2018-2019版高中数学苏教版必修三课件第一单元 1.3.1
- 格式:ppt
- 大小:661.50 KB
- 文档页数:10
1.3.1 且(and)1.3.2 或(or)1.3.3 非(not)1.了解逻辑联结词“且”“或”“非”的含义,会判断含有这类逻辑联结词的命题的真假.2.结合具体实例,在了解“且”“或”“非”含义的基础上,掌握这类联结词的用法.3.在结合实例学习逻辑联结词的过程中,体会用逻辑语言表达数学内容的准确性和简洁性.1.用逻辑联结词构成新命题构成新命题记作读作用联结词“且”把命题p和命题q联结起来,就得到一个新命题p∧q p且q用联结词“或”把命题p和命题q联结起来,就得到一个新命题p∨q p或q对一个命题p全盘否定,就得到一个新命题﹁p 非p或p 的否定对逻辑联结词的理解(1)“且”表示同时的意思,可联系集合中“交集”的概念.(2)“或”表示至少一个,可联系集合中“并集”的概念.(3)“非”表示对原命题否定,可联系集合中“补集”的概念.2.含有逻辑联结词的命题的真假判断p q p∨q p∧q ﹁p真真真真假真假真假假假真真假真假假假假真确定p∧q,p∨q,﹁p真假的记忆口诀如下:p∧q→见假即假,p∨q→见真即真,p与﹁p→真假相反.判断(正确的打“√”,错误的打“×”)(1)逻辑联结词“且”“或”只能出现在命题的结论中.( )(2)“p∨q为假命题”是“p为假命题”的充要条件.( )(3)命题“p∨(﹁p)”是真命题.( )(4)命题的否定与否命题是相同的概念.( )答案:(1)×(2)×(3)√(4)×命题“矩形的对角线相等且互相平分”是( )A.“p∧q”形式的命题B.“p∨q”形式的命题C.“﹁p”形式的命题D.以上说法都不对答案:A若p:正数的平方大于0,q:负数的平方大于0,则p∨q:________________.(用文字语言表述)答案:正数或负数的平方大于0下列命题:①5>4或4>5;②9≥3;③命题“若a>b,则a+c>b+c”;④命题“菱形的两条对角线互相垂直平分”,其中真命题为________.答案:①②③④探究点1 用逻辑联结词构造新命题分别写出由下列命题构成的“p∨q”“p∧q”“﹁p”形式的命题:(1)p:π是无理数;q:e不是无理数;(2)p:三角形的外角等于与它不相邻的两个内角的和;q:三角形的外角大于与它不相邻的任何一个内角.【解】(1)“p∨q”:π是无理数或e不是无理数;“p∧q”:π是无理数且e不是无理数;“﹁p”:π不是无理数.(2)“p∨q”:三角形的外角等于与它不相邻的两个内角的和或大于与它不相邻的任何一个内角;“p∧q”:三角形的外角等于与它不相邻的两个内角的和且大于与它不相邻的任何一个内角;“﹁p”:三角形的外角不等于与它不相邻的两个内角的和.用逻辑联结词构造新命题的两个步骤指出下列命题的形式及构成它的简单命题:(1)96是48与16的倍数; (2)方程x 2-3=0没有有理根;(3)不等式x 2-x -2>0的解集是{x |x >2或x <-1}.解:(1)这个命题是“p ∧q ”的形式,其中p :96是48的倍数,q :96是16的倍数. (2)这个命题是“﹁p ”的形式,其中p :方程x 2-3=0有有理根.(3)这个命题是“p ∨q ”的形式,其中p :不等式x 2-x -2>0的解集是{x |x >2},q :不等式x 2-x -2>0的解集是{x |x <-1}.探究点2 含逻辑联结词的命题的真假判断(1)已知命题p :对任意的x >0,ln(x +1)>0;命题q :若a >b ,则a 2>b 2.下列命题为真命题的是( )A .p ∧qB .p ∧﹁qC .﹁p ∧qD .﹁p ∧﹁q(2)给出两个命题:p :函数y =x 2-x -1有两个不同的零点;q :若1x<1,则x >1.在下列四个命题中,真命题是( )A .(﹁p )∨qB .p ∧qC .(﹁p )∧(﹁q )D .(﹁p )∨(﹁q )【解析】 (1)因为x >0,x +1>1,所以ln(x +1)>0,所以命题p 为真命题;当b <a <0时,a 2<b 2,故命题q 为假命题,由真值表可知B 正确,故选B .(2)对于p ,函数对应的方程x 2-x -1=0的判别式Δ=(-1)2-4×(-1)=5>0,所以函数有两个不同的零点,故命题p 为真命题.对于q ,当x <0时,不等式1x<1恒成立,所以命题q 为假命题.所以命题(﹁p )∨q 、p ∧q 、(﹁p )∧(﹁q )均为假命题,(﹁p )∨(﹁q )为真命题.【答案】 (1)B (2)D判断命题真假的三个步骤(1)明确命题的结构,即命题是“p ∧q ”“p ∨q ”,还是“﹁p ”. (2)对命题p 和q 的真假作出判断.(3)由“p ∧q ”“p ∨q ”“﹁p ”的真假判断方法给出结论.分别写出由下列命题构成的“p ∨q ”“p ∧q ”“﹁p ”形式的命题,并判断其真假.(1)p :3是9的约数,q :3是18的约数;(2)p :矩形的对角线相等,q :矩形的对角线互相垂直. 解:(1)p ∨q :3是9的约数或是18的约数,此命题为真命题.p ∧q :3是9的约数且是18的约数,此命题为真命题.﹁p :3不是9的约数,此命题为假命题.(2)p ∨q :矩形的对角线相等或互相垂直,此命题为真命题.p ∧q :矩形的对角线相等且互相垂直,此命题为假命题.﹁p :矩形的对角线不相等,此命题为假命题.探究点3 利用含逻辑联结词的命题的真假求参数的取值范围已知p :方程x 2+mx +1=0有两个不等的负实数根;q :方程4x 2+4(m -2)x +1=0无实数根,若“p ∨q ”为真命题,且“p ∧q ”是假命题,求实数m 的取值范围.【解】 p :方程x 2+mx +1=0有两个不等的负实数根⇔⎩⎪⎨⎪⎧Δ=m 2-4>0-m <0⇔m >2.q :方程4x 2+4(m -2)x +1=0无实数根⇔Δ=16(m -2)2-16<0⇔1<m <3.所﹁p :m ≤2,﹁q :m ≤1或m ≥3.因为“p ∨q ”为真命题,且“p ∧q ”是假命题, 所以p 为真且q 为假,或p 为假且q 为真. (1)当p 为真且q 为假时, 即p 为真且﹁q 为真,所以⎩⎪⎨⎪⎧m >2m ≤1或m ≥3,解得m ≥3;(2)当p 为假且q 为真时,即﹁p 为真且q 为真,所以⎩⎪⎨⎪⎧m ≤21<m <3,解得1<m ≤2.综上所述,实数m 的取值范围是(1,2]∪[3,+∞).[变条件]若本例条件变为:(﹁p )∨(﹁q )为假命题,其他条件不变,求实数m 的取值范围.解:由例题解析可知p :m >2,q :1<m <3,若“(﹁p )∨(﹁q )”为假命题,即p ∧q 为真命题,所以⎩⎪⎨⎪⎧m >21<m <3,解得2<m <3.所以实数m 的取值范围是(2,3).应用逻辑联结词求参数范围的四个步骤(1)分别求出命题p ,q 为真时对应的参数集合A ,B . (2)由“p 且q ”“p 或q ”的真假讨论p ,q 的真假. (3)由p ,q 的真假转化为相应的集合的运算. (4)求解不等式或不等式组得到参数的取值范围.[注意] 当p ,q 中有假命题时,求参数范围应从求真命题的补集入手,可简化运算,减少出错.已知命题p :|m +1|≤2成立,命题q :方程x 2-2mx +1=0有实数根,若﹁p 为假命题,p ∧q 为假命题,求实数m 的取值范围.解:由|m +1|≤2得-3≤m ≤1, 即命题p :-3≤m ≤1.由方程x 2-2mx +1=0有实数根,得Δ=(-2m )2-4≥0, 即m ≥1或m ≤-1, 即命题q :m ≥1或m ≤-1. 因为﹁p 为假命题,p ∧q 为假命题,所以p 为真命题,q 为假命题,﹁q 为真命题,﹁q :-1<m <1,由⎩⎪⎨⎪⎧-3≤m ≤1,-1<m <1得-1<m <1. 所以m 的取值范围是(-1,1).1.命题“三角形中最多有一个内角是钝角”的否定是( ) A .三角形中有两个内角是钝角 B .三角形中有三个内角是钝角 C .三角形中至少有两个内角是钝角 D .三角形中没有一个内角是钝角解析:选C .三角形有三个内角,“最多有一个内角是钝角”的含义是“有0个或1个内角是钝角”,它的否定是“有2个或3个内角是钝角”,即“至少有两个内角是钝角”,选C .2.设命题p :函数y =sin 2x的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称.下列判断正确的是( )A .p 为真B .﹁q 为假C .p ∧q 为假D .p ∨q 为真解析:选C .由函数y =sin 2x 的最小正周期为π可知命题p 是假命题;由函数y =cosx 的图象关于直线x =k π(k ∈Z )对称可知命题q 是假命题,所以p ∧q 是假命题,可知应选C .3.已知p :点P 在直线y =2x -3上,q :点P 在直线y =-3x +2上,则使命题p ∧q 为真命题的一个点P (x ,y )是 ( )A .(0,-3)B .(1,2)C .(1,-1)D .(-1,1)解析:选C .因为p ∧q 为真命题,所以p ,q 均为真命题,即点P 为直线y =2x -3与y=-3x +2的交点,故有⎩⎪⎨⎪⎧y =2x -3,y =-3x +2,解得⎩⎪⎨⎪⎧x =1,y =-1.故选C . 4.分别写出由下列命题构成的“p ∨q ”“p ∧q ”“﹁p ”形式的新命题.(1)p :方程x 2+2x +1=0有两个相等的实数根,q :方程x 2+2x +1=0两根的绝对值相等;(2)p :正△ABC 的三个内角都相等,q :正△ABC 有一个内角是直角. 解:(1)p ∨q :方程x 2+2x +1=0有两个相等的实数根或两根的绝对值相等.p ∧q :方程x 2+2x +1=0有两个相等的实数根且两根的绝对值相等.﹁p :方程x 2+2x +1=0没有两个相等的实数根.(2)p ∨q :正△ABC 的三个内角都相等或有一个内角是直角.p ∧q :正△ABC 的三个内角都相等且有一个内角是直角.﹁p :正△ABC 的三个内角不都相等.知识结构深化拓展1.命题与集合之间可以建立如下的对应关系:命题形式集合运算p 且q A ∩B ={x |x ∈A 且x ∈B } p 或qA ∪B ={x |x ∈A 或x ∈B }非p ∁U P={x|x∈U,x∉P}2.含有逻辑联结词命题的否定“或”“且”联结词的否定形式:“p或q”的否定形式是“﹁p且﹁q”,“p且q”的否定形式是“﹁p或﹁q”,它类似于集合中的“∁U(A∪B)=(∁U A)∩(∁U B),∁U(A∩B)=(∁U A)∪(∁U B)”.[学生用书P93(单独成册)])[A 基础达标]1.已知p:x∈A∩B,则﹁p是( )A.x∈A且x∉B B.x∉A或x∉BC.x∉A且x∉B D.x∈A∪B解析:选B.x∈A∩B,即x∈A且x∈B,故﹁p是x∉A或x∉B.2.已知命题p:若ab=0,则a=0;命题q:若a=0,则ab=0,则( )A.“p或q”为假B.“p且q”为真C.p真q假D.p假q真解析:选D.由条件易知:命题p为假命题,命题q为真命题,故p假q真.从而“p 或q”为真,“p且q”为假.3.设p,q是简单命题,则“‘p且q’为假”是“‘p或q’为假”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:选A.“p且q”为假,即p和q中至少有一个为假;“p或q”为假,即p和q 都为假.故“‘p且q’为假”是“‘p或q’为假”的必要不充分条件.4.设a,b,c是非零向量.已知命题p:若a·b=0,b·c=0,则a·c=0.命题q:若a∥b,b∥c,则a∥c.则下列命题中真命题是( )A.p∨q B.p∧qC.(﹁p)∧(﹁q) D.p∨(﹁q)解析:选A.取a=c=(1,0),b=(0,1),显然a·b=0,b·c=0,但a·c=1≠0,所以p是假命题.a,b,c是非零向量,由a∥b知a=x b,由b∥c,知b=y c,所以a=xy c,所以a∥c,所以q是真命题.综上知p∨q是真命题,p∧q是假命题.又因为﹁p为真命题,﹁q为假命题,所以(﹁p)∧(﹁q),p∨(﹁q)都是假命题.5.(2018·福建福州长乐一中高二(上)月考)下列各组命题中,满足“p或q”为真,且“非p”为真的是( )A.p:0=∅;q:0∈∅B.p:在△ABC中,若cos 2A=cos 2B,则A=B;q:函数y=sin x在第一象限是增函数C.p:a+b≥2ab(a,b∈R);q:不等式|x|>x的解集为(-∞,0)D.p:圆(x-1)2+(y-2)2=1的面积被直线x=1平分;q:过点M(0,1)且与圆(x-1)2+(y-2)2=1相切的直线有两条解析:选C.A中,p,q均为假命题,故“p或q”为假,排除A;B中,由在△ABC中,cos 2A=cos 2B,得1-2sin2A=1-2sin2B,即(sin A+sin B)(sin A-sin B)=0,所以A-B=0,故p为真,从而“非p”为假,排除B;C中,p为假,从而“非p”为真,q 为真,从而“p或q”为真;D中,p为真,故“非p”为假,排除D.故选C.6.已知命题(﹁p)∨(﹁q)是假命题,则下列结论中:①命题p∧q是真命题;②命题p∧q是假命题;③命题p∨q是真命题;④命题p∨q是假命题.正确的是________(只填序号).解析:由(﹁p)∨(﹁q)是假命题,知﹁p与﹁q均为假命题,所以p,q均为真命题.故p∧q是真命题,p∨q是真命题.答案:①③7.已知命题p:{2}∈{1,2,3},q:{2}⊆{1,2,3},则下列结论:①p或q为真;②p或q为假;③p且q为真;④p且q为假;⑤非p为真;⑥非q为假.其中所有正确结论的序号是________.解析:因为p:{2}∈{1,2,3},q:{2}⊆{1,2,3},所以p假q真,故①④⑤⑥正确.答案:①④⑤⑥8.已知p:x2-x≥6,q:x∈Z.若“p∧q”“﹁q”都是假命题,则x的值组成的集合为________.解析:因为“p∧q”为假,“﹁q”为假,所以q为真,p为假.故⎩⎪⎨⎪⎧x 2-x <6,x ∈Z ,即⎩⎪⎨⎪⎧-2<x <3,x ∈Z . 因此,x 的值可以是-1,0,1,2. 答案:{-1,0,1,2}9.写出由下列命题构成的“p ∧q ”“p ∨q ”“﹁p ”形式的命题,并判断其真假. (1)p :集合中的元素是确定的,q :集合中的元素是无序的; (2)p :梯形有一组对边平行,q :梯形有一组对边相等. 解:(1)p ∧q :集合中的元素是确定的且是无序的,真命题.p ∨q :集合中的元素是确定的或是无序的,真命题.﹁p :集合中的元素不是确定的,假命题.(2)p ∧q :梯形有一组对边平行且有一组对边相等,假命题.p ∨q :梯形有一组对边平行或有一组对边相等,真命题.﹁p :梯形没有一组对边平行,假命题.10.已知命题p :1∈{x |x 2<a },命题q :2∈{x |x 2<a }. (1)若“p 或q ”为真命题,求实数a 的取值范围; (2)若“p 且q ”为真命题,求实数a 的取值范围. 解:若p 为真命题,则1∈{x |x 2<a }, 故12<a ,即a >1;若q 为真命题,则2∈{x |x 2<a }, 故22<a ,即a >4.(1)若“p 或q ”为真命题,则a >1或a >4,即a >1. 故实数a 的取值范围是(1,+∞).(2)若“p 且q ”为真命题,则a >1且a >4,即a >4. 故实数a 的取值范围是(4,+∞).[B 能力提升]11.已知命题p :函数y =2|x -1|的图象关于直线x =1对称;q :函数y =x +1x在(0,+∞)上是增函数.由它们组成的新命题“p 且q ”“p 或q ”“﹁p ”中,真命题有( )A .0个B .1个C .2个D .3个解析:选B .易知命题p 是真命题,y =x +1x在(0,1)上递减,在(1,+∞)上递增,故q 是假命题.因此“p 且q ”假,“p 或q ”真,“﹁p ”假,故选B .12.已知命题p :y =a x(a >0,且a ≠1)是增函数;命题q :对任意的x ∈[2,4],都有a ≤x 成立,若命题p ∧q 为真命题,则实数a 的取值范围是________.解析:当p 真时,a >1,当q 真时,a ≤2.又因为p ∧q 为真时,p ,q 都为真, 所以实数a 的取值范围是1<a ≤2. 答案:(1,2]13.设命题p :a ∈{y |y =-x 2+2x +8,x ∈R },命题q :关于x 的方程x 2+x -a =0有实根.(1)若p 为真命题,求a 的取值范围;(2)若“p ∧q ”为假命题,且“p ∨q ”为真命题,求a 的取值范围. 解:(1)由题意得,y =-x 2+2x +8=-(x -1)2+9∈[0,3],故p 为真命题时,a 的取值范围为[0,3].(2)当q 为真命题时a 的取值范围为a ≥-14,由题意得,p 与q 一真一假,从而当p 真q 假时有⎩⎪⎨⎪⎧0≤a ≤3,a <-14,a 无解; 当p 假q 真时有⎩⎪⎨⎪⎧a <0或a >3,a ≥-14, 所以a >3或-14≤a <0.所以实数a 的取值范围是⎣⎢⎡⎭⎪⎫-14,0∪(3,+∞). 14.(选做题)设p :函数f (x )=⎝ ⎛⎭⎪⎫a -32x是R 上的减函数.q :函数g (x )=x 2-4x +3在[0,a ]上的值域为[-1,3],若“p ∧q ”为假命题,“p ∨q ”为真命题,求a 的取值范围.解:由0<a -32<1得32<a <52.因为g (x )=(x -2)2-1在[0,a ]上的值域为[-1,3], 所以2≤a ≤4.因为“p ∧q ”为假,“p ∨q ”为真, 所以p ,q 为一真一假.若p 真q 假,得32<a <2;若p 假q 真,得52≤a ≤4.综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫32,2∪⎣⎢⎡⎦⎥⎤52,4.。
1.3.3条件语句学习目标 1.理解条件语句的格式及功能;2.体验如何把判断框转化为条件语句;3.通过条件语句的学习,进一步体会算法的基本思想.知识点条件语句思考对于选择结构的算法或流程图,要转化为计算机能够理解的算法语言,使用输入、输出和赋值语句还行吗?需要用怎样的语句?梳理条件语句的结构:其中______表示判断的条件,______表示满足条件时执行的操作内容,______表示不满足条件时执行的操作内容,________表示条件语句结束.当遇到类似数学中分类讨论的算法时,适用条件语句.类型一选择结构与条件语句的转化例1某居民区的物业管理部门每月按以下方法收取卫生费:3人和3人以下的住户,每户收取5元;超过3人的住户,每超出1人加收1.2元.根据输入的人数计算应收取的卫生费,用流程图表示如图:试把流程图编译为伪代码.反思与感悟(1)条件语句是一个整体,If—Then—Else—End If都是语句的一部分,且“If—End If”必须成对出现.(2)若程序只对条件满足时作处理,不用处理条件不满足时的情况,则可以省略Else分支.跟踪训练1下面是一个使得任意输入2个整数按从大到小的顺序输出的算法:S1输入2个整数a,b.S2若a<b,则x←a,a←b,b←x.S3输出a,b.S4结束.试把它转化为伪代码.类型二条件语句的应用例2儿童乘坐火车时,若身高不超过1.1m,则无须购票;若身高超过1.1m但不超过1.4m,可买半票;若超过1.4m,应买全票.试设计一个购票的算法,写出伪代码,并画出流程图.反思与感悟算法中需要判断情况、分类执行时,如判断一个数的正负、比较两个数的大小、求分段函数的函数值等,都需要用到条件语句.跟踪训练2写出求实数x的绝对值的一个算法,画出其流程图,并写出对应的伪代码.类型三条件语句的嵌套例3 函数y =⎩⎪⎨⎪⎧ x , x <1,2x -1,1≤x <10,3x -11,x ≥10,输入x 的值,输出相应的函数值,写出伪代码.反思与感悟 条件语句的功能类似于分类讨论.当需要分三种以上情况讨论时,就需用多个条件语句联用或条件语句内部嵌套条件语句.跟踪训练3 编写伪代码,使得任意输入3个整数,输出三者中的最大者.1.条件语句的一般形式是“If A Then B Else C ”,其中B 表示的是________.(填序号)①满足条件时执行的内容;②条件语句;③条件;④不满足条件时执行的内容.2.执行下面的伪代码,若输入的x 的值为-2,则输出的y 的值为________.3.下面是一个算法的伪代码,如果输入的x 值是10,则输出的y 值是________.4.用条件语句表示:输入两个数,输出较大的数.使用条件语句时应注意的问题:(1)条件语句是一个语句,If,Then,Else,EndIf都是语句的一部分.(2)条件语句必须是以If开始,以EndIf结束,一个If必须与一个EndIf相对应.(3)如果程序中只需对条件为真的情况作出处理,不用处理条件为假的情况时,Else分支可以省略,此时条件语句就由双支变为单支.(4)为了程序的可读性,一般If,Else与EndIf顶格书写,则其他的语句体前面空两格.答案精析问题导学知识点思考不行,因为输入、输出、赋值都不会先判断再选择执行,要用与选择结构相适应的条件语句.梳理A B C EndIf题型探究例1解伪代码如图:跟踪训练1解例2解购票的算法步骤如下:S1测量儿童身高h;S2如果h≤1.1,那么免费乘车;否则,如果h≤1.4,那么购买半票乘车;否则,购买全票乘车.用条件语句表示为跟踪训练2解S1输入一个实数x;S2若x<0,则x←-x,否则,x←x;S3输出x.该算法的流程图如图:伪代码如图:例3解伪代码如图所示:跟踪训练3解伪代码:1.①解析由条件语句的结构及功能知B表示的是满足条件时执行的内容.2.2解析由于-2≥0不成立,所以把-(-2)的值赋给y,所以输出的值为2. 3.85解析由输入x的值为10,得y=8.5×10=85.4.解伪代码如图:。