载体构建流程
- 格式:doc
- 大小:24.50 KB
- 文档页数:2
载体构建SOP流程:GenBank查询目的基因序列→根据ORF序列利用引物设计软件设计引物→表达目的基因的组织或细胞总RNA提取→RT-PCR获取目的基因→酶切目的基因和载体→分别纯化酶切的目的基因和载体并建立连接反应→转化→初步筛选阳性克隆→阳性克隆测序→测序正确的质粒保种并重提质粒I.获取目的基因/序列片段一.获取序列信息通过GENBANK数据和生物信息的方法设计目的基因或目的片段引物(shRNA、miRNA)。
PCR引物的设计原则:①引物应用核酸系列保守区内设计并具有特异性。
②产物不能形成二级结构。
③引物长度一般在15~30碱基之间。
④ G+C含量在40%~60%之间。
⑤碱基要随机分布。
-⑥引物自身不能有连续4个碱基的互补。
⑦引物之间不能有连续4个碱基的互补。
⑧引物5′端可以修饰。
⑨引物3′端不可修饰。
⑩避免在引物的3’端使用碱基A。
在实际设计引物中由于ORF两末端序列本身的限制,不能完全按照上述理想的设计原则,但也切记引物不能过长或过短。
过长的引物不容易打开其二级结构,与模板结合缓慢,也容易形成引物二聚体,通常不超过35bp(不包括酶切位点和保护碱基)。
过短的引物特异性差,扩出其它不相关片段,最终很难得到目的片段,通常不短于18bp(不包括酶切位点和保护碱基)。
要将目的基因定向克隆至相应载体,需要在上下游引物两端设计不同的酶切位点,由于酶切位点位于线性末端时酶对其识别切割能力大大降低,需依据NEB目录添加相应保护碱基,酶切时可相应增加时间。
二.制备模板1.分离高质量RNA:成功的cDNA合成来自高质量的RNA。
高质量的RNA至少应保证全长并且不含逆转录酶的抑制剂,如EDTA或SDS。
RNA的质量决定了能够转录到cDNA上的序列信息量的最大值。
现在实验室通常使用Trizol试剂法提取总RNA,可以从多种组织和细胞中提取高质量的非降解RNA。
Trizol试剂法可以从最少100个细胞或1mg组织中提取RNA。
载体构建技术基本流程
载体构建的基本流程:
1.载体质粒的选择;
2.引物设计;
3.PCR扩增;
4.载体和⽬标⽚段的限制性酶切;
5.连接转化;
6.挑取克隆提质粒验证。
重要的是,我们要为⼤家提供了⼀个载体构建流程模板,构建载体时希望⼤家可以创建⼀个word⽂档,按照我们提供的模板,将载体构建过程记录下来,便于后续优化。
后续⽂章中我们将举例告诉⼤家如何使⽤这个模板。
P.S. 构建表达载体时可以先连接T载体,可把步骤(12)酶切⽚段换成连接T载体后再对T载体进⾏酶切。
连接T载体会多花⼀天时间,但是可以使载体构建流程更顺利。
连接T载体与连接⽬的载体⽅法⼗分类似,本次举例不再涉及。
如果想要通过连接T载体过渡,可以⽹上搜索T载体相关产品说明书,了解T载体和连接T载体的⽅法。
引物设计的内容我们将放在接下来的⼀篇推送⾥,正在构建载体的⼤家,先尝试使⽤我们的载体构建流程模板吧。
酶切法构建载体的流程酶切法构建载体的那些事儿。
一、准备工作。
这就好比做饭之前得先把食材和厨具都准备好一样。
构建载体前,得把载体和目的基因这两个关键的东西准备妥当。
载体就像是一辆小货车,它能把我们的目的基因运输到我们想要的地方去。
这个载体要选择合适的,就像选车得根据货物的大小、运输的路况来选一样。
目的基因呢,那可是我们的宝贝货物,要通过各种手段把它提取出来,确保它的纯度和完整性。
另外,还得准备好各种酶,就像厨师做菜需要各种调料一样。
像限制性内切酶,这可是关键的酶,它就像一把小剪刀,能在特定的位置把载体和目的基因剪开。
还有连接酶,它的作用就是把剪开又处理好的载体和目的基因连接起来,就像胶水把东西粘在一起似的。
而且,反应缓冲液也不能少,这就像是酶发挥作用的小环境,没有合适的缓冲液,酶可能就不好好干活啦。
二、酶切过程。
这一步可重要啦。
把载体和目的基因分别放到不同的小管子里,加入适量的限制性内切酶和反应缓冲液。
然后就把这些小管子放到一个小仪器里,让它们在合适的温度下反应。
这个温度就像是酶的舒适区,不同的酶有不同的舒适温度。
在这个过程中,限制性内切酶就开始发挥它的小剪刀功能啦,在载体和目的基因上特定的位置咔嚓咔嚓地剪开。
这就像是给载体和目的基因做了一个小手术,让它们有合适的接口可以连接。
三、处理酶切产物。
酶切完了可不能就直接用。
得把酶切产物处理一下。
因为酶切之后可能会有一些小的片段或者残留的酶,这些东西可能会影响后续的连接反应。
这时候就像是给刚裁剪好的布料再整理整理,把那些多余的线头剪掉。
一般可以通过一些方法把残留的酶去掉,让酶切产物变得干干净净、利利索索的。
四、连接反应。
处理好的载体和目的基因就可以开始连接啦。
把它们放到一个管子里,加入连接酶和反应缓冲液。
然后又把这个小管子放到合适的温度下。
连接酶就开始工作啦,它把载体和目的基因的切口连接起来。
这就像是把裁剪好的布料缝成一件漂亮的衣服。
经过这个过程,一个新的带有目的基因的载体就构建好啦。
载体构建的基本步骤Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT载体构建一、原理依赖于限制性核酸内切酶,DNA连接酶和其他修饰酶的作用,分别对目的基因和载体DNA进行适当切割和修饰后,将二者连接在一起,再导入宿主细胞,实现目的基因在宿主细胞内的正确表达。
二、操作步骤1、摇菌(制作感受态细胞备用)取装有液体培养基的3ml试管两支(依情况而定),每管加40-100μl菌种,过夜摇。
2、提质粒(也就是载体)依照提质粒试剂盒中的说明书操作(根据情况最后一步洗脱时可以多洗1-2次)。
3、酶切(双酶切产生粘性末端)反应所需试剂体积(单位:ul)质粒 10所需内切酶反应缓冲液 2所需限制性内切核酸酶 1H2O 7将加好的EP管置于37℃保温1-2h。
(依照提酶切的具体步骤操作;为了达到最佳酶切的效果,最好根据所选用的酶确定所需要的反应温度)4、电泳检测将酶切产物进行琼脂糖凝胶电泳,检测酶切是否成功。
回收胶:琼脂糖与缓冲液一比一制胶,经过切胶回收目的产物,也有目的产物纯化的功能;检测胶:琼脂糖与缓冲液一比二制胶,为了检测目的条带与预期是否相符。
切胶回收与产物纯化是差不多的过程,所达到的目的是一样的:切胶回收也是一种纯化过程,它能去除非目的片段,然后用回收试剂盒进行纯化,能将很不纯的DNA溶液纯化;产物纯化是将较纯的DNA溶液进一步除去多余的杂质,用纯化试剂盒,你会发现纯化试剂盒和回收试剂盒的步骤几乎一样。
5、载体与目的基因连接如果电泳检测酶切成功的话,则仔细将所需的片段切割下来,将胶体回收(依照胶回收试剂盒说明书操作);之后将回收的片段和载体连接。
置于温箱,12-16℃,保温8-16h6、转化(连接产物转化到感受态细胞中)依照转化具体操作步骤做感受态,将上述连接产物进行转化实验,涂板培养,37℃,12-16h。
7、单克隆检测(1)挑单克隆先将AMP从冰箱中取出,待融化后,在3ml装有LB液体培养基的试管中加入3μL的AMP,用枪头混匀;取 mlEP管5支(依情况可以多挑几管),给每支管中加500μL上述培养液,然后用接种环(或黄枪头)挑单克隆,挑完后用枪吹打;之后,将挑好的菌摇4-5小时,至混浊即可。
载体构建质粒构建步骤有哪些?载体构建过程:1、引物设计2、⽬的⽚段选取:RNA提取、RNA反转录、PCR扩增、PCR产物纯化3、双酶切4、连接:T4 DNA ligase连接或者同源重组连接(新贝⽣物:#B101、#B102)5、转化6、菌落PCR7、测序:1)摇菌;2)送样; 3)⽐对;8、菌种保存:菌种⽐对成功,则可保存菌种备⽤。
9、质粒提取:菌种⽐对成功,冻存菌种后,菌液⽤于提取质粒。
⼀、载体构建基本原理分、切、连、转、筛1、分:分离出要克隆的⽬的基因及载体。
2、切:⽤限制性内切酶切割⽬的基因和载体,使其产⽣便于连接的末端。
限制性内切酶:是⼀类能识别双链DNA中特定碱基顺序的核酸⽔解酶。
限制性核酸内切酶根据识别切割特性,催化条件及是否具有修饰酶活性分为三⼤类。
其中Ⅱ型酶能识别双链DNA的特异顺序,并在这个顺序内切割,产⽣特异性DNA⽚段,是DNA 重组技术中常⽤的酶。
Ⅰ型酶:具有修饰和切割功能,⽆固定切割位点Ⅲ型酶与Ⅰ型类似,能识别特异位点,但切割位点在识别位点以外Ⅱ型酶特点:①识别顺序⼀般为4-6个碱基对②识别顺序具有180度的旋转对称性,呈完全的回⽂结构③Ⅱ型酶对双链DNA两条链同时切割,可产⽣两种不同末端:平末端,粘末端平末端:在识别顺序的对称轴上,对DNA同时切割形成平末端,如:SmaI5’-CCC GGG-3’ 5’-CCC GGG-3’3’-GGG CCC-5’ 3’-GGG CCC-5’5′突出粘末端:在识别序列的两侧末端切割DNA双链,于对称轴的5 ′末端切割产⽣5 ′端突出的粘性末端,如:Hind Ⅲ5’―AAGCTT―3’ 5’― A 5’-AGCTT―3’3’―TTCGAA―5’ 3’― TTCGA-5’ A―5’3′突出粘末端:与5′突出粘末端作⽤相反,产⽣3 ′端突出粘末端,如:PstI5’―CTGCAG―3’ 5’―CTGCA-3’ G―3’3’―GACGTC―5’ 3’―G 3’-ACGTC―5’3、连:将切割后的⽬的基因和载体⽤T4 DNA连接酶连接或者同源重组⽅法连接。
构建表达载体的一般流程
构建表达载体的一般流程如下:
1. 选择合适的载体:根据需要表达的基因或蛋白质,选择一个合适的表达载体。
常用的载体有质粒、病毒、合成RNA等。
2. 插入目标基因:将需要表达的基因插入到载体的多克隆位点中。
可以通过PCR 扩增目标基因并使用限制性内切酶切割载体和基因,然后进行连接。
3. 连接启动子和终止子:为确保基因在宿主细胞中能够正常表达,需要在基因的上游添加启动子和在基因的下游添加终止子。
这些序列将调控基因的表达方式和水平。
4. 检验构建质量:通过限制性内切酶切割、PCR扩增或测序等方法,验证所构建的载体和目标基因的正确性和完整性。
5. 转化宿主细胞:将构建好的表达载体导入到宿主细胞中。
常用的转化方法有电穿孔、热激冲击和化学转化等。
6. 筛选和鉴定:通过特定的筛选方法或选择标记,在转化的宿主细胞中筛选和鉴定表达目标基因的阳性克隆。
7. 表达优化:根据需要,可以通过调节培养条件、添加诱导剂或使用特定的宿主菌株等方法,优化目标基因的表达水平和质量。
8. 收获表达产物:经过一段时间的培养后,收获表达的基因产物,如蛋白质,进行后续的纯化、鉴定和应用等。
需要注意的是,具体的构建流程和方法可能会因实验的目的和要求而有所不同。
在实施过程中,需要对不同步骤和条件进行优化和调整,以确保表达载体的构建和表达目标基因的成功。
载体构建流程
1.基因的获得
酶切回收
2.回收
A.酶切回收:一般做50-100ul 体系,然后跑电泳回收,回收量一般为30ul。
B.PCR回收:一般做总体系为100-200ul的PCR量(用高保真酶:如PFU酶、KOD PLUS 酶),分成约50ul/管,然后上PCR仪。
跑电泳回收,约30ul。
酶切回收,做100ul体系,直接过回收柱回收DNA片段。
3.连接
连接体系总量一般为10-20ul。
12℃-16℃过夜。
4.转化
一般转化DH5α感受态,10-15ul 连接液转化到50ul感受态中。
冰浴1h 热休克42℃ 90 秒
冰浴5分钟加200ul LB液,37℃振摇1 h
铺相应抗性的平板。
置37℃孵箱,培养12h.
5.挑克隆
从平板上挑取数个克隆,于相应抗性的LB中,37℃培养12h.
6.抽提质粒
手工抽提质粒,一般溶于30ulTE或EB。
7.鉴定
A.酶切鉴定:一般用什么酶装上的,就用什么酶鉴定。
但原则是选用相对便
宜的酶。
选择原来载体上没有而基因上有的酶切位点与载体上另一酶切位
点共同鉴定。
一般鉴定选择2-4组酶,来确定构建的载体是否正确。
B.PCR鉴定:一般扩增目的条带。
也可扩增载体和目的条带连接处的片段。