第七章 量子散射理论
- 格式:pdf
- 大小:103.89 KB
- 文档页数:17
第七讲散射理论一、散射现象的一般描述1、什么是散射?简单地说,散射就是指粒子与粒子之间或粒子与力场之间的碰撞(相互作用)过程,是一种具有重要实际意义的现象,所以散射现象也称碰撞现象,其可以示意为:粒子流散射中心如:原子物理中的α粒子散射实验。
2、散射的分类:弹性散射:一粒子与另一粒子碰撞的过程中,只有动能的交换,粒子内部状态并无改变。
非弹性散射:两粒子碰撞中粒子的内部状态有所改变(例如原子被激发或电离)。
在这里我们只讨论弹性散射,即假设碰撞过程中粒子的内部状态未变,并假设散射中心质量很大、碰撞对其运动没有影响。
3、散射的经典力学描述从经典力学来看,在散射过程中,每个入射粒子都以一个确定的碰撞参数(瞄准距离)b 和方位角0ϕ射向靶子,由于靶子的作用,入射粒子的轨道将发生偏转,沿某方向(,)θϕ出射。
例如在α粒子的散射实验中,有22cot 422M b Ze θυπε= (偏转角θ与瞄准距离之间的关系) 那些瞄准距离在b b db -和之间的α粒子,散射后,必定向着d θθθ+和之间的角度射出,如下图所示:凡通过图中所示环形面积d σ的α粒子,必定散射到角度在d θθθ+和之间的一个空心圆锥体之中。
环形面积d σ称为有效散射截面,又称微分截面。
且2222401()()4sin 2Ze d d M σθπευΩ= 然而,在散射实验中,人们并不对每个粒子的轨道感兴趣,而是研究入射粒子束经过散射后沿不同方向出射的分布。
设一束粒子流以稳定的入射流强度沿Z 轴方向射向靶粒子A ,由于靶粒子的作用,设在单位时间内有dn 个粒子沿(,)θϕ方向的立体角d Ω中射出,显然,,(,)dn Nd dn q Nd θϕ∝Ω=Ω令,即1(,)()dn q N d θϕ=Ω显然,(,)q θϕ具有面积的量纲,称为微分散射截面。
微分散射截面),(ϕθq 表示单位时间内散射到单位立体角Ωd (面积/距离平方)的粒子数占总粒子数比率,即Ω=Nd q dn ),(ϕθ。
非弹性碰撞过程及电子阻止本领自本世纪三十年代量子力学诞生以来,入射粒子在固体中的电子阻止本领一直是一个较活跃的研究领域。
特别是近30年以来,随着实验测试手段的不断提高,人们可以较精确地测量电子阻止本领的值,这又进一步地促进了人们对电子阻止本领的理论研究。
一般地,研究电子阻止本领的主要理论方法有:量子力学扰动理论、线性介电响应理论、量子散射理论、半唯象理论及经验理论(公式)。
本章将分别对上述理论给以简单介绍。
4.1 高速离子的电子阻止本领 − 量子力学扰动理论描述 (一)非弹性散射截面考虑由一个入射粒子和一个靶原子组成的系统。
在0=t 时刻,入射粒子同靶原子之间不发生相互作用,系统处于未扰动状态。
这时系统的哈密顿量为a p H H H ˆˆˆ0+=,其中p H ˆ和a H ˆ分别为入射粒子的哈密顿量和孤立靶原子的哈密顿量。
与0ˆH 相对应的系统的本征函数为nu ,本征值为n E 。
当在0>t 时,入射粒子与靶原子开始相互作用,设系统的波函数为)(t ψ,满足如下薛定谔方程)()ˆˆ()(0t V H tt i ψ+=∂ψ∂η(4.1-1) 其中V ˆ是它们之间的相互作用势。
将)(t ψ按0ˆH 的本征函数nu 展开: ]/)(exp[)()(00ηt t iE u t a t n n n n --=ψ∑∞= (4.1-2)其中)(t a n 为展开系数。
将(4.1-2)式代入方程(4.1-1),并利用波函数n u 的正交性,可以得到关于展开系数)(t a n 的方程)](ex p[)()(00t t i t a V dt t da i mn m m mn n --=∑∞=ωη (4.1-3) 其中η/)(n m mn E E -=ω为系统从本征态n u 跃迁到本征态m u 的频率,⎰=m n nm u V u d V ˆ*τ (4.1-4)则为跃迁矩阵元,其中τd 表示空间体积元。
再根据波函数)(t ψ的归一性,很容易得到展开系数)(t a n 所满足的归一化条件1)(20=∑∞=t a n n (4.1-5)对于高速入射粒子,相互作用势V ˆ相对0ˆH 是个小量,这样可以采用微扰理论来求解方程(4.1-3)。
激光拉曼光谱实验拉曼散射是印度科学家Raman在1928年发现的,拉曼光谱因之得名。
光和媒质分子相互作用时引起每个分子作受迫振动从而产生散射光,散射光的频率一般和入射光的频率相同,这种散射叫做瑞利散射,由英国科学家瑞利于1899年进行了研究。
但当拉曼在他的实验室里用一个大透镜将太阳光聚焦到一瓶苯的溶液中,经过滤光的阳光呈蓝色,但是当光束进入溶液之后,除了入射的蓝光之外,拉曼还观察到了很微弱的绿光。
拉曼认为这是光与分子相互作用而产生的一种新频率的光谱带。
因这一重大发现,拉曼于1930年获诺贝尔奖。
激光拉曼光谱是激光光谱学中的一个重要分支,应用十分广泛。
如在化学方面应用于有机和无机分析化学、生物化学、石油化工、高分子化学、催化和环境科学、分子鉴定、分子结构等研究;在物理学方面应用于发展新型激光器、产生超短脉冲、分子瞬态寿命研究等,此外在相干时间、固体能谱方面也有广泛的应用。
实验目的:1、掌握拉曼光谱仪的原理和使用方法;2、测四氯化碳的拉曼光谱,计算拉曼频移。
实验重点:拉曼现象的产生原理及拉曼频移的计算实验难点:光路的调节实验原理:[仪器结构及原理]1、仪器的结构LRS-II激光拉曼/荧光光谱仪的总体结构如图12-4-1所示。
2、单色仪单色仪的光学结构如图12-4-2所示。
S1为入射狭缝,M1为准直镜,G为平面衍射光栅,衍射光束经成像物镜M2汇聚,经平面镜M3反射直接照射到出射狭缝S2上,在S2外侧有一光电倍增管PMT,当光谱仪的光栅转动时,光谱信号通过光电倍增管转换成相应的电脉冲,并由光子计数器放大、计数,进入计算机处理,在显示器的荧光屏上得到光谱的分布曲线。
3、激光器本实验采用50mW半导体激光器,该激光器输出的激光为偏振光。
其操作步骤参照半导体激光器说明书。
4、外光路系统外光路系统主要由激发光源(半导体激光器)、五维可调样品支架S、偏振组件P1和P2以及聚光透镜C1和C2等组成(见图12-4-3)。
第七讲散射理论一、散射现象的一般描述1、什么是散射?简单地说,散射就是指粒子与粒子之间或粒子与力场之间的碰撞(相互作用)过程,是一种具有重要实际意义的现象,所以散射现象也称碰撞现象,其可以示意为:粒子流散射中心如:原子物理中的α粒子散射实验。
2、散射的分类:弹性散射:一粒子与另一粒子碰撞的过程中,只有动能的交换,粒子内部状态并无改变。
非弹性散射:两粒子碰撞中粒子的内部状态有所改变(例如原子被激发或电离)。
在这里我们只讨论弹性散射,即假设碰撞过程中粒子的内部状态未变,并假设散射中心质量很大、碰撞对其运动没有影响。
3、散射的经典力学描述从经典力学来看,在散射过程中,每个入射粒子都以一个确定的碰撞参数(瞄准距离)b 和方位角0ϕ射向靶子,由于靶子的作用,入射粒子的轨道将发生偏转,沿某方向(,)θϕ出射。
例如在α粒子的散射实验中,有22cot 422M b Ze θυπε= (偏转角θ与瞄准距离之间的关系) 那些瞄准距离在b b db -和之间的α粒子,散射后,必定向着d θθθ+和之间的角度射出,如下图所示:凡通过图中所示环形面积d σ的α粒子,必定散射到角度在d θθθ+和之间的一个空心圆锥体之中。
环形面积d σ称为有效散射截面,又称微分截面。
且2222401()()4sin 2Ze d d M σθπευΩ= 然而,在散射实验中,人们并不对每个粒子的轨道感兴趣,而是研究入射粒子束经过散射后沿不同方向出射的分布。
设一束粒子流以稳定的入射流强度沿Z 轴方向射向靶粒子A ,由于靶粒子的作用,设在单位时间内有dn 个粒子沿(,)θϕ方向的立体角d Ω中射出,显然,,(,)dn Nd dn q Nd θϕ∝Ω=Ω令,即1(,)()dn q N d θϕ=Ω显然,(,)q θϕ具有面积的量纲,称为微分散射截面。
微分散射截面),(ϕθq 表示单位时间内散射到单位立体角Ωd (面积/距离平方)的粒子数占总粒子数比率,即Ω=Nd q dn ),(ϕθ。
第七章 散射理论.前面几章主要讨论了薛定谔方程中的束缚态问题,特别是微扰理论;必须要求微扰H '在无微扰表象中的矩阵元mn H '的绝对值远小于无微扰表象中相应的能级间隔00m n E E -,以保证微扰级数收敛,而对于能量连续的散射态,能级间隔趋于零,因此一般来说,不能用第五章中的方法处理。
但是,另一方面,微观粒子之间的散射或称碰撞过程的研究,对于理解许多物理现象十分重要。
例如,许多复合粒子的内部结构、电荷分布等,就是通过散射实验给出的。
核子、介子的夸克结构,由于目前在实验上还未找到自由夸克,也只能通过散射实验间接地予以论证,今年来的高能重离子碰撞之所以能引起巨大的关注,也是因为人们相信,有可能由此得出夸克、胶子等离子态。
至于高能宇宙线、气体放电、原子、分子物理的研究,散射过程更占着重要地位。
建立一套散射理论无论从实验上看,还是从使理论更加完整的角度上看,都是完全必要的。
散射过程最主要的特点是散射粒子的波函数,一般来说,在无穷远处并不为零。
而且,入射粒子的能量通常是给定的。
散射粒子在无穷元处的波函数并不为零,能谱连续。
散射过程中最感兴趣的物理结果是粒子被散射后,散射到各个不同方向,各个不同立体角的概率。
在8.1中将看到,这些物理结果可以用微分散射截面以及总散射截面描述。
本章将分别就弹散射和非弹性散射两种不同情况,按入射粒子是高能粒子还是低能粒子,分别建立各种不同的散射理论。
我们还将逐步介绍适用于各种不同情况的处理散射过程的近似方法,包括分波法、格林函数法和玻恩近似、克劳勃近似、S 矩阵、T 矩阵和形式散射微扰理论、光学势、扭曲波近似等等。
7.1散射问题的一般描述 在经典力学中,弹性散射是按照粒子在散射过程中,同时满足动量守恒和能量守恒来定义的。
在量子力学中,一般说来,除非完全略不粒子之间的相互作用能,否则,动量将不守恒。
这是因为动量算符ˆP与势能算符U(r)不对易,动量不是守恒。