高中数学《正弦定理》教案
- 格式:doc
- 大小:73.50 KB
- 文档页数:7
高中数学正弦定理教案
主题:正弦定理
目标:使学生能够理解和应用正弦定理解决三角形中的问题。
教学目标:
1. 了解正弦定理的定义和公式。
2. 掌握如何应用正弦定理解决三角形中的问题。
3. 能够利用正弦定理计算三角形内角和和边长。
教学内容:
1. 正弦定理的定义和公式。
2. 正弦定理的应用举例。
3. 练习题目。
教学过程:
一、导入
1. 引导学生回顾几何学中三角形的相关知识,特别是角的概念。
2. 提出问题:在三角形中,当知道一个角和一边的关系时,如何求解另外两个角和两边的关系?
二、讲解正弦定理
1. 讲解正弦定理的定义:在任意三角形 ABC 中,边 a、b、c 与角 A、B、C 之间有如下关系:
\[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \]
2. 举例说明正弦定理的应用。
三、练习
1. 让学生自己尝试应用正弦定理解决一些三角形中的问题。
2. 逐步增加难度,让学生巩固应用正弦定理的能力。
四、总结
1. 对正弦定理的应用进行总结,并强调练习的重要性。
2. 鼓励学生多多练习,掌握正弦定理的运用。
五、作业
布置相关的练习题目,让学生进行巩固练习。
教学反思:
在教学过程中,要不断引导学生思考,激发他们解决问题的兴趣和能力。
同时,要以学生为中心,注重培养学生的自主学习能力和解决问题的方法。
希望通过这次教学,学生能够牢固掌握正弦定理的应用,为将来的学习打下坚实基础。
正弦定理教案一、教学目标1.理解正弦定理的概念,掌握计算正弦定理的方法。
2.能够判断已知条件能否求解三角形的某个角或某个边。
3.能够运用正弦定理解决相关的实际问题。
二、教学重点1.正弦定理的公式和应用。
2.正弦定理与其他三角函数定理的关系。
三、教学难点1.运用正弦定理求解实际问题。
2.能够判断已知条件能否求解三角形的某个角或某个边。
四、教学内容1. 正弦定理的概念正弦定理是解决三角形中一个角和它所对的边以及另外两边之间的关系的定理。
在任意三角形ABC中,有如下公式成立:$a/\\sin A = b/\\sin B = c/\\sin C$其中,a,b,c分别为三角形的三条边,A,B,C分别为对应的三个内角。
2. 正弦定理的公式在上述公式中,如果已知三角形的两边和其中一个对角,则可以根据正弦定理求出第三边的长度。
也可以根据已知的三角形的三条边,利用正弦定理求出三个内角的大小。
3. 正弦定理的应用3.1. 求解三角形的边长已知三角形的两边和其中一个角,可以利用正弦定理求出第三边的长度。
具体地,设三角形ABC中,已知AB = 8cm,AC = 9cm,∠BAC = 30°,求BC的长度。
解:根据正弦定理的公式,有$BC/\\sin 30°=9/\\sin 150°$化简得,BC=18因此,BC的长度为18cm。
3.2. 求解三角形的角度已知三角形的三条边,可以根据正弦定理求出三个内角的大小。
具体地,设三角形ABC中,已知AB = 8cm,BC = 10cm,AC = 12cm,求∠A,∠B和∠C的大小。
解:根据正弦定理的公式,有$a/\\sin A = b/\\sin B = c/\\sin C$代入已知条件,得到:$8/\\sin A = 10/\\sin B = 12/\\sin C$化简得到:$\\sin A = 8/10=0.8, \\sin B=10/12=0.83, \\sin C=8/12=0.67$利用反正弦函数,可以求得:$\\angle A=\\arcsin{0.8}\\approx53.1°$$\\angle B=\\arcsin{0.83}\\approx60.4°$$\\angle C=\\arcsin{0.67}\\approx66.5°$因此,$\\angle A\\approx53.1°$,$\\angle B\\approx60.4°$和$\\angleC\\approx66.5°$。
高中数学正弦定理教案5篇高中数学正弦定理教案篇1一、教材分析《正弦定理》是人教版教材必修五第一章《解三角形》的第一节内容,也是三角形理论中的一个重要内容,与初中学习的三角形的边和角的基本关系有密切的联系。
在此之前,学生已经学习过了正弦函数和余弦函数,知识储备已足够。
它是后续课程中解三角形的理论依据,也是解决实际生活中许多测量问题的工具。
因此熟练掌握正弦定理能为接下来学习解三角形打下坚实基础,并能在实际应用中灵活变通。
二、教学目标根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。
能力目标:探索正弦定理的证明过程,用归纳法得出结论,并能掌握多种证明方法。
情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。
三、教学重难点教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。
四、教法分析依据本节课内容的特点,学生的认识规律,本节知识遵循以教师为主导,以学生为主体的指导思想,采用与学生共同探索的教学方法,命题教学的发生型模式,以问题实际为参照对象,激发学生学习数学的好奇心和求知欲,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化,并且运用例题和习题来强化内容的掌握,突破重难点。
即指导学生掌握“观察——猜想——证明——应用”这一思维方法。
学生采用自主式、合作式、探讨式的学习方法,这样能使学生积极参与数学学习活动,培养学生的合作意识和探究精神。
五、教学过程本节知识教学采用发生型模式:1、问题情境有一个旅游景点,为了吸引更多的游客,想在风景区两座相邻的山之间搭建一条观光索道。
已知一座山A到山脚C的上面斜距离是1500米,在山脚测得两座山顶之间的夹角是450,在另一座山顶B测得山脚与A山顶之间的夹角是300。
正弦定理教案阿道巴巴【篇一:正弦定理精品教案详案】正弦定理一、教学内容分析:本节课是高一数学第五章《三角比》第三单元中解斜三角形的第一课时,它是初中“解直角三角形”内容的直接延拓,是解决生产、生活实际问题的重要工具,正弦定理揭示了任意三角形的边角之间的一种等量关系,它与后面的余弦定理都是解三角形的重要工具。
本节课的主要任务是通过引入三角形新的面积公式,推导出正弦定理,并让学生初步掌握正弦定理的基本应用。
二、学情分析:对高一的学生来说,一方面已经学习了平面几何、解直角三角形、任意角的三角比等知识,具有一定的观察分析、解决问题的能力;但另一方面对新旧知识间的联系、理解、应用往往会出现思维障碍,思维灵活性、深刻性受到制约,特别是对于本校的同学,这方面的能力比较薄弱。
根据以上特点,教师需要恰当引导,提高学生学习主动性,注意前后知识间的联系,引导学生直接参与分析问题、解决问题。
三、设计思路:由于学生的总体基础比较薄弱,因此,在上课之前,针对《正弦定理》课内内容学生不太容易理解的地方,我作了一个学情调查,将其中的公式推导要应用的关键知识以题目的形式出给学生做,用以诊断学生学习正弦定理的知识方法基础,然后分析梳理为课堂教学服务。
在课堂教学方面,首先通过一个实际生活的例子引入,在现实的测绘工作中,经常会碰到解斜三角形的问题,那么,在斜三角形中,边和角之间有没有特殊的关系可以给我们利用呢?借鉴前面利用坐标研究三角的方法,用坐标法来对任意三角形进行研究,得到三角形新的面积公式,通过对三角形面积公式的变形,得到正弦定理,但不对比值的意义作深入的探讨(放在第二节课进行)。
定理研究完毕以后,引导学生利用正弦定理来解决具体问题,并发现,正弦定理可以解决解三角形的两类问题:(1)已知三角形两角和一边,求其它边和角;(2)已知三角形两边和一边对角,求其它边和角。
四、教学目标:一、知识与技能:理解三角形的面积公式,初步掌握正弦定理及其证明;会初步运用正弦定理解三角形;培养数学应用意识。
《正弦定理》教案(含答案)章节一:正弦定理的引入教学目标:1. 让学生理解正弦定理的概念和意义。
2. 让学生掌握正弦定理的数学表达式。
3. 让学生了解正弦定理的应用场景。
教学内容:1. 引入正弦定理的背景和意义。
2. 介绍正弦定理的数学表达式:a/sinA = b/sinB = c/sinC。
3. 解释正弦定理的证明过程。
教学活动:1. 通过实际例子引入正弦定理的概念。
2. 引导学生推导正弦定理的数学表达式。
3. 让学生进行小组讨论,探索正弦定理的应用场景。
练习题:1. 解释正弦定理的概念。
2. 给出一个三角形,让学生计算其各边的比例。
章节二:正弦定理的应用教学目标:1. 让学生掌握正弦定理在三角形中的应用。
2. 让学生能够解决实际问题中涉及的三角形问题。
教学内容:1. 介绍正弦定理在三角形中的应用方法。
2. 讲解正弦定理在实际问题中的应用示例。
教学活动:1. 通过示例讲解正弦定理在三角形中的应用方法。
2. 让学生进行小组讨论,探讨正弦定理在实际问题中的应用。
练习题:1. 使用正弦定理计算一个三角形的面积。
2. 给出一个实际问题,让学生应用正弦定理解决问题。
章节三:正弦定理的证明教学目标:1. 让学生理解正弦定理的证明过程。
2. 让学生掌握正弦定理的证明方法。
教学内容:1. 介绍正弦定理的证明过程。
2. 解释正弦定理的证明方法。
教学活动:1. 通过几何图形的分析,引导学生推导正弦定理的证明过程。
2. 让学生进行小组讨论,理解正弦定理的证明方法。
练习题:1. 解释正弦定理的证明过程。
2. 给出一个三角形,让学生使用正弦定理进行证明。
章节四:正弦定理在实际问题中的应用教学目标:1. 让学生掌握正弦定理在实际问题中的应用。
2. 让学生能够解决实际问题中涉及的三角形问题。
教学内容:1. 介绍正弦定理在实际问题中的应用方法。
2. 讲解正弦定理在实际问题中的应用示例。
教学活动:1. 通过示例讲解正弦定理在实际问题中的应用方法。
正弦定理教学设计最新5篇正弦定理教学设计篇一《正弦定理》教学设计茂名市实验中学张卫兵一、教学目标分析1、知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理解决一些简单的三角形度量问题。
2、过程与方法:让学生从实际问题出发,结合初中学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理;让学生在应用定理解决问题的过程中更深入地理解定理及其作用。
3、情感、态度与价值观:通过正弦定理的发现与证明过程体验数学的探索性与创造性,让学生体验成功的喜悦,激发学生的好奇心与求知欲并培养学生坚忍不拔的意志、实事求是的科学态度和乐于探索、勇于创新的精神。
二、教学重点、难点分析重点:通过对任意三角形边长和角度关系的探索,发现、证明正弦定理并运用正弦定理解决一些简单的三角形度量问题。
难点:正弦定理的发现并证明过程以及已知两边以及其中一边的对角解三角形时解的个数的判断。
三、教学基本流程1、创设问题情境,引出问题:在三角形中,已知两角以及一边,如何求出另外一边;2、结合初中学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理;3、分析正弦定理的特征及利用正弦定理可解的三角形的类型;4、应用正弦定理解三角形。
四、教学情境设计五、教学研究1、新课标倡导积极主动、勇于探索的学习方式,使学生在自主探究的过程中提高数学思维能力。
本设计从生活中的实际问题出发创设了一系列数学问题情境来引导学生质疑、思考,让学生在“疑问”、“好奇”、“解难”中探究学习,激发了学生的学习兴趣,调动了学生自主学习的积极性,从而有效地培养学生了的数学创新思维。
2、新课标强调数学教学要注重“过程”,要使学生学习数学的过程成为在教师的引导下进行“再创造”过程。
本设计展示了一个先从特殊的直角三角形中正弦的定义出发探索A的正弦与B的正弦的关系从而发现正弦定理,再将一般的三角形与直角三角形联系起来(在一般的三角形中构造直角三角形)进而在一般的三角形发现正弦定理的过程,使学生不但体会到探索新知的方法而且体验到了发现的乐趣,起到了良好的教学效果。
高中数学教案正弦定理
主题:正弦定理
一、教学目标:
1. 理解正弦定理的概念和原理;
2. 熟练运用正弦定理解决相关问题;
3. 发展学生的逻辑思维和数学推理能力。
二、教学重点:
1. 正弦定理的概念和公式;
2. 正弦定理在实际问题中的应用。
三、教学内容:
1. 正弦定理的概念和公式:
设三角形ABC中,a为边BC的长度,b为边CA的长度,c为边AB的长度,A、B、C分别为角A、角B、角C的对边,则正弦定理可以表示为:
$$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$$
2. 正弦定理的应用:
通过正弦定理可以解决一些不易直接求解的三角形问题,例如求解未知边长或角度大小等。
四、教学方法:
1. 引导学生通过实例理解正弦定理的概念和原理;
2. 结合实际问题,让学生应用正弦定理解决相关问题;
3. 多种形式的练习,巩固学生的理解和运用能力。
五、教学过程:
1. 导入:通过一个实际问题引入正弦定理的概念;
2. 讲解:介绍正弦定理的公式及推导过程;
3. 练习:让学生通过练习题来熟练运用正弦定理;
4. 总结:总结正弦定理的应用方法及注意事项。
六、课后作业:
1. 完成相关练习题;
2. 思考如何在实际生活中应用正弦定理解决问题。
七、教学评估:
1. 练习题成绩;
2. 学生对正弦定理的理解和应用能力。
八、教学反思:
1. 教师应该根据学生的实际水平合理设计教学内容;
2. 加强与实际问题的联系,提高学生的学习兴趣和动力。
高中数学正弦定理教案全套
一、教学目标:
1. 理解正弦定理的含义和应用;
2. 掌握正弦定理的推导过程;
3. 能够运用正弦定理解决相关问题。
二、教学重点:
1. 正弦定理的概念和推导过程;
2. 正弦定理解决问题的方法。
三、教学难点:
1. 正弦定理的应用;
2. 正弦定理与三角函数的关系。
四、教学准备:
1. 教材:高中数学教材;
2. 教具:黑板、彩色粉笔;
3. 视频资料。
五、教学过程:
1. 导入:
1)复习:回顾三角函数的基本概念和性质;
2)引入:介绍正弦定理的概念和应用。
2. 学习:
1)概念:讲解正弦定理的定义和表述;
2)推导:通过几何图形和三角函数的关系,推导正弦定理的公式; 3)应用:讲解如何运用正弦定理解决三角形的边长和角度问题。
3. 实践:
1)练习:布置一些练习题,让学生独立解答;
2)讲评:讲解练习题的解题过程和方法。
4. 总结:
总结正弦定理的概念、公式和应用,并与学生共同讨论解题方法。
六、作业:
1. 完成课堂练习题;
2. 阅读相关资料,了解正弦定理的历史和发展。
七、课后反思:
1. 教学内容安排是否合理;
2. 学生的学习情况和反馈;
3. 下节课的教学准备。
高中数学《正弦定理》教案4篇高中数学《正弦定理》教案1教材地位与作用:本节学问是必修五第一章《解三角形》的第一节内容,与学校学习的三角形的边和角的基本关系有亲密的联系与判定三角形的全等也有亲密联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。
因此,正弦定理的学问特别重要。
学情分析:作为高一同学,同学们已经把握了基本的三角函数,特殊是在一些特别三角形中,而同学们在解决任意三角形的边与角问题,就比较困难。
教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探究及证明,已知两边和其中一边的对角解三角形时推断解的个数。
(依据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标)教学目标分析:学问目标:理解并把握正弦定理的证明,运用正弦定理解三角形。
力量目标:探究正弦定理的证明过程,用归纳法得出结论。
情感目标:通过推导得出正弦定理,让同学感受数学公式的干净对称美和数学的实际应用价值。
教法学法分析:教法:采纳探究式课堂教学模式,在老师的启发引导下,以同学自主和合作沟通为前提,以“正弦定理的发觉”为基本探究内容,以生活实际为参照对象,让同学的思维由问题开头,到猜测的得出,猜测的探究,定理的推导,并逐步得到深化。
学法:指导同学把握“观看——猜测——证明——应用”这一思维方法,实行个人、小组、集体等多种解难释疑的尝试活动,将自己所学学问应用于对任意三角形性质的探究。
让同学在问题情景中学习,观看,类比,思索,探究,动手尝试相结合,增添同学由特别到一般的数学思维力量,锲而不舍的求学精神。
教学过程(一)创设情境,布疑激趣“爱好是最好的老师”,假如一节课有个好的开头,那就意味着胜利了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠a=47°,∠b=53°,ab 长为1m,想修好这个零件,但他不知道ac和bc的长度是多少好去截料,你能帮师傅这个忙吗?”激发同学关心别人的热忱和学习的爱好,从而进入今日的学习课题。
正弦定理教案正弦定理教案「篇一」教学目标:1.让学生从已有的几何知识出发,通过对任意三角形边角关系的探索,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,实验,猜想,验证,证明,由特殊到一般归纳出正弦定理,掌握正弦定理的内容及其证明方法,理解三角形面积公式,并学会运用正弦定理解决解斜三角形的两类基本问题。
2.通过对实际问题的探索,培养学生观察问题、提出问题、分析问题、解决问题的能力,增强学生的协作能力和交流能力,发展学生的创新意识,培养创造性思维的能力。
3.通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的兴趣。
4.培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
教学重点与难点教学重点:正弦定理的发现与证明;正弦定理的简单应用。
教学难点:正弦定理的猜想提出过程。
教学准备:制作多媒体,学生准备计算器,直尺,量角器。
教学过程:(一)结合实例,激发动机师生活动:师:每天我们都在科技楼里学习,对科技楼熟悉吗?生:当然熟悉。
师:那大家知道科技楼有多高吗?学生不知道。
激起学生兴趣!师:给大家一个皮尺和测角仪,你能测出楼的高度吗?学生思考片刻,教师引导。
生1:在楼的旁边取一个观测点C,再用一个标杆,利用三角形相似。
师:方法可行吗?生2:B点位置在楼内不确定,故BC长度无法测量,一次测量不行。
师:你有什么想法?生2:可以再取一个观测点D。
师:多次测量取得数据,为了能与上次数据联系,我们应把D点取在什么位置?生2:向前或向后师:好,模型如图(2):我们设正弦定理教学设计,正弦定理教学设计 ,CD=10,那么我们能计算出AB吗?生3:由正弦定理教学设计求出AB。
师:很好,我们可否换个角度,在正弦定理教学设计中,能求出AD,也就求出了AB。
《正弦定理》教案(精选5篇)《正弦定理》篇1通过正弦定理让我们更容易的了解数学,正弦定理的教学内容有哪些呢?以下是小编为大家整理的关于《正弦定理》教案,给大家作为参考,欢迎阅读!一、教学内容分析本节课是高一数学第五章《三角比》第三单元中正弦定理的第一课时,它既是初中“解直角三角形”内容的直接延拓,也是坐标法等知识在三角形中的具体运用,是生产、生活实际问题的重要工具,正弦定理揭示了任意三角形的边角之间的一种等量关系,它与后面的余弦定理都是解三角形的重要工具。
本节课其主要任务是引入证明正弦定理及正弦定理的基本应用,在课型上属于“定理教学课”。
因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,学生通过对定理证明的探究和讨论,体验到数学发现和创造的历程,进而培养学生提出问题、解决问题等研究性学习的能力。
二、学情分析对高一的学生来说,一方面已经学习了平面几何,解直角三角形,任意角的三角比等知识,具有一定观察分析、解决问题的能力;但另一方面对新旧知识间的联系、理解、应用往往会出现思维障碍,思维灵活性、深刻性受到制约。
根据以上特点,教师恰当引导,提高学生学习主动性,注意前后知识间的联系,引导学生直接参与分析问题、解决问题。
三、设计思想:培养学生学会学习、学会探究是全面发展学生能力的重要方面,也是高中新课程改革的主要任务。
如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。
”这个观点从教学的角度来理解就是:知识不仅是通过教师传授得到的,更重要的是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。
本节“正弦定理”的教学,将遵循这个原则而进行设计。
四、教学目标:1、在创设的问题情境中,让学生从已有的几何知识和处理几何图形的常用方法出发,探索和证明正弦定理,体验坐标法将几何问题转化为代数问题的优越性,感受数学论证的严谨性.2、理解三角形面积公式,能运用正弦定理解决三角形的两类基本问题,并初步认识用正弦定理解三角形时,会有一解、两解、无解三种情况。
一、教学目标1. 让学生理解正弦定理的定义和意义。
2. 让学生掌握正弦定理的推导过程。
3. 让学生能够运用正弦定理解决实际问题。
二、教学重点与难点1. 教学重点:正弦定理的定义、推导过程和应用。
2. 教学难点:正弦定理在实际问题中的应用。
三、教学方法1. 采用问题驱动法,引导学生思考和探索正弦定理的推导过程。
2. 通过实际例题,让学生掌握正弦定理的应用方法。
3. 利用多媒体辅助教学,直观展示正弦定理的应用场景。
四、教学内容1. 正弦定理的定义与推导正弦定理是指在一个三角形中,各边的长度与其对角的正弦值成正比。
具体来说,对于一个三角形ABC,有:a/sinA = b/sinB = c/sinC其中,a、b、c分别表示三角形ABC的边长,A、B、C分别表示三角形ABC 的对角。
2. 正弦定理的应用(1)求解三角形的边长:已知三角形的两个角和其中一个角的正弦值,求解第三边的边长。
(2)求解三角形的角度:已知三角形的两边和它们夹角的正弦值,求解第三个角的大小。
(3)求解三角形的面积:已知三角形的两边和它们夹角的正弦值,求解三角形的面积。
五、教学过程1. 引入新课:通过展示三角形模型,引导学生思考三角形中边长和角度的关系。
2. 讲解正弦定理的定义与推导:引导学生回顾正弦函数的定义,结合三角形的特点,推导出正弦定理。
3. 例题讲解:挑选一些典型的例题,讲解如何运用正弦定理解决问题。
4. 练习与讨论:让学生分组讨论,互相解答疑问,巩固正弦定理的应用。
5. 总结与拓展:对本节课的内容进行总结,提出一些拓展问题,激发学生的学习兴趣。
六、教学评价1. 课堂问答:检查学生对正弦定理的理解和掌握程度。
2. 练习题:布置一些有关正弦定理的应用题,检验学生运用知识解决问题的能力。
3. 小组讨论:评估学生在小组讨论中的参与程度和合作能力。
七、教学反思1. 教师需要反思教学过程中的优点和不足,如教学方法、课堂组织等。
2. 针对学生的学习情况,调整教学策略,提高教学效果。
1.1。
1 正弦定理教学要求:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
教学重点:正弦定理的探索和证明及其基本应用。
教学难点:已知两边和其中一边的对角解三角形时判断解的个数. 教学过程:一、复习引入:1.在任意三角形行中有大边对大角,小边对小角的边角关系?是否可以把边、角关系准确量化?2.在ABC ∆中,角A 、B 、C 的正弦对边分别是c b a ,,,你能发现它们之间有什么关系吗? 结论★: 。
二、讲授新课:探究一:在直角三角形中,你能发现三边和三边所对角的正弦的关系吗?直角三角形中的正弦定理: sin A =c a sin B =c bsin C =1 即c =sin sin sin a b c A B C==. 探究二:能否推广到斜三角形? (先研究锐角三角形,再探究钝角三角形)当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据三角函数的定义,有sin sin CD a B b A ==,则sin sin a b A B =。
同理,sin sin a cA C=(思考如何作高?),从而sin sin sin a b cA B C==。
探究三:你能用其他方法证明吗?1. 证明一:(等积法)在任意斜△ABC 当中S △ABC =111sin sin sin 222ab C ac B bc A ==。
两边同除以12abc 即得:sin a A =sin bB =sin c C。
2.证明二:(外接圆法)如图所示,∠A =∠D ,∴2sin sin a aCD R A D===, 同理sin bB=2R ,sin c C =2R 。
3.证明三:(向量法)过A 作单位向量j 垂直于AC ,由AC +CB =AB 边同乘以单位向量j 得…。
.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abAB=sin cC==2R[理解定理] 1公式的变形:C R c B R b A R a sin 2,sin 2,sin 2)1(===C B A c b a sin :sin :sin ::)3(=,2sin ,2sin ,2sin )2(Rc C R b B R a A ===Bb Cc C c A a B b A a sin sin ,sin sin ,sin sin )4(===2.正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如sin sin b Aa B=; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b=。
《正弦定理》教案(含答案)第一章:正弦定理的引入1.1 实物的直观引入利用直角三角形和平行四边形模型,引导学生直观感受正弦定理的概念。
让学生通过观察和实验,发现正弦定理在几何图形中的普遍性。
1.2 数学定义与公式给出正弦定理的数学表达式:a/sinA = b/sinB = c/sinC,其中a, b, c分别为三角形的边长,A, B, C分别为对应的角度。
解释正弦定理的内涵,让学生理解各个参数之间的关系。
1.3 例题讲解选择具有代表性的例题,讲解正弦定理的应用方法。
引导学生通过正弦定理解决问题,培养学生的解题能力。
第二章:正弦定理的应用2.1 三角形内角和定理的推导利用正弦定理推导三角形内角和定理:A + B + C = 180°。
解释推导过程,让学生理解正弦定理与三角形内角和定理之间的关系。
2.2 三角形形状的判断利用正弦定理判断三角形的形状(直角三角形、锐角三角形、钝角三角形)。
引导学生通过正弦定理判断给定三角形的形状。
2.3 实际问题应用选择与生活实际相关的问题,引导学生利用正弦定理解决问题。
培养学生的实际问题解决能力,提高学生对正弦定理的应用意识。
第三章:正弦定理在测量中的运用3.1 角度测量讲解利用正弦定理进行角度测量的方法。
引导学生通过正弦定理进行角度测量,提高学生的实际操作能力。
3.2 距离测量讲解利用正弦定理进行距离测量的方法。
引导学生通过正弦定理进行距离测量,提高学生的实际操作能力。
3.3 实际测量案例提供实际测量案例,让学生利用正弦定理进行测量。
培养学生的实际测量能力,提高学生对正弦定理在测量中应用的理解。
第四章:正弦定理在三角函数中的应用4.1 三角函数的定义与关系讲解正弦定理与三角函数之间的关系。
引导学生理解正弦定理在三角函数中的应用。
4.2 三角函数图像的绘制利用正弦定理绘制三角函数图像。
培养学生的图像绘制能力,提高学生对正弦定理在三角函数中应用的理解。
4.3 三角函数问题的解决利用正弦定理解决三角函数问题。
《6.4.3.2正弦定理》一、学习目标1.了解正弦定理的推导过程,掌握正弦定理及其基本应用;2.能用正弦定理解三角形,并能判断三角形的形状.3.能利用正、余弦定理解决综合问题.二、知识思维导图三、导学指导与检测导学导学检测及课堂展示阅读相关材料完成相应练习知识点一正弦定理asin A=bsin B=csin C=2R知识点二正弦定理的变形公式①a=b sin Asin B=c sin Asin C,b==,c==;②a=2R sin A,b=,c=;③sin A=a2R,sin B=,sin C=;④a:b:c=sin A:sin B:sin C. 其中,R为△ABC外接圆的半径.类型一已知两角和任意一边解三角形[例1]在△ABC中,c=10,A=45°,C=30°求a,b和B.类型二已知两边及一边的对角解三角形[例2] 在△ABC中,已知c=6,A=45°,a=2,解三角形.类型三正弦定理三角形面积公式S=12absinC=12acsinB=12bcsinA[例3] △ABC 的内角A ,B ,C 的对边分别为a,b,c ,若b=6,a=2c ,B=3π,求△ABC 的面积.类型四 利用正弦定理判断三角形的形状 [例4] 在△ABC 中,若(a -c cos B )sin B =(b -c cos A )·sin A ,判断△ABC 的形状.四、巩固诊断1.在△ABC 中,若A =60°,B =45°,BC =32,则AC =( )A .4 3B .23 C. 3D.322.在△ABC 中,若A :B :C =2:3:7,则a :b 等于( )A .1:2B .2:3C .1:2D .1:3 3.在锐角三角形ABC 中,角A ,B 所对的边长分别为a ,b .若2a sin B =3b ,则角A 等于 .4.三角形ABC 的三内角A 、B 、C 所对的边长分别是a ,b ,c .若(a +b )(sin B -sin A )=(3a +c )sin C ,则角B 的大小为 .5.在△ABC 中,求证:a 2-b 2c 2=sin (A -B )sin C.6.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b -c )sin B +(2c -b )sin C .(1)求角A 的大小; (2)若sin B +sin C =3,试判断△ABC 的形状.。
1.1.1 正弦定理教学要求:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题.教学重点:正弦定理的探索和证明及其基本应用.教学难点:已知两边和其中一边的对角解三角形时判断解的个数. 教学过程:一、复习引入:1.在任意三角形行中有大边对大角,小边对小角的边角关系?是否可以把边、角关系准确量化?2.在ABC ∆中,角A 、B 、C 的正弦对边分别是c b a ,,,你能发现它们之间有什么关系吗?结论★: 。
二、讲授新课:探究一:在直角三角形中,你能发现三边和三边所对角的正弦的关系吗?直角三角形中的正弦定理: sin A =ca sin B =cb sin C =1 即c =sin sin sin a b cA B C==. 探究二:能否推广到斜三角形? (先研究锐角三角形,再探究钝角三角形)当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据三角函数的定义,有sin sin CD a B b A ==,则sin sin a bA B=. 同理,sin sin a c A C =(思考如何作高?),从而sin sin sin a b c A B C==.探究三:你能用其他方法证明吗? 1. 证明一:(等积法)在任意斜△ABC当中S △ABC =111sin sin sin 222ab C ac B bc A ==.两边同除以12abc 即得:sin aA =sin bB =sin c C.2.证明二:(外接圆法)如图所示,∠A =∠D ,∴2s i n s i n a aCD R A D===,同理sin bB =2R ,sin c C=2R .3.证明三:(向量法)过A 作单位向量j 垂直于AC ,由AC +CB =AB 边同乘以单位向量j 得…..正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abAB=sin cC==2R[理解定理] 1公式的变形:2.正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B=;②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b=。
高中《正弦和余弦定理》数学教案4篇教案是讲课的前提,是讲好课的基础,教案则备课的具体表现形式。
它可以反映教师在整个教学中的总体设计和思路尤其是教学态度认真与否的重要尺度。
以下是小编为大家整理的高中《正弦和余弦定理》数学教案,感谢您的欣赏。
高中《正弦和余弦定理》数学教案1教学目标进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式.教学重难点教学重点:熟练运用定理.教学难点:应用正、余弦定理进行边角关系的相互转化.教学过程一、复习准备:1.写出正弦定理、余弦定理及推论等公式.2.讨论各公式所求解的三角形类型.二、讲授新课:1.教学三角形的解的讨论:①出示例1:在△ABC中,已知下列条件,解三角形.分两组练习→讨论:解的个数情况为何会发生变化②用如下图示分析解的情况.(A为锐角时)②练习:在△ABC中,已知下列条件,判断三角形的解的情况.2.教学正弦定理与余弦定理的活用:①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦. 分析:已知条件可以如何转化→引入参数k,设三边后利用余弦定理求角.②出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型.分析:由三角形的什么知识可以判别→求角余弦,由符号进行判断③出示例4:已知△ABC中,,试判断△ABC的形状.分析:如何将边角关系中的边化为角→再思考:又如何将角化为边3.小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.三、巩固练习:3.作业:教材P11B组1、2题.高中《正弦和余弦定理》数学教案2一)教材分析(1)地位和重要性:正、余弦定理是学生学习了平面向量之后要掌握的两个重要定理,运用这两个定理可以初步解决几何及工业测量等实际问题,是解决有关三角形问题的有力工具。
(2)重点、难点。
重点:正余弦定理的证明和应用难点:利用向量知识证明定理(二)教学目标(1)知识目标:①要学生掌握正余弦定理的推导过程和内容;②能够运用正余弦定理解三角形;③了解向量知识的应用。
教案高中数学正弦定理
一、教学目标
1. 理解正弦定理的概念,能够准确地表述正弦定理;
2. 能够应用正弦定理解决实际问题;
3. 培养学生的数学分析和解决问题的能力。
二、教学重点
1. 掌握正弦定理的表述和使用方法;
2. 能够应用正弦定理解决实际问题。
三、教学内容
1. 正弦定理的概念及表述;
2. 正弦定理的应用。
四、教学过程
1. 引入:引导学生回顾三角函数的概念,了解正弦函数的定义和性质;
2. 讲解:介绍正弦定理的概念和表述,引导学生通过几何图形理解正弦定理;
3. 演示:通过一个具体的例子,演示如何应用正弦定理解决三角形的边长或角度问题;
4. 练习:让学生自主练习,巩固正弦定理的应用;
5. 拓展:提供一些拓展题,引导学生更深入地理解和应用正弦定理;
6. 总结:总结正弦定理的基本概念和应用方法,强化学生的理解和记忆。
五、课堂小结
本节课主要介绍了正弦定理的概念和应用方法,通过学习正弦定理可以帮助学生更好地理解三角形的性质和关系,提高解决三角形相关问题的能力。
六、布置作业
1. 完成课堂练习;
2. 自主选择一些相关的题目进行练习,加深对正弦定理的理解和掌握。
七、教学反思
本节课通过引导学生理解正弦函数的性质和正弦定理的应用,使学生更清晰地认识到三角形的结构和性质,培养了解决问题的能力。
在教学过程中,需要适当调整教学方法,让学生更好地掌握知识点。