高一数学正弦定理
- 格式:ppt
- 大小:296.00 KB
- 文档页数:14
正弦定理数学教案优秀5篇《正弦定理》教案篇一《正弦定理》教案一、教学内容分析本节课是高一数学第五章《三角比》第三单元中正弦定理的第一课时,它既是初中“解直角三角形”内容的直接延拓,也是坐标法等知识在三角形中的具体运用,是生产、生活实际问题的重要工具,正弦定理揭示了任意三角形的边角之间的一种等量关系,它与后面的余弦定理都是解三角形的重要工具。
本节课其主要任务是引入证明正弦定理及正弦定理的基本应用,在课型上属于“定理教学课”。
因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,学生通过对定理证明的探究和讨论,体验到数学发现和创造的历程,进而培养学生提出问题、解决问题等研究性学习的能力。
二、学情分析对高一的学生来说,一方面已经学习了平面几何,解直角三角形,任意角的三角比等知识,具有一定观察分析、解决问题的能力;但另一方面对新旧知识间的联系、理解、应用往往会出现思维障碍,思维灵活性、深刻性受到制约。
根据以上特点,教师恰当引导,提高学生学习主动性,注意前后知识间的联系,引导学生直接参与分析问题、解决问题。
三、设计思想:培养学生学会学习、学会探究是全面发展学生能力的重要方面,也是高中新课程改革的主要任务。
如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。
”这个观点从教学的角度来理解就是:知识不仅是通过教师传授得到的,更重要的是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。
本节“正弦定理”的教学,将遵循这个原则而进行设计。
四、教学目标:1、在创设的问题情境中,让学生从已有的几何知识和处理几何图形的常用方法出发,探索和证明正弦定理,体验坐标法将几何问题转化为代数问题的优越性,感受数学论证的严谨性。
正弦定理知识点归纳总结正弦定理的表述如下:在任意三角形ABC中,三条边a,b和c分别对应相应的顶点A,B和C。
设∠A,∠B和∠C分别为角A,角B和角C。
则正弦定理可以表述为:$\frac{a}{sinA} = \frac{b}{sinB} = \frac{c}{sinC}$正弦定理的推导可以通过三角形的面积公式来进行。
三角形ABC的面积S可以表示为底边b与高h的乘积的一半,即S=1/2*b*h。
其中,h是底边b对应的高。
又因为底边b对应的高h可以用正弦来表示,即$h = b*sinC$。
将此代入三角形的面积公式中,得到S=1/2*b*c*sinA。
同样的,可以得到$S=1/2*c*a*sinB$和$S=1/2*a*b*sinC$。
将这三个等式合并,并化简,可以得到正弦定理的表述。
正弦定理虽然是在任意三角形中成立的,但是在直角三角形中有一种特殊情况,即90度角的正弦值为1。
因此,在直角三角形中,正弦定理可以简化为更为简洁的形式:$\frac{a}{sinA} = \frac{b}{sinB} = c$。
这与直角三角形中的正弦函数的定义是一致的。
正弦定理的应用非常广泛,可以用来解决各种与三角形相关的问题。
下面将介绍一些正弦定理的常见应用:1. 解三角形的边长和角度。
通过已知三角形的一边和一个角,可以利用正弦定理求出其他两条边的长度。
同样的,已知三角形的两边和一个角,也可以利用正弦定理求出第三条边的长度。
此外,还可以通过已知三角形的两个角和一条边,利用正弦定理求出另外两条边的长度。
2. 解决高空物体的高度。
例如,一个人站在高楼上往下看到一座塔,通过观察人的角度和高楼的高度,可以利用正弦定理求出塔的高度。
这种方法可以应用在工程测量、地质勘探等领域。
3. 计算角度。
知道三角形的边长,可以通过正弦定理求出三角形的角度。
这在航海、导航等领域中具有重要的应用价值。
4. 求解几何问题。
正弦定理可以用来求解一些与三角形相关的几何问题。
高中数学正弦定理公式
之定理内容
在任意△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R。
则有:
一个三角形中,各边和所对角的正弦之比相等,且该比值等于该三角形外接圆的直径
半径的2倍长度。
公式变形
△ABC中,若角A,B,C所对的边为a,b,c,三角形外接圆半径为R,直径为D,正
弦定理进行变形有
定理意义
正弦定理指出了任意三角形中三条边与对应角的正弦值之间的一个关系式。
由正弦函
数在区间上的单调性可知,正弦定理非常好地描述了任意三角形中边与角的一种数量关系。
一般地,把三角形的三个角A、B、C和它们的对边a、b、c叫做三角形的元素。
已知
三角形的几个元素求其他元素的过程叫做解三角形。
正弦定理是解三角形的重要工具。
在解三角形中,有以下的应用领域:
已知三角形的两角与一边,解三角形。
已知三角形的两边和其中一边所对的角,解三角形。
运用a:b:c=
之定理证明
外接圆证明正弦定理
只需证明任意三角形内,任一角的边与它所对应的正弦之比值为该三角形外接圆直径
即可。
现将△ABC,做其外接圆,设圆心为O。
我们考虑∠C及其对边AB。
设AB长度为c。
感谢您的阅读,祝您生活愉快。
正弦定理及应用讲解
正弦定理,又称为正弦公式,是三角形中最基本的定理之一。
它描述了三角形中一个角的正弦值与对应的边长之间的关系,可以用来求解三角形中未知的边长和角度。
正弦定理常被用于海陆空所有测量领域中。
正弦定理的数学表达式如下:
a/sinA = b/sinB = c/sinC
其中a、b、c为三角形的三边,A、B、C为对应的三个角。
在实际问题中,当我们已知一个角和对应的边长,又需要求解另外两条边的长度时,可以根据正弦定理进行求解。
例如,已知三角形的两边分别为5cm和8cm,它们对应的夹角为60度,现在需要求解第三条边的长度。
根据正弦定理,可以得到:
a/sinA = b/sinB
a/sin60 = 8/sin(180 - 60 - arcsin(5/8))
a/sin60 = 8/sin60
a = 8*sin60/sin60
a = 8
因此,这个三角形的第三边长为8cm。
在实际问题中,正弦定理可以应用于海陆测量、建筑测量、航空测量、天文测量等领域。
例如,在航空测量中,可以通过观测飞行器离地高度的大小及与地平线的夹角来求解飞行器和地面之间的距离。
假设飞行器距离地面的高度为h,夹角为θ,则可以列出如下等式:
h/sinθ= a/sin(180 - 90 - θ)
通过测量h和θ,就可以求出a的长度,从而得到飞行器距离地面的距离。
总之,正弦定理是三角形中最常见的公式之一,用于在已知一个角和对应的边长的情况下,求解另外两条边的长度。
在实际问题中,正弦定理得到了广泛的应用,包括海陆空所有测量领域以及数学、物理等学科。
正弦定理的公式是什么正弦定理的公式是什么sin^2(α/2)=(1-cosα)/2。
在直角三角形中,∠A(非直角)的对边与斜边的比叫做∠A的正弦,故记作sinA,即sinA=∠A的对边/∠A的斜边古代说法,正弦是股与弦的比例。
古代说的“勾三股,四弦五”中的“弦”,就是直角三角形中的斜边。
股就是人的大腿,长长的,古人称直角三角形中长的那个直角边为“股”;正方的直角三角形,应是大腿站直。
正弦是∠α(非直角)的对边与斜边的比值,余弦是∠A(非直角)的邻边与斜边的比值。
勾股弦放到圆里。
弦是圆周上两点连线。
最大的弦是直径。
把直角三角形的弦放在直径上,股就是长的弦,即正弦,而勾就是短的弦,即余弦。
按现代说法,正弦是直角三角形某个角(非直角)的对边与斜边之比,即:对边/斜边。
余弦定理是什么余弦定理是描述三角形中三边长度与一个角的余弦值关系的数学定理,是勾股定理在一般三角形情形下的推广,勾股定理是余弦定理的特例。
余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求三角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。
高中数学正弦定理公式数学正弦定理公式:a/sinA=b/sinB=c/sinC=2R;余弦定理公式:cosA=(b?+c?-a?)/2bc。
正余弦定理指正弦定理和余弦定理,是揭示三角形边角关系的重要定理,直接运用它可解决三角形的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。
一、正弦定理推论公式1、a=2RsinA;b=2RsinB;c=2RsinC。
2、a:b=sinA:sinB;a:c=sinA:sinC;b:c=sinB:sinC;a:b:c=sinA:sinB:sinC。
二、余弦定理推论公式1、cosA=(b^2+c^2-a^2)/2bc;2、cosB=(a^2+c^2-b^2)/2ac;3、cosC=(a^2+b^2-c^2)/2ab。
《正弦定理》教案(精选12篇)《正弦定理》教案篇1一、教学内容分析本节课是高一数学第五章《三角比》第三单元中正弦定理的第一课时,它既是学校“解直角三角形”内容的直接延拓,也是坐标法等学问在三角形中的详细运用,是生产、生活实际问题的重要工具,正弦定理揭示了任意三角形的边角之间的一种等量关系,它与后面的余弦定理都是解三角形的重要工具。
本节课其主要任务是引入证明正弦定理及正弦定理的基本应用,在课型上属于“定理教学课”。
因此,做好“正弦定理”的教学,不仅能复习巩固旧学问,使同学把握新的有用的学问,体会联系、进展等辩证观点,同学通过对定理证明的探究和争论,体验到数学发觉和制造的历程,进而培育同学提出问题、解决问题等讨论性学习的力量。
二、学情分析对高一的同学来说,一方面已经学习了平面几何,解直角三角形,任意角的三角比等学问,具有肯定观看分析、解决问题的力量;但另一方面对新旧学问间的联系、理解、应用往往会消失思维障碍,思维敏捷性、深刻性受到制约。
依据以上特点,老师恰当引导,提高同学学习主动性,留意前后学问间的联系,引导同学直接参加分析问题、解决问题。
三、设计思想:培育同学学会学习、学会探究是全面进展同学力量的重要方面,也是高中新课程改革的主要任务。
如何培育同学学会学习、学会探究呢?建构主义认为:“学问不是被动汲取的,而是由认知主体主动建构的。
”这个观点从教学的角度来理解就是:学问不仅是通过老师传授得到的,更重要的是同学在肯定的情境中,运用已有的学习阅历,并通过与他人(在老师指导和学习伙伴的关心下)协作,主动建构而获得的,建构主义教学模式强调以同学为中心,视同学为认知的主体,老师只对同学的意义建构起关心和促进作用。
本节“正弦定理”的教学,将遵循这个原则而进行设计。
四、教学目标:1、在创设的问题情境中,让同学从已有的几何学问和处理几何图形的常用方法动身,探究和证明正弦定理,体验坐标法将几何问题转化为代数问题的优越性,感受数学论证的严谨性。
正弦定理与余弦定理一、三角形中的各种关系设ABC ∆的三边分别是,,a b c ,与之对应的三个角分别是,,A B C .则有如下关系:1、三内角关系三角形中三内角之和为π(三角形内角和定理),即A B C π++=,;2、边与边的关系三角形中任意两条边的和都大于第三边,任意两条边的差都小于第三边,即,,a b c a c b b c a +>+>+>;,,a b c a c b b c a -<-<-<;3、边与角的关系(1)正弦定理三角形中任意一条边与它所对应的角的正弦之比都相等,即2sin sin sin a b c R A B C===(这里,R 为ABC ∆外接圆的半径). 注1:(I )正弦定理的证明:在ABC ∆中,设,,BC a AC b AB c ===, 证明:2sin sin sin a b c R A B C===(这里,R 为ABC ∆外接圆的半径)证:法一(平面几何法):在ABC ∆中 ,作CH AB ⊥,垂足为H则在Rt AHC ∆中,sin CH A AC =;在Rt BHC ∆中,sin CH B BC =sin ,sin CH b A CH a B ∴== sin sin b A a B ⇒= 即sin sin a b A B = 同理可证:sin sin b c B C= 于是有sin sin sin a b c A B C== 作ABC ∆的外接圆⊙O ,设其半径为R连接BO 并延长,则可得到⊙O 的直径BD ,连接DA因为在圆中,直径所对的圆周角是直角所以90o DAB ∠=于是在Rt DAB ∆中,sin 2AB c D BD R== 又因为在同一圆中,同弧所对的圆周角相等所以D C ∠=∠2sin sin 2c c c R c C DR∴=== 故2sin sin sin a b c R A B C ===(这里,R 为ABC ∆外接圆的半径) 法二(平面向量法)(Ⅱ)正弦定理的意义: 正弦定理指出了任意三角形中三边与其对应角的正弦值之间的一个关系式,也就是任意三角形的边角关系.(Ⅲ)正弦定理适用的范围:(i )已知三角形的两角及一边,解三角形;(ii )已知三角形的两边及其中一边所对应的角,解三角形;(iii )运用::sin :sin :sin a b c A B C =解决角之间的转换关系. 注2:正弦定理的一些变式:(i )::sin :sin :sin a b c A B C =;(ii )sin ,sin ,sin 222a b c A B C R R R===; (iii )2sin ,2sin ,2sin a R A b R B c R C ===.注3:已知三角形是确定的,则在运用正弦定理解该三角形时,其解是唯一的;已知三角形的两条边和其中一条边的对角,由于该三角形具有不稳定性,所以其解是不确定的,此时可结合平面几何作图的方法、“大边对大角,大角对大边”定理及三角形内角和定理解决问题.例1. ABC ∆中,,a b 分别为角,A B 的对边,若60,75,8o o B C a ===,则b =_.例2. ABC ∆中,角,,A B C 的对边分别为,,a b c ,,13A a b π===,则c =_.例3.在ABC ∆中,60,1o b B c ===,求a 和,.A C例4. 在ABC ∆中,已知2,2,2B A BC AB ∠=∠==+则A ∠=_. 例5.已知ABC ∆中,角,A B 所对的边分别是,a b ,若cos cos a B b A =,则ABC ∆一定是()A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形(2)余弦定理三角形中任意一条边的平方等于其他两条边平方的和减去这两条边与它们夹角的余弦的乘积的2倍,即2222cos a b c bc A =+-,2222cos b c a ca B =+-,2222cos c a b ab C =+-. 注1:(I )余弦定理的证明:法一(平面几何法)在ABC ∆中 ,作CH AB ⊥,垂足为H则在Rt AHC ∆中,sin CH CH A AC b ==;cos AH AH A AC b== sin ,cos CH b A AH b A ∴== cos BH AB AH c b A ⇒=-=- 在Rt CHB ∆中,由勾股定理有222BC CH BH =+于是有22222222222222(sin )(cos )sin 2cos cos (sin cos )2cos 2cos a b A c b A b A c bc A b Ab A Ac bc A b c bc A=+-=+-+=++-=+-同理可证:2222cos b c a ca B =+-,2222cos c a b ab C =+-.法二(平面向量法)(Ⅱ)余弦定理的意义: 余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当结合其它知识,则使用起来更为方便、灵活。