质,具体问题具体分析,选择最恰当的解题方法,尽量将问题等价转化,这样就能很轻松的解决问题.教师要注重对学生进行这方面的指导,让学生在面对恒成立问题时,能够运用有效的方法解决难题.。
处理有关“恒成立”的思路方法乐山市井研县马踏中学廖德俊与“恒成立”有关的问题一直是中学数学的重要内容,它是函数,数列,不等式,三角等内容交汇处的一个非常活跃的知识点,特别是导数的引入,成为我们更广泛更深入的研究函数,不等式的有利工具,更为我们研究恒成立问题提供了保障。
对恒成立问题的考察不仅涉及到函数,不等式等有关的传统知识和方法,而且考察极限,导数等新增内容的掌握和灵活运用。
它常与数学思想方法紧密结合,体现了能力立意的原则。
恒成立问题涉及到一次函数,二次函数的性质,图象渗透和换元,化归,数形结合,函数与方程等思想方法,有利于考察学生的综合解题能力,培养学生思维的灵活性,创造性,所以是历年高考的热点。
一.恒成立问题的基本类型按区间分类可分为:①在给定区间某关系的恒成立问题;②在全体实数集上某关系的恒成立问题。
二.处理恒成立问题的基本思路处理与恒成立有关的问题大致可分以下两种方法①变量分离思路处理;②利用函数的性质,图象思路处理。
若不等式中出现两个变量,其中一个变量的范围已知,另一个的范围为所求,且容易通过恒等变形将两个变量分别置于不等号的两边,则可将恒成立问题转化为函数的最值问题求解。
在不等式的恒成立问题中,以下充要条件应细心思考,甄别差异,性质使用。
≥∈--∈∴≥=--=+∴≥-21例2:若不等式x2+ax+10对一切x (0,]成立,则a 的取值范围为( )25A. 0B. -2C. -D.-32111解析:由于x (0,],a 21115()在(0,]上单调递增,在x=取得最小值2225,故选2方法2:利用函数的性质,图象其主要体现在:1,利用一次函数的图象性质 x x x x f x x x a C≠≥≤≥≥∈⇔≥≤≤∈⇔≤若原题可化为一次函数类型,则由数形结合给定一次函数f(x)=ax+b (a 0).若y=f(x)在[m,n]内恒有f(x)0(或f(x)0),则 根据函数的图象可得:f(m)0f(x)0,x [m,n]恒成立{f(n)0f(m)0f(x)0,x [m,n]恒成立{f(n)02,利用二次函数的图象性质:>≠⇔∆<≤∈220若 f(x)=ax +bx+c (a 0)大于0恒成立{若二次函数在给定区间上恒成立则可利用根的分布和韦达 定理求解。
高中数学不等式的恒成立问题不等式恒成立的问题既含参数又含变量,往往与函数、数列、方程、几何有机结合起来,具有形式灵活、思维性强、不同知识交汇等特点. 考题通常有两种设计方式:一是证明某个不等式恒成立,二是已知某个不等式恒成立,求其中的参数的取值范围.解决这类问题的方法关键是转化化归,通过等价转化可以把问题顺利解决,下面我就结合自己记得教学经验谈谈不等式的恒成立问题的处理方法。
一、构造函数法在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,即构造函数法,然后利用相关函数的图象和性质解决问题,同时注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更加面目更加清晰明了,一般来说,已知存在范围的量视为变量,而待求范围的量视为参数.例1 已知不等式对任意的都成立,求的取值范围.解:由移项得:.不等式左侧与二次函数非常相似,于是我们可以设则不等式对满足的一切实数恒成立对恒成立.当时,即解得故的取值范围是.注:此类问题常因思维定势,学生易把它看成关于的不等式讨论,从而因计算繁琐出错或者中途夭折;若转换一下思路,把待求的x为参数,以为变量,令则问题转化为求一次函数(或常数函数)的值在内恒为负的问题,再来求解参数应满足的条件这样问题就轻而易举的得到解决了。
二、分离参数法在不等式中求含参数范围过程中,当不等式中的参数(或关于参数的代数式)能够与其它变量完全分离出来并,且分离后不等式其中一边的函数(或代数式)的最值或范围可求时,常用分离参数法.例2已知函数(为常数)是实数集上的奇函数,函数在区间上是减函数.(Ⅰ)若对(Ⅰ)中的任意实数都有在上恒成立,求实数的取值范围.解:由题意知,函数在区间上是减函数.在上恒成立注:此类问题可把要求的参变量分离出来,单独放在不等式的一侧,将另一侧看成新函数,于是将问题转化成新函数的最值问题:若对于取值范围内的任一个数都有恒成立,则;若对于取值范围内的任一个数都有恒成立,则.三、数形结合法如果不等式中涉及的函数、代数式对应的图象、图形较易画出时,可通过图象、图形的位置关系建立不等式求得参数范围.例 3 已知函数若不等式恒成立,则实数的取值范围是 .解:在同一个平面直角坐标系中分别作出函数及的图象,由于不等式恒成立,所以函数的图象应总在函数的图象下方,因此,当时,所以故的取值范围是注:解决不等式问题经常要结合函数的图象,根据不等式中量的特点,选择适当的两个函数,利用函数图像的上、下位置关系来确定参数的范围.利用数形结合解决不等式问题关键是构造函数,准确做出函数的图象.如:不等式,在时恒成立,求的取值范围.此不等式为超越不等式,求解时一般使用数形结合法,设然后在同一坐标系下准确做出这两个函数的图象,借助图象观察便可求解.四、最值法当不等式一边的函数(或代数式)的最值较易求出时,可直接求出这个最值(最值可能含有参数),然后建立关于参数的不等式求解.例4 已知函数(Ⅰ)当时,求的单调区间;(Ⅱ)若时,不等式恒成立,求实数的取值范围.解(Ⅱ)当时,不等式即恒成立.由于,,亦即,所以.令,则,由得.且当时,;当时,,即在上单调递增,在上单调递减,所以在处取得极大值,也就是函数在定义域上的最大值.因此要使恒成立,需要,所以的取值范围为.例5 对于任意实数x ,不等式│x+1│+│x-2│>a 恒成立,求实数a 的取值范围.分析①:把左边看作x 的函数关系,就可利用函数最值求解.解法1:设f (x )=│x+1│+│x-2│ =-2x+1,(x ≤1)3,(-1<x ≤2)2x-1,(x >2) ∴f (x )min =3. ∴a <3.分析②:利用绝对值不等式│a │-│b │<│a ±b │<│a │+│b │求解f (x )=│x+1│+│x-2│的最小值.解法2:设f(x)=│x+1│+│x-2│,∵│x+1│+│x-2│≥│(x+1)-(x-2)│=3,∴f(x)min=3. ∴a<3.分析③:利用绝对值的几何意义求解.解法3:设x、-1、2在数轴上的对应点分别是P、A、B,则│x+1│+│x-2│=│PA│+│PB│,当点P在线段AB上时,│PA│+│PB│=│AB│=3,当点P不在线段AB上时,│PA│+│PB│>3,因此不论点P在何处,总有│PA│+│PB│≥3,而当a<3时,│PA│+│PB│>a恒成立,即对任意实数x,不等式│x+1│+│x-2│>a 恒成立.∴实数a的取值范围为(-∞,3).小结求“恒成立问题”中参数范围,利用函数最值方便自然,利用二次不等式恒为正(负)的充要条件要分情况讨论,利用图象法直观形象.综上,恒成立问题多与参数的取值范围问题联系在一起,是近几年高考的一个热门题型,它以“参数处理”为主要特征,以“导数”为主要解题工具.往往与函数的单调性、极值、最值等有关,所以解题时要善于将这类问题与函数最值联系起来,通过函数最值求解相关问题.不等式恒成立问题,因题目涉及知识面广,解题方法灵活多样,技巧性强,难度大等特点,要求有较强的思维灵活性和创造性、较高的解题能力,上述方法是比较常用的,但因为问题形式千变万化,考题亦常考常新,因此在备考的各个阶段都应渗透恒成立问题的教与学,在平时的训练中不断领悟和总结,教师也要介入心理辅导和思想方法指导,从而促使学生在解决此类问题的能力上得到改善和提高.。
与数列结合的不等式恒成立问题求解攻略冷峰【期刊名称】《高中数理化》【年(卷),期】2017(000)004【总页数】2页(P14-15)【作者】冷峰【作者单位】黑龙江省大庆第一中学【正文语种】中文数列和不等式知识都是高考考查的热点问题,而与数列相结合的不等式恒成立问题,创意新、综合性强,对学生的解题能力提出了更高的要求,解题关键是求出已知数列或构造数列的最值.在此类恒成立问题中数形结合法有着很巧妙的应用,能减少烦琐的推理证明过程,提高解题效率.例1 已知数列{an}中若对任意的正整数n,有an≤a8恒成立,求t的取值范围.对比函数若对任意的正整数n,an≤a8恒成立,结合的图象可知解得-14<t<-12.在一些结构较为复杂的不等式恒成立问题中,恰当地构造一个数列,通过对新数列单调性的判断求出最值也是热点问题.此类问题的难点在于单调性的证明,常用的方法是差值比较法和商值比较法.例2 求使得不等式对一切正整数n都成立的自然数a的最大值.令则在本题求解中,先根据不等式左侧代数式的结构特征构造了f(n),进而通过作差证明f(n+1)>f(n),判断出数列单调递增求出最小值,进而得出恒成立所需要的条件.例3 已知函数f(x)=log3(ax+b)的图象过点A(2,1)和B(5,2).(1) 求函数f(x)的解析式;(2) 记an=3f(n)(n∈N*),问是否存在正数k,使得对一切n∈N*恒成立?若存在,求出k的最大值,若不存在,说明理由.(1) f(x)=log3(2x-1).令故F(n+1)>F(n),即F(n)在N*上为增函数,所以所以满足题意,即k的最大值时本题在分离参数之后,构造新数列F(n),与例3不同的是根据代数式的结构特点,采用作商的方法来证明F(n+1)>F(n),并在证明过程中利用了不等式的放缩得到了所需要的结论,最后利用单调性得到最值,得出所求参数的范围和最大值.在不等式恒成立问题中,常与数列求和知识相结合考查,需要学生先准确化简求出数列的和,再通过分析和式的最简形式求出相应最值,达到解题目的.例4 设二次函数f(x)=x2+x,当x∈[n,n+1]时,f(x)的所有整数值的个数为g(n).(1) 求g(n)的表达式;(2) 设若Tn<m (m∈Z)恒成立,求m的最小值.(1) g(n)=(n2+3n+2)-(n2+n)+1=相减得若Tn<m恒成立,需恒成立,因为所以只需m≥7即可,即m的最小值为7.本题第(2)问中,先用错位相减法得到数列的和Tn,然后利用函数的性质和无限逼近的思想得到所求参数的最值.此类问题的核心是根据题中条件选用合适的求和方法准确求和,再借助函数的思想求得数列的最值,最终求得参数范围.数列与不等式的综合应用还有很多方面,其中恒成立问题的解法开放、多样,掌握问题本质、归纳解题方法,能够有效地引导解题教学,帮助学生提高解题能力.。
不等式恒成立问题不等式恒成立问题是数学试题中的重要题型,涉及数学中各部分知识,但主要是函数中的不等式恒成立问题和数列中的不等式恒成立问题,最常考的一种题型是:已知不等式恒成立,求参数的取值范围,解决这类问题的基本方法是相同的,首选方法是利用分离参数转化为求新函数、新数列的最值问题,如果不能分离参数或者分离参数比较复杂时,一般选择函数的方法,通常利用函数的最值解决。
在正式求解之前先解决两个问题: 1、怎么判断是恒成立问题?恒成立问题一般都有很明显的关键词,比如任意、所有、全、都、总、恒、均等。
2、如何区分主元和参数?恒成立问题一般会出现这样一句话:“对某个未知数在某个区间范围内恒成立”,那么这个未知数就是主元,剩下的未知数就是参数。
函数性质法 1、一次函数型给定一次函数()y f x kx b ==+(0≠k ),若()y f x =在[,]m n 内恒有0)(>x f ,则根据函可得上述结论等价于⎩⎨⎧>>0)(0)(n f m f 同理,若在[,]m n 内恒有()0f x <,则有⎩⎨⎧<<0)(0)(n f m f 。
例 对于满足的一切实数,不等式恒成立,试求的取值范围.分析:习惯上把当作自变量,记函数,于是问题转化为: 当时,恒成立,求的取值范围.解决这个等价的问题需要应用二次函数以及二次方程的区间根原理,可想而知,这是相当复杂的.解:设函数,显然,则是的一次函数,40≤≤p 342-+>+p x px x x x p x p x y -+-+=3)4(2[]4,0∈p 0>y x )34()1()(2+-+-=x x p x p f 1≠x )(p f p要使恒成立,当且仅当,且时,解得的取值范围是.点评:本题看上去是一个不等式问题,但是经过等价转化,把它化归为关于的一次函数,利用一次函数的单调性求解,解题的关键是转换变量角色.例 设函数3)(x x f =,若20πθ<<时,0)1()sin (>-+m f m f θ恒成立,则实数m 的取值范围 答案:]1,(-∞变式练习1、对于满足2p ≤的所有实数p,求使不等式212x px p x ++>+恒成立的x 的取值范围。
数学高考复习中恒成立问题及解题策略
数学高考复习中常见的恒成立问题包括:三角函数、平面几何、立体几何、数列等方面的常见恒等式是否成立。
解决这些问题需要
我们掌握以下策略:
1. 掌握基本定义。
了解三角函数、平面几何、立体几何、数列
等基本定义,理解它们的概念和性质,这是解决恒成立问题的前提。
2. 理解证明步骤。
对于一些基本的恒等式,如三角函数的基本
恒等式、半角公式等,需要深入理解其证明步骤,这样能解决很多
基本的恒成立问题。
3. 对比特殊情况。
对于一些复杂的恒等式,可以考虑先验证一
些特殊情况,如取特殊的几个值来代入验证,这样可以对恒等式是
否成立有一个大致的判断。
4. 利用常见定理。
多运用常见的几何定理或性质的结论,如勾
股定理、中线定理、垂直平分线定理等,也可以用对等三角形、相
似比、余弦、正弦等基本知识来解决。
5. 探索新的思路。
对于一些比较难的恒等式,可以多思考,开
拓思路,寻找新的解题方法,这样可以解决不同的问题,丰富解题
经验。
总之,解决恒成立问题需要我们理解基本定义和证明步骤,利
用特殊情况和常见定理,同时具有创新和探索的精神。
专题(4)恒成立问题与有解问题的区别恒成立与有解问题一直是中学数学的重要内容。
它是函数、数列、不等式等内容交汇处的一个较为活跃的知识点,在近几年的高考试题中,越来越受到高考命题者的青睐,涉及恒成立与有解的问题,有时在同一套试题中甚至有几道这方面的题目。
本文就恒成立与有解问题做一比较。
1、恒成立问题解决不等式恒成立问题的方法。
法一:转换主元法。
适用于一次型函数。
法二:化归二次函数法。
适用于二次型函数。
法三:分离参数法。
适用于一般初等函数。
法四:数型结合法。
1.1恒成立问题与一次函数联系给定一次函数y=f(x)=ax+b(a ≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(直线)可得上述结论等价于ⅰ)⎩⎨⎧>>0)(0m f a 或ⅱ)⎩⎨⎧><0)(0n f a 亦可合并定成⎩⎨⎧>>0)(0)(n f m f同理,若在[m,n]内恒有f(x)<0,则有⎩⎨⎧<<0)(0)(n f m f1 转换主元法确定题目中的主元,化归成初等函数求解。
此方法通常化为一次函数。
例1:若不等式 2x -1>m(x 2-1)对满足-2≤m ≤2的所有m 都成立,求x 的取值范围。
例2、对于满足|p|≤2的所有实数p,求使不等式x 2+px+1>2p+x 恒成立的x 的取值范围。
分析:在不等式中出现了两个字母:x 及P,关键在于该把哪个字母看成是一个变量,另一个作为常数。
显然可将p 视作自变量,则上述问题即可转化为在[-2,2]内关于p 的一次函数大于0恒成立的问题。
1.2恒成立问题与二次函数联系( 化归二次函数法)根据题目要求,构造二次函数。
结合二次函数实根分布等相关知识,求出参数取值范围。
(1)若二次函数y=ax 2+bx+c(a ≠0)大(小)于0(x R ∈)恒成立,则有⎩⎨⎧<∆>00a(2)若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解。
不等式恒成立问题解题方法汇总(含答案)不等式恒成立问题一般设计独特,涉及到函数、不等式、方程、导数、数列等知识,渗透着函数与方程、等价转换、分类讨论、换元等思想方法,成为历年高考的一个热点.考生对于这类问题感到难以寻求问题解决的切入点和突破口.这里对这一类问题的求解策略作一些探讨.1最值法例1.已知函数在处取得极值,其中为常数.(I)试确定的值;(II)讨论函数的单调区间;(III)若对于任意,不等式恒成立,求的取值范围.分析:不等式恒成立,可以转化为2分离参数法例2.已知函数(I)求函数的单调区间;(II)若不等式对于任意都成立(其中是自然对数的底数),求的最大值.分析:对于(II)不等式中只有指数含有,故可以将函数进行分离考虑.3 数形结合法例3.已知当时,不等式恒成立,则实数的取值范围是___.分析:本题若直接求解则比较繁难,但若在同一平面直角坐标系内作出函数与函数在上的图象,借助图形可以直观、简捷求解.4 变更主元法例4.对于满足不等式的一切实数,函数的值恒大于,则实数的取值范围是___.分析:若审题不清,按习惯以为主元,则求解将非常烦琐.应该注意到:函数值大于对一定取值范围的谁恒成立,则谁就是主元.5 特殊化法例5.设是常数,且().(I)证明:对于任意,.(II)假设对于任意有,求的取值范围.分析:常规思路:由已知的递推关系式求出通项公式,再根据对于任意有求出的取值范围,思路很自然,但计算量大.可以用特殊值探路,确定目标,再作相应的证明.6分段讨论法例6.已知,若当时,恒有<0,求实数a的取值范围.例7.若不等式对于恒成立,求的取值范围.7单调性法例8.若定义在的函数满足,且时不等式成立,若不等式对于任意恒成立,则实数的取值范围是___.8判别式法例9.若不等式对于任意恒成立.则实数的取值范围是___.分析:此不等式是否为一元二次不等式,应该先进行分类讨论;一元二次不等式任意恒成立,可以选择判别式法.例10.关于的不等式在上恒成立,求实数的取值范围.答案部分1最值法例1.已知函数在处取得极值,其中为常数.(I)试确定的值;(II)讨论函数的单调区间;(III)若对于任意,不等式恒成立,求的取值范围.分析:不等式恒成立,可以转化为解:(I)(过程略).(II)(过程略)函数的单调减区间为,函数的单调增区间为.(III)由(II)可知,函数在处取得极小值,此极小值也是最小值.要使()恒成立,只需,解得或.所以的取值范围为.评注:最值法是我们这里最常用的方法.恒成立;恒成立.2分离参数法例2.已知函数(I)求函数的单调区间;(II)若不等式对于任意都成立(其中是自然对数的底数),求的最大值.分析:对于(II)不等式中只有指数含有,故可以将函数进行分离考虑.解:(I)(过程略)函数的单调增区间为,的单调减区间为(II)不等式等价于不等式,由于,知;设,则.由(I)知,,即;于是,,即在区间上为减函数.故在上的最小值为.所以的最大值为.评注:不等式恒成立问题中,常常先将所求参数从不等式中分离出来,即:使参数和主元分别位于不等式的左右两边,然后再巧妙构造函数,最后化归为最值法求解.3 数形结合法例3.已知当时,不等式恒成立,则实数的取值范围是___.分析:本题若直接求解则比较繁难,但若在同一平面直角坐标系内作出函数与函数在上的图象,借助图形可以直观、简捷求解.解:在同一平面直角坐标系内作出函数与函数在上的图象(如右),从图象中容易知道:当且时,函数的图象恒在函数上方,不合题意;当且时,欲使函数的图象恒在函数下方或部分点重合,就必须满足,即.故所求的的取值范围为.评注:对不等式两边巧妙构造函数,数形结合,直观形象,是解决不等式恒成立问题的一种快捷方法.4 变更主元法例4.对于满足不等式的一切实数,函数的值恒大于,则实数的取值范围是___.分析:若审题不清,按习惯以为主元,则求解将非常烦琐.应该注意到:函数值大于对一定取值范围的谁恒成立,则谁就是主元.解:设,,则原问题转化为恒成立的问题.故应该有,解得或.所以实数的取值范围是.评注:在某些特定的条件下,若能变更主元,转换思考问题的角度,不仅可以避免分类讨论,而且可以轻松解决恒成立问题.5 特殊化法例5.设是常数,且().(I)证明:对于任意,.(II)假设对于任意有,求的取值范围.分析:常规思路:由已知的递推关系式求出通项公式,再根据对于任意有求出的取值范围,思路很自然,但计算量大.可以用特殊值探路,确定目标,再作相应的证明.解:(I)递推式可以化归为,,所以数列是等比数列,可以求得对于任意,.(II)假设对于任意有,取就有解得;下面只要证明当时,就有对任意有由通项公式得当()时,当()时,,可见总有.故的取值范围是评注:特殊化思想不仅可以有效解答选择题,而且是解决恒成立问题的一种重要方法.6分段讨论法例6.已知,若当时,恒有<0,求实数a的取值范围.解:(i)当时,显然<0成立,此时,(ii)当时,由<0,可得<<,令则>0,∴是单调递增,可知<0,∴是单调递减,可知此时的范围是(—1,3)综合i、ii得:的范围是(—1,3).例7.若不等式对于恒成立,求的取值范围.解:(只考虑与本案有关的一种方法)解:对进行分段讨论,当时,不等式恒成立,所以,此时;当时,不等式就化为,此时的最小值为,所以;当时,不等式就化为,此时的最大值为,所以;由于对上面的三个范围要求同时满足,则所求的的范围应该是上三个的范围的交集即区间说明:这里对变量进行分段来处理,那么所求的对三段的要同时成立,所以,用求交集的结果就是所求的结果.评注:当不等式中左右两边的函数具有某些不确定的因素时,应该用分类或分段讨论方法来处理,分类(分段)讨论可使原问题中的不确定因素变化成为确定因素,为问题解决提供新的条件;但是最后综合时要注意搞清楚各段的结果应该是并集还是别的关系.7单调性法例8.若定义在的函数满足,且时不等式成立,若不等式对于任意恒成立,则实数的取值范围是___.解:设,则,有.这样,,则,函数在为减函数.因此;而(当且仅当时取等号),又,所以的取值范围是.评注:当不等式两边为同一函数在相同区间内的两个函数值时,可以巧妙利用此函数的单调性,把函数值大小关系化归为自变量的大小关系,则问题可以迎刃而解.8判别式法例9.若不等式对于任意恒成立.则实数的取值范围是___.分析:此不等式是否为一元二次不等式,应该先进行分类讨论;一元二次不等式任意恒成立,可以选择判别式法.解:当时,不等式化为,显然对一切实数恒成立;当时,要使不等式一切实数恒成立,须有,解得.综上可知,所求的实数的取值范围是.不等式恒成立问题求解策略一般做法就是上面几种,这些做法是通法,对于具体问题要具体分析,要因题而异,如下例.例10.关于的不等式在上恒成立,求实数的取值范围.通法解:用变量与参数分离的方法,然后对变量进行分段处理;∵,∴不等式可以化为;下面只要求在时的最小值即可,分段处理如下.当时,,,再令,,它的根为;所以在区间上有,递增,在区间上有,递减,则就有在的最大值是,这样就有,即在区间是递减.同理可以证明在区间是递增;所以,在时的最小值为,即.技巧解:由于,所以,,两个等号成立都是在时;从而有(时取等号),即.评注:技巧解远比通法解来得简单、省力、省时但需要扎实的数学基本功.。
一、选择题1.设数列{}n a 满足11a =,()*112n n n a a n +-=∈N ,则数列{}n a 的通项公式为( ). A .()*2212n n a n ⎛⎫=-∈ ⎪⎝⎭N B .()*2112n n a n ⎛⎫=-∈ ⎪⎝⎭N C .()*1112n n a n -=-∈ND .()*122n n a n =-∈N 2.在数列{}n a 中,11a =,且11nn na a na +=+,则其通项公式为n a =( ) A .211n n -+B .212n n -+C .221n n -+D .222n n -+3.已知数列{}n a 的前n 项和为n S ,且11a =,1n n a S +=,若(0,2020)n a ∈,则称项n a 为“和谐项”,则数列{}n a 的所有“和谐项”的平方和为( ) A .1111433⨯- B .1211433⨯- C .1012433⨯+D .1112433⨯+4.数列{}n a 的通项公式为12n n a +=,其前n 项和为n T ,若不等式()2log 4(1)73n n T n n λ+-++对任意*n N ∈恒成立,则实数λ的取值范围为( )A .3λB .4λC .23λ D .34λ5.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有( ) A .132项B .133项C .134项D .135项6.定义:在数列{}n a 中,若满足211n n n na a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则20202018a a 等于( ) A .4×20162-1B .4×20172-1C .4×20182-1D .4×201827.设y =f (x )是一次函数,若f (0)=1,且(1),(4),(13)f f f 成等比数列,则(2)(4)(2)f f f n +++等于( )A .n (2n +3)B .n (n +4)C .2n (2n +3)D .2n (n +4) 8.已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=A .40B .60C .32D .509.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:()()22221211236n n n n ++++++=)A .1624B .1198C .1024D .156010.已知数列{}n a 为等差数列,n S 是其前n 项和,25a =,535S =.数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若对一切n ∈+N 都有21n m T +>恒成立,则m 能取到的最小整数为( )A .1-B .0C .1D .211.已知数列{}n a 的前n 项和为n S ,且12a =,()*12n n n a S n N n++=∈,则n a =( ) A .()112n n -+B .2n n ⋅C .31n -D .123n n -⋅12.在公差不为零的等差数列{}n a 中,1a ,3a ,7a 依次成等比数列,前7项和为35,则数列{}n a 的通项n a 等于( ) A .nB .1n +C .21n -D .21n二、填空题13.设数列{}n a 是以4为首项,12为公比的等比数列,其前n 项和为{}n S ,则{}n S 的前n 项和为_________.14.已知、、A B C 三点共线 (O 在该直线外),数列{}n a 是等差数列,S n 是数列{}n a 的前n 项和.若12012OA a OB a OC =⋅+⋅,则2012S =____________.15.在数列{}n a 中,11a =,22a =,()*212n n n a a a n ++=+∈N ,记()321nn n n c a λ=-⨯-,若对任意的*n ∈N ,1n n c c +>恒成立,则实数λ的取值范围为______.16.数列{}n a 的前n 项和()*23n n S a n =-∈N,则4a=__________.17.今年冬天流感盛行,据医务室统计,北校近30天每天因病请假人数依次构成数列{}n a ,已知11a =,22a=,且()*21(1)nn n a a n N +-=+-∈,则这30天因病请假的人数共有人______.18.已知数列{}n a 满足11a = 132n n a a +=+,则{}n a 的通项公式为__________________.19.一个等差数列的前12项和为354,前12项中偶数项和与奇数项和之比为32:27,则公差d 为_________.20.设等差数列{}n a 的前n 项和为n S ,且10a >,149S S =,则满足0n S >的最大自然数n 的值为_____________.三、解答题21.已知数列{}n a 的前n 项和为n S ,且n a 是n S 与2的等差中项,数列{}n b ,11b =,点()1,n n P b b +直线20x y -+=上.(1)求1a 值;(2)求数列{}{},n n a b 的通项公式; (3)设n n n c a b =,求数列{}n c 的前n 项和n T .22.已知数列{}n a 为等差数列,12a =,3522a a +=, (1)求数列{}n a 的通项公式; (2)设+14n n n b a a =,求数列{}n b 的前n 项和n T . 23.设等差数列{}n a 的前n 项和为n S ,34a =,43a S =.数列{}n b 满足:对每个*n N ∈,n n S b +,1n n S b ++,2n n S b ++成等比数列.(1)求数列{}n a ,{}n b 的通项公式; (2)记n c =*n N ∈,证明:12n c c c +++<.24.已知数列{}{},n n a b 满足1231112,1,2,,n n n n na a ab b b a n N a ++++===-=∈ (1)求数列{}n b 的通项公式;(2)求证:1211111,6n n N b b b ++++<∈. 25.已知数列{}n a 的前n 项和为n S ,当2n ,*n N ∈时,112n n S a -=-,且112a =. (1)求数列{}n a 的通项公式;(2)设n n b na =,数列{}n b 的前n 项和n T ,求使得158n T <成立的n 的最大值. 26.已知数列{}n a 的前n 项和为n S ,12a =,()()31n n n S a n a -=-.(1)求n a ; (2)若数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:1n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用累加法可求得结果. 【详解】112n n n a a +-=, 所以当2n ≥时,1112n n n a a ---=,12212n n n a a ----=,,21112a a -=, 将上式累加得:1121111222n n a a --=++⋅⋅⋅+,1111221112n n a -⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-=-1112n -⎛⎫=- ⎪⎝⎭,即1122n n a -⎛⎫=- ⎪⎝⎭(2)n ≥, 又1n =时,11a =也适合,1122n n a -∴=-1212n⎛⎫=- ⎪⎝⎭. 故选:B . 【点睛】关键点点睛:利用累加法求解是解题关键.2.D解析:D 【分析】先由11n n n a a na +=+得出111n n n a a +-=,再由累加法计算出2122n n n a -+=,进而求出n a .【详解】解:11nn na a na +=+, ()11n n n a na a ++=∴,化简得:11n n n n a a a a n ++=+, 两边同时除以1n n a a +并整理得:111n nn a a +-=, 即21111a a -=,32112a a -=,43113a a -=,…,1111(2,)n n n n n z a a --=-≥∈, 将上述1n -个式子相加得:213243111111+a a a a a a --+-+ (111)123n n a a -+-=+++…1n +-, 即111(1)2n n n a a --=, 2111(1)(1)2=1(2,)222n n n n n n n n n z a a ---+∴=++=≥∈, 又111a =也满足上式, 212()2n n n n z a -+∴=∈, 22()2n a n z n n ∴=∈-+. 故选:D. 【点睛】 易错点点睛:利用累加法求数列通项时,如果出现1n -,要注意检验首项是否符合.3.D解析:D 【分析】 当2n ≥时,1nn a S -=,又由1n n a S +=,两式相减,得到12n n a a +=,求得22,2n n a n -=≥,得到数列{}n a 的所有“和谐项”为101,1,2,4,8,,2,结合等比数列的求和公式,即可求解. 【详解】由11a =,1n n a S +=,可得1211a S a ===, 当2n ≥时,1nn a S -=,又由1n n a S +=,两式相减,可得11n n n n n a a S S a +--=-=,即12n n a a +=,即12n na a +=, 则数列{}n a 从第二项起是公比为2的等比数列,即22,2n n a n -=≥,又由(0,2020)n a ∈,即222020n -<,可得13,n n N +<∈,所以“和谐项”共有12项,则数列{}n a 的所有“和谐项”为101,1,2,4,8,,2,可得数列{}n a 的所有“和谐项”的平方和为111110(11244)11416413431-+++++=+=⨯+-.故选:D. 【点睛】与数列的新定义有关的问题的求解策略:通过给出一个新的数列的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.4.A解析:A 【分析】将不等式()2log 4(1)73n n T n n λ+-++对任意*n N ∈恒成立,转化为271n n n λ-++对任意*n N ∈恒成立,由2min71n n n λ⎛⎫-+ ⎪+⎝⎭求解. 【详解】 依题意得,()24122412n n nT +-==--,∴不等式()2log 4(1)73n n T n n λ+-++可化为22log 2(1)73n n n n λ+-++,即27(1)n n n λ-++.又*n N ∈,∴271n n n λ-++对任意*n N ∈恒成立.只需满足2min71n n n λ⎛⎫-+ ⎪+⎝⎭即可.设1n t +=,则*t N ∈,2t ,∴27931n n t n tλ-+=+-+.∵993233t t t t+-⋅-=,当且仅当3t =,即2n =时等号成立, ∴2min731n n n ⎛⎫-+= ⎪+⎝⎭.∴3λ,故选:A. 【点睛】方法点睛:恒(能)成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<. 5.D解析:D 【分析】由题意抽象出数列是等差数列,再根据通项公式计算项数. 【详解】被3除余2且被5除余3的数构成首项为8,公差为15的等差数列,记为{}n a ,则()8151157n a n n =+-=-,令1572020n a n =-≤,解得:213515n ≤, 所以该数列的项数共有135项. 故选:D 【点睛】关键点点睛:本题以数学文化为背景,考查等差数列,本题的关键是读懂题意,并能抽象出等差数列.6.C解析:C 【分析】根据“等差比”数列的定义,得到数列1n n a a +⎧⎫⎨⎬⎩⎭的通项公式,再利用202020202019201820192019a a a a a a =⨯求解. 【详解】 由题意可得:323a a =,211a a = ,32211a a a a -=, 根据“等差比数列”的定义可知数列1n n a a +⎧⎫⎨⎬⎩⎭是首先为1,公差为2的等差数列,则()111221n na n n a +=+-⨯=-, 所以20202019220191220181a a =⨯-=⨯+,20192018220181aa =⨯-, 所以()()2202020202019201820192019220181220181420181a a a a a a =⨯=⨯+⨯-=⨯-. 故选:C 【点睛】本题考查数列新定义,等差数列,重点考查理解题意,转化思想,计算能力,属于中档题型.7.A解析:A 【分析】由已知可以假设一次函数为1y kx =+,在根据(1),(4),(13)f f f 成等比数列,得出3k =,利用等差数列的求和公式求解即可. 【详解】由已知,假设()f x kx b =+,(0)k ≠(0)10f k b ==⨯+,1b ∴=.(1),(4),(13)f f f 成等比数列,且41,(13(1)1,(4)1)13k f f k f k =+=+=+.1k ∴+,41k +,131k +成等比数列,即2(41)(1)(131)k k k +=++,22161813141k k k k ++=++,从而解得0k =(舍去),2k =,(2)(4)(2)f f f n +++(221)(421)(221)n =⨯++⨯++⋯+⨯+ (242)2n n =++⋯+⨯+(1)42n n n +=⨯+2(1)n n n =++ ()22332n n n n ==++.故选:A . 【点睛】本题考查了等比数列、等差数列和函数的综合应用,考查了学生的计算能力,解题时要认真审题,仔细解答,避免错误,属于中档题.8.B解析:B 【解析】由等比数列的性质可知,数列S 3,S 6−S 3,S 9−S 6,S 12−S 9是等比数列,即数列4,8,S 9−S 6,S 12−S 9是等比数列,因此S 12=4+8+16+32=60,选B .9.C解析:C 【分析】设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b ,则n c n =,依次用累加法,可求解.【详解】设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b , 设{}n c 的前n 项和为n C ,易得n c n =,()()()111121n n n n n n n C c c c b b b b b b +----=+++=++++-所以11n n b b C +=-,1213b a a -==22n n n C +=,进而得21332n n n nb C ++=+=+, 所以()21133222n n n n b n -=+=-+,()()()()2221111121233226n n n n B n n n n +-=+++-++++=+同理:()()()111112n n n n n n n B b b b a a a a a a +---=+++=+++--11n n a a B +-=所以11n n a B +=+,所以191024a =. 故选:C 【点睛】本题考查构造数列,用累加法求数列的通项公式,属于中档题.10.B解析:B 【分析】根据25a =,535S =求出数列的通项公式,再利用裂项相消法求出数列的和,然后由21n m T +>恒成立求解.【详解】因为数列{}n a 为等差数列,n S 是其前n 项和,25a =,535S =. 设首项为1a ,公差为d ,所以115545352a d a d +=⎧⎪⎨⨯+=⎪⎩,解得132a d =⎧⎨=⎩,故32(1)21n a n n =+-=+,所以111111()·(21)(23)22123n n a a n n n n +==-++++, 所以11111111111()()23557212323236n T n n n =-+-+⋯+-=-<+++. 因为对于一切n ∈+N 都有21n m T +>恒成立,所以1216+m ,解得512≥-m , 故m 的最小整数为0. 故选:B . 【点睛】本题主要考查数列的通项公式,裂项相消法求数列的和,还考查了运算和求解的能力,属于中档题.11.A解析:A 【分析】先由已知数列递推公式可得1221n n a a n n +=⋅++,得到1n a n ⎧⎫⎨⎬+⎩⎭是以1为首项,以2为公比的等比数列,求出该等比数列的通项公式,即能求得n a . 【详解】 解:∵()*12n n n a S n N n++=∈,∴12n n n a S n +=+,① 当2n ≥时,111n n n a S n --=+,② ①-②有1121n n n n n a a a n n +--=++,化简得1221n n a a n n +=⋅++()2n ≥, 另外,n =1时21113261a S a =+==,故21232a a =⋅,也符合上式, 故1n a n ⎧⎫⎨⎬+⎩⎭是以112a =为首项,以2为公比的等比数列,∴121n na n -=+,故()112n n a n -=+⋅. 故选:A. 【点睛】本题考查了数列的递推公式,考查了数列通项公式的求法,属于中档题.12.B解析:B 【分析】根据等差数列以及等比数列的性质求出首项和公差,从而求出通项公式. 【详解】由题意得,等差数列{}n a 中,1a ,3a ,7a 依次成等比数列,故2317a a a =,则()()211126a d a a d +=+, 故12a d =,① 又数列7项和为35, 则1767352da ⨯+=,②, 联立①②解得:1d =,12a =, 故()211n a n n =+-=+, 故选:B. 【点睛】本题考查等差数列和等比数列的性质,公式,重点考查计算能力,属于基础题型.二、填空题13.【分析】先根据题意得由于数列是以为首项为公比的等比数列进而利用分组求和法求和即可得答案【详解】解:由等比数列的前项和公式得由于数列是以为首项为公比的等比数列设的前项和则故答案为:【点睛】本题考查等比 解析:3288n n -+-【分析】先根据题意得382nn S -=-,由于数列{}32n-是以4为首项,12为公比的等比数列,进而利用分组求和法求和即可得答案. 【详解】解:由等比数列的前n 项和公式得()13141121818211212n n nn n a q S q -⎡⎤⎛⎫-⎢⎥ ⎪-⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦===-=-⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦-,由于数列{}32n-是以4为首项,12为公比的等比数列, 设{}n S 的前n 项和n T ,则31412188812881212n nn nT n n n -⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦=-=--=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-. 故答案为:3288n n -+- 【点睛】本题考查等比数列求和,分组求和,考查运算能力,是基础题.本题解题的关键是求出382n n S -=-,再结合数列{}32n -是以4为首项,12为公比的等比数列,再次求和即可. 14.1006【分析】先根据条件将表示成的形式由此确定出的关系再根据等差数列的前项和公式求解出的值【详解】因为三点共线(O 在该直线外)所以所以所以所以所以所以故答案为:【点睛】结论点睛:已知平面中三点共线解析:1006 【分析】先根据条件将OA 表示成xOB yOC +的形式,由此确定出12012,a a 的关系,再根据等差数列的前n 项和公式求解出2012S 的值. 【详解】因为、、A B C 三点共线 (O 在该直线外),所以()1AB AC λλ=≠, 所以AO OB AO OC λλ+=+,所以()1OA OB OC λλ-=-+,所以111OA OB OC λλλ-=+--, 所以120121111a a λλλ-+=+=--,所以()120122012201210062a a S +⨯==,故答案为:1006. 【点睛】结论点睛:已知平面中、、A B C 三点共线 (O 在该直线外),若OA xOB yOC =+,则必有1x y +=.15.【分析】先由题意求得数列的前几项进而猜想然后利用数学归纳法证明猜想再求得再根据恒成立对分奇数偶数两种情况讨论求得实数的取值范围【详解】解:由题意得……故猜想:下面用数学归纳法证明:(1)当时显然成立解析:3,12⎛⎫- ⎪⎝⎭【分析】先由题意求得数列{}n a 的前几项,进而猜想12n na ,然后利用数学归纳法证明猜想,再求得n c ,再根据1n n c c +>恒成立对n 分奇数、偶数两种情况讨论求得实数λ的取值范围【详解】解:由题意得11a =,22a =,342214,4228a a =+⨯==+⨯=,…… 故猜想:12n na ,下面用数学归纳法证明:(1)当1,2,3,4n =时,显然成立; (2)假设当(3)n k k =≥时有12k ka ,那么当1n k =+时,12(1)11122222k k k k k k a a a --+-+-=+=+⨯=所以当1n k =+时,也成立, 由(1),(2)得12n na ,所以32(1)3(2)n n n nn n c a λλ=-⨯-=--,因为对任意的*n ∈N ,1n n c c +>恒成立, 所以113(2)3(2)n n n n λλ++-->--对任意的*n ∈N 恒成立,即13(1)()2nn λ-->-对任意的*n ∈N 恒成立,当n 为偶数时,有1max33()22n λ-⎛⎫>-=- ⎪⎝⎭, 当n 为奇数时,有1min3()12n λ-⎛⎫<= ⎪⎝⎭,所以312λ-<< 所以实数λ的取值范围为3,12⎛⎫- ⎪⎝⎭, 故答案为:3,12⎛⎫- ⎪⎝⎭【点睛】关键点点睛:此题考查由递推式求数列的通项公式,考查不等式恒成立问题,解题的关键是归纳出数列的通项公式,并用数学归纳法证明,以及由1n n c c +>得13(1)()2n n λ-->-,然后分类讨论可得结果,考查转化思想,属于中档题16.24【分析】根据可得两式作差可证明为等比数列并求解出通项公式从而可求【详解】因为所以所以所以所以且所以所以为首项为公比为的等比数列所以所以故答案为:【点睛】思路点睛:已知之间的线性关系求解通项公式的解析:24 【分析】根据23n n S a =-可得1123n n S a ++=-,两式作差可证明{}n a 为等比数列并求解出通项公式,从而4a 可求. 【详解】因为23n n S a =-,所以1123n n S a ++=-,所以1122n n n n a S a S ++--=, 所以1122n n n a a a ++=-,所以12n n a a +=,且11123S a a ==-,所以130a =≠, 所以{}n a 为首项为3,公比为2的等比数列,所以132n n a -=⋅,所以4143224a -=⋅=,故答案为:24. 【点睛】思路点睛:已知,n n S a 之间的线性关系,求解{}n a 通项公式的思路: (1)根据已知条件再写一个关于+1+1,n n S a 或()11,2n n S a n --≥的等式;(2)将新式子与原式作差,利用11n n n a S S ++=-或()12n n n a S S n -=-≥求解出{}n a 的一个递推公式;(3)证明{}n a 为等比数列,并求解出通项公式.17.255【分析】根据题目所给递推关系找到数列的规律由此求得前天的请假人数之和【详解】依题意且所以以此类推数列的奇数项均为偶数项是首项为公差为的等差数列所以前项的和故答案为:【点睛】本小题主要考查分组求解析:255 【分析】根据题目所给递推关系找到数列{}n a 的规律,由此求得前30天的请假人数之和30S . 【详解】依题意11a =,22a =,且()*21(1)n n n a a n N +-=+-∈,所以31311101a a a a -=-=⇒==,4241124a a a -=+=⇒=, 53531101a a a a -=-=⇒==, 6461126a a a -=+=⇒=,以此类推,数列{}n a 的奇数项均为1,偶数项是首项为2、公差为2的等差数列, 所以前30项的和()()301112430S =+++++++23015151516152552+=+⨯=+⨯=. 故答案为:255 【点睛】本小题主要考查分组求和法,考查等差数列前n 项和公式,属于中档题.18.【分析】由递推公式可得即以为首项为公比的等比数列根据等比数列的通项公式求出的通项公式即可得解;【详解】解:因为所以即所以以为首项为公比的等比数列所以所以故答案为:【点睛】本题考查由递推公式求数列的通 解析:1231n -⨯-【分析】由递推公式可得()1131n n a a ++=+,即{}1n a +以2为首项,3为公比的等比数列,根据等比数列的通项公式求出{}1n a +的通项公式,即可得解; 【详解】解:因为132n n a a +=+,11a =, 所以()113331n n n a a a ++=+=+,即1131n n a a ++=+ 所以{}1n a +以2为首项,3为公比的等比数列,所以1123n n a -+=⨯ 所以1231n n a -=⨯-故答案为:1231n -⨯- 【点睛】本题考查由递推公式求数列的通项公式,属于中档题.19.5【分析】设偶数项和为则奇数项和为由可得的值根据公差求得结果【详解】设偶数项和为则奇数项和为由可得故公差故答案为:5【点睛】本题考查等差数列的定义和性质得到公差是解题的关键解析:5 【分析】设偶数项和为32k ,则奇数项和为27k ,由3227354k k += 可得k 的值,根据 公差32276k kd -=求得结果. 【详解】 设偶数项和为32k ,则奇数项和为27k ,由322759354k k k +== 可得6k =,故公差32275566k k kd -===, 故答案为:5. 【点睛】本题考查等差数列的定义和性质,得到6k =,公差32276k kd -=,是解题的关键. 20.22【分析】由等差数列的前项和的公式求解解出、的关系式再求出的临界条件最后得解【详解】解:等差数列的前项和为所以所以其中所以当时解得所以的最大自然数的值为22故答案为:22【点睛】本题应用公式等差数解析:22 【分析】由等差数列{}n a 的前n 项和的公式求解149S S =,解出1a 、d 的关系式,再求出0n S =的临界条件,最后得解. 【详解】解:等差数列{}n a 的前n 项和为n S ,149S S =,所以()114579a a a +=,1117(13)9(4)a a d a d ++=+,111a d =-, 所以()12n a n d =-,其中10a >,所以0d <,当0n a =时,解得12n =,()2312312232302S a a a =+==, 1222222()1102a a S d +==->, 所以0n S >的最大自然数n 的值为22.故答案为:22. 【点睛】 本题应用公式()12n n n a a S +=,等差数列的性质:若m n p q +=+,则m n p q a a a a +=+.对数列的公式要灵活应用是快速解题的关键,解出1a 、d 的关系式,再求出0n S =的临界条件,判断满足0n S >的最大自然数n 的值.三、解答题21.(1)12a =;(2)2nn a =,21n b n =-;(3)1(23)26n nT n +=-⋅+.【分析】(1)由题意得出22n n a S =+,令1n =可求得1a 的值;(2)当2n ≥时,由22n n a S =+可得出1122n n a S --=+,两式作差可得出12nn a a -=,可得出数列{}n a 是等比数列,确定该数列的首项和公比,可求得数列{}n a 的通项公式,由题意可推导出数列{}n b 为等差数列,确定该数列的首项和公差,可求得数列{}n b 的通项公式;(3)求得12n n c n +=⋅,然后利用错位相减法可求得n T . 【详解】(1)由22n n a S =+得:1122a S =+ 即1122a a =+解得12a = (2)由22n n S a =-1122(2)n n S a n --=-≥①-②1122n n n n n a S S a a --=-=-12(2)nn a n a -=≥ 所以数列{}n a 是以2为首项,以2为公比的等比数列,则2nn a =又由数列{}bn 中,12b =,点()1,n n P b b +在直线20x y -+=上 得1:20n n b b +-+=且11b = 所以:12(1)21n b n n =+-=- (2)(21)2nn n n c a b n ==-数列{}n C 的前n 项和23412325272(21)2nTn n =⨯+⨯+⨯+⨯+⋯+-⋅23451212325272(21)2n n T n +=⨯+⨯+⨯+⨯+⋯+-⋅()23411222222222(21)2n n n T n +∴-=⨯+⨯+⨯+⨯+⋯+⋅--⋅可得:1(23)26n n T n +=-⋅+【点睛】解答特殊数列(等差数列与等比数列)的问题时,根据已知条件构造关于基本量的方程,解方程求出基本量,再根据定义确定数列的通项公式,当数列表示为等差和等比数列之积时,利用错位相减法求其前n 项和. 22.(1) 31n a n =-;(2) ()24333+2n T n =-. 【分析】(1)设数列{}n a 的公差为d ,由已知求得411a =,再由等差数列的通项公式可求得答案;(2)运用裂项求和法,可求得答案. 【详解】(1)设数列{}n a 的公差为d ,由已知得354222a a a +==,所以411a =, 所以141123413a a d --===-,所以()()1+12+1331n n d n a a n -⨯=-⨯=-=, 所以31n a n =-; (2)由(1)得()()+144411313+23313+2n n n b a a n n n n ⎛⎫===- ⎪--⎝⎭,所以 411111111++++32558811313+2n n n T ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=---- ⎪ ⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()41124323+2333+2n n ⎛⎫=⨯-=- ⎪⎝⎭. 所以()24333+2n T n =-.数列求和的常用方法:(1)公式法:即直接用等差、等比数列的求和公式求和.(2)错位相减法:若{}n a 是等差数列,{}n b 是等比数列,求1122n n a b a b a b ++⋅⋅⋅. (3)裂项相消法:把数列的通项拆成两项之差,相消剩下首尾的若干项.常见的裂顶有()11111n n n n =-++,()1111222n n n n ⎛⎫=- ⎪++⎝⎭,()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭等.(4)分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和. (5)倒序相加法.23.(1)22n a n =-,(1)n b n n =+;(2)证明见解析. 【分析】(1)根据等差数列的通项公式求出公差d 可得n a ,根据等差数列的求和公式可得n S ,根据n n S b +,1n n S b ++,2n n S b ++成等比数列可得(1)n b n n =+; (2)将n c 放大后再裂项,利用裂项求和方法求解可证不等式成立. 【详解】(1)设等差数列{}n a 的公差为d ,由题意得31413124333a a d a a d S a d =+=⎧⎨=+==+⎩,解得102a d =⎧⎨=⎩,从而22n a n =-,2(1)(1)2n n nS n n -==-. 因为n n S b +,1n n S b ++,2n n S b ++成等比数列 所以()()()212n n n n n n S b S b S b +++=++, 从而()211222n n n n n n n n S S b S S b S S +++++=++,所以2221221(1)(1)(1)(2)2(1)(1)2(1)(1)(2)2(1)2n n n n n n n S S S n n n n n n n n b n n S S S n n n n n n ++++-+--+++====++--+++-+. (2)证明:因为n c ===<=, 所以122(10211)2n c c c n n n +++<-+-++--=【点睛】关键点点睛:将n c 放大后再裂项,利用裂项求和方法求解是解题关键.24.(1)21nn b =-;(2)证明见解析.(1)由题可知数列{}n a 为等比数列,公比2q,进一步求出n a 的通项公式,所以112n n n b b ---=,利用累加法求出数列{}n b 的通项公式;(2)利用111212n n -<-对数列进行放缩 ,化简求出答案. 【详解】 (1)12n na a +=,所以数列{}n a 为等比数列,公比2112,12q a q a q =+=,所以12a =,2n n a ∴=所以11211211222,22222n n n n n n b b b b b b ----=⋯-==-=+++=-21n n b ∴=-(2)证明:222112111111114111112121322322n n n n b b b --⎛⎫⎛⎫+++=+++<++++=+- ⎪ ⎪ ⎪--⎝⎭⎝⎭111111626n -⎛⎫=-<⎪⎝⎭【点睛】放缩法的注意事项: (1)放缩的方向要一致。
解决数列中不等式恒成立问题的两个基本策略不等式恒成立问题是考生较难理解和掌握的一个难点,以数列为载体的不等式恒成立问题的档次更高,综合性更强,是高考数学命题的热点和难点.数列是特殊的函数,因此研究函数中不等式恒成立问题的方法可以应用到数列中不等式恒成立问题中来,这体现了一般与特殊的数学思想方法.函数中不等式恒成立问题的解题策略有两个:策略一:不等式恒成立问题就从不等式角度解决, (,)0f x a > ()a 为参数x ∈在[],m n ∈恒成立等价于区间[]m,n 是(,)0f x a >()a 为参数的解集的子集.又因为函数、方程、不等式三者密不可分,函数问题可以转化为方程问题或不等式问题来解决,我们也可以将方程、不等式的两边都看成函数,因此方程问题、不等式问题可以转化为函数问题来解决,这其中体现了函数思想、转化与化归思想,具体解决思路如下图所示:(全称命题) 正难则反 (特称命题) 含参数的不等式恒成立问题 存在性命题集合观点 函数思想价转化的方式不同,构造出的函数也不同,因此导致解题难度和解题长度也就不同);避免分类讨论的方法是分离参数法(由于参数与变量是相对而言,因此该法也可称为分离变量法).策略二:善于运用合情推理: “先猜后证,特值引路”,即通过特值猜想求出使问题成立的必要条件,在证明其具有充分性.这种方法在最近几年的高考试卷多次出现,随着新课改的深入,高考对猜想能力的考查将日趋加深.如2008年全国卷Ⅱ文21题就考查这一思想方法:例1.(2008年全国卷Ⅱ文21)设a ∈R ,函数32()3f x ax x =-.(Ⅰ)略(Ⅱ)若函数()()()[02]g x f x f x x '=+∈,,,在0=x 处取得最大值,求a 的取值范围. 分析:(Ⅱ)由题设,322()336g x ax x ax x =-+-.因为()g x 在区间[02],上的最大值为(0)g =0,由特殊与一般的思想,猜想得使问题成立的充要条件为(0)(2)g g ≥,即02024a -≥.故得65a ≤. 下面只需证当65a ≤且[02]x ∈,时,()0g x ≤恒成立.若把322()(3)36g x x x a x x =+--看成关于a 的函数,则有26()(3)3(2)5g x x x x x +-+≤3(25)(2)5x x x =+-0≤;若把g(x)看成关于x 的函数,也可证得.本题还可以从转化为()0g x ≤在[02]x ∈,恒成立问题、转化为求存在[02]x ∈,,使得()0g x >成立的a 的取值范围的补集问题等五个角度来解决.因为数列是特殊的函数,所以上述两种解题策略均适用于数列不等式恒成立问题,但又因为数列图象是其对应函数图象上的一些孤立的点,因此用函数思想解决数列问题时应该特别注意数列中自变量取正整数这一特殊性质.下面通过几个例子加以说明.例2.数列{}a n 中,2n a n kn =-,若对任意的正整数n, 13n a a +>都成立,求实数k 的取值范围. 解析:方法一(最值法)对任意的正整数n, 13n a a +>都成立,即对任意的正整数n, 293n kn k-≥-都成立,∴对任意的正整数n, 2(3)9n k n -≥-恒成立,(分类讨论分离参数).(1)若12n ≤≤,则3k n ≥+恒成立,故5k ≥;(2).若3n =,则33a a ≥恒成立,故k N *∈;(3).若3n ≥,则3k n ≤+恒成立,故7k ≤.综上所述 57k ≤≤方法二(数形结合).令2()f n n kn =-,对称轴2k n =,对任意的正整数n, 13n a a +>都成立 ∴ 57222k ≤≤,即对称轴位于2和3 的中点与3和4 的中点之间(不包括中点). 方法三(数形结合)对任意的正整数n, 13n a a +>都成立∴只需满足2343a a a a ≥≥且(当对称轴522k =时,由抛物线的对称性可知23a a =,则23a a ≥等价于522k ≥,43a a ≥等价于722k ≤). 方法四、(数形结合)错解:对任意的正整数n, 13n a a +>都成立∴对任意的正整数n, 2(3)9n k n -≥-恒成立即对任意的正整数n, 2390n kn k -+-≥恒成立∴0∆≤即2(6)0k -≤,即k=6.由于n 取正整数,实际上当k 取满足0∆>的一部分值时,如k=5仍能够满足对任意的正整数n, 13n a a +>都成立.正解理论依据:定理1:设数列{}a n 的通项为2(,)n a n pn q p q R =++∈,[]21,(3)(),(21)(21)p p h p np n n p n --≥-⎧=⎨---+≤≤--⎩函数其中n=2,3,… 则数列{}a n 各项都为非负数(0n a ≥恒成立)的充要条件是()q h p ≥定理2:设2f (),n n pn q =++若存在,()m l N l m ∈*<满足2(1)(1)q l m p +++++2lm=0,则()0f n ≥()n N ∈*恒成立的充要条件为p 124f ≥(-)-(也可以写成判别式241p q ∆=-≤) 正解:由定理2可得k 124f ≥(-)-,则57k ≤≤. 例3. 21(21)lg n n c n a a +=+,其中a>0且a ≠1,如果数列{}n c 中的每一项恒小于它后面的项,求实数a 的取值范围. (2008年湖北压轴题改编)分析:1c n n c +<对任意的n N *∈恒成立即2123(21)lg (23)lg n n n a a n a a +++<+对任意的n N *∈恒成立.函数思想解决含参的数列不等式恒成立问题,关键在于通过灵活转化,构造合理的函数.由于等价转化的方式不同,构造出的函数也不同,因此导致解题难度和解题长度也就不同.观察发现:不等式两边都有公因式lg a 与21n a +,可以对不等式进行等价转化,然后利用最值法解决.⑴01a <<,则lg 0a < 所以2123(21)(23)n n n a n a +++>+对任意的n N *∈恒成立,即221(23)n n a +>+对任意的n N *∈恒成立,接下来关键是构造什么函数.转化方法一:221(23)n n a +>+对任意的n N *∈恒成立等价于22123n a n +<+对任意的n N *∈恒成立,设212()12323n f n n n +==-++,则{}()f n 是递增数列,∴min 3()(1)5f n f == ∴235a < 且01a <<.∴0a <<. 转化方法二: 221(23)n n a +>+对任意的n N *∈恒成立即2(23)(21)0n a n +-+>对任意的n N *∈恒成立,设2()(23)(21)f n n a n =+-+,则2(1)()22f n f n a +-=-<0,则{}()f n 是递减数列,2min ()(1)53f n f a ==-,所以2530a -<且01a << ∴05a <<. 转化方法三:、 221(23)n n a +>+对任意的n N *∈恒成立即2(23)(21)0n a n +-+>对任意的n N *∈恒成立,设2()(23)(21)f x x a x =+-+= 22(22)32a x a -+-则2()220f x a '=-<,则{}()f n 是递减数列,2min ()(1)53f n f a ==-,所以2530,a -<且01a << ∴0a <<⑵. 若a>1,则lg 0a >,显然2123(21)(23)n n n a n a +++<+恒成立综上所述(0,(1,)5a ∈⋃+∞. 例4.(2010年全国卷Ⅰ22)已知数列{}n a 中,1111,n na a c a +==-. (Ⅰ)略(Ⅱ)求使不等式13n n a a +<<成立的c 的取值范围. 分析:第(Ⅱ)较难,需要运用先猜后证.先由特值引路,因为1+<n n a a <3对任意的n N *∈都成立,所以n 取特值也成立,即12a a >=1,由此解得2>c ,下面只要证明再用数学归纳法证明“当2>c 时,1+<n n a a ”即可.用数学归纳法证明:当2>c 时,1+<n n a a(ⅰ)当1=n 时,1121a a c a >-=,命题成立; (ⅱ)设当k n =时,1+<k k a a ,则当1+=k n 时,故由(ⅰ),(ⅱ)知当2>c 时,1+<n n a a ,另一方面,由1+<n n a a <3,11a n n c a +=-得1a n nc a <-,即210n n a ca -+<对任意正整数n 都成立,又13n a ≤<,令2()1f x x cx =-+,可知必须满足条件232(3)040c f c ⎧-<⎪⎪≥⎨⎪∆=->⎪⎩即693102c c c <⎧⎪-+≥⎨⎪>⎩,解得103c ≤,综上所述两个方面可知,所求c 的取值范围为102,3⎛⎤ ⎥⎝⎦.接下来只要证明102,3c ⎛⎤∈ ⎥⎝⎦时不等式1+<n n a a <3即可.因为当102,3c ⎛⎤∈ ⎥⎝⎦时,111103n n n n a a c a a ++<+=≤,得231030n n a a -+<,解得3n a <.显然成立.对于“对任意的n N *∈3n a <都成立”,也可以从其他角度解决:因为对任意的n N *∈3n a <和1+<n n a a 同时成立,须先满足2>c .当2>c 时,令242-+=c c α,由c a a a a nn n n =+<++111得α<n a . 当3102≤<c 时,3≤<αn a . 当310>c 时,3>α,且α<≤n a 1,于是 )(31)(11n n n n a a a a -≤-=-+αααα, )1(311-≤-+ααnn a 。
当31log 3-->ααn 时,31-<-+ααn a ,31<+n a . 因此310>c 不符合要求,所以c 的取值范围是]310,2(. 例5.在数列{}a n 中1223(3)2(2)n n n a a n --=⋅+-≥,1a a =,若1n n a a +≥,n N *∈ ,求实数a 的取值范围.(2008年全国Ⅱ改编)分析:当2n ≥时,1n n a a +≥恒成立,即311223(3)223(3)2n n n a a ---⋅+-≥⋅+-恒成立,又可以转化为当2n ≥时,1243(3)2n n a --⋅≥-恒成立,分离参数得1n-2233341222n n a ---≤⋅=⋅(), n-23()122f n =⋅设(), min ()(2)12f n f ==设,则312a -≤,所以9a ≥-.当1n =时,213a a a =+≥恒成立,故a N ∈*. 特别地,要取二者交集才能保证n 无论取任何正整数不等式恒成立,所以[)9,a ∈-+∞. 此时我们不禁要问,因为1n n a a +≥,n N *∈ ,能否取2132a a a a ≥≥且?它是否为问题成立的充要条件?由2132a a a a ≥≥且可得[)9,a ∈-+∞,接下来只需要用数学归纳法加以证明该条件具有充分性即可.。