【高中数学备课参考】计数原理排列组合及二项式定理(二):二项式定理学案(同步)
- 格式:doc
- 大小:278.50 KB
- 文档页数:5
高中高三年级数学教案:排列、组合、二项式定理案例分析一、教学目标1.理解排列、组合的基本概念和区别,掌握排列数和组合数的计算公式。
2.学会运用排列、组合解决实际问题。
3.理解二项式定理的内容,能够运用二项式定理计算二项展开式的系数。
二、教学重点与难点1.教学重点:排列数和组合数的计算,二项式定理的应用。
2.教学难点:排列、组合在实际问题中的灵活运用,二项式定理的证明。
三、教学过程1.导入新课(1)引导学生回顾初中阶段学习的排列、组合知识,复习排列数和组合数的计算公式。
(2)提出问题:排列和组合在实际问题中有哪些应用?如何运用排列、组合解决实际问题?2.授课内容(1)案例分析一:排列、组合在实际问题中的应用案例1:某班级有10名学生,其中甲必须参加,从剩余的9名学生中任选3名学生参加比赛,求不同的参赛组合数。
案例分析:这是一个排列问题,因为参赛人员的选择顺序是有关的。
根据排列数公式,可得A_9^3=9×8×7=504。
案例2:某班级有10名学生,从中任选3名学生参加比赛,求不同的参赛组合数。
案例分析:这是一个组合问题,因为参赛人员的选择顺序无关。
根据组合数公式,可得C_10^3=10×9×8/(3×2×1)=120。
(2)案例分析二:二项式定理的应用案例1:求(x+y)^5的展开式。
案例分析:根据二项式定理,展开式为x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5。
案例2:求(a+b)^10展开式中含a^5b^5的项。
案例分析:根据二项式定理,含a^5b^5的项为C_10^5a^5b^5=252a^5b^5。
3.练习与讨论1.某班级有10名学生,其中甲必须参加,从剩余的9名学生中任选3名学生参加比赛,求不同的参赛组合数。
2.某班级有10名学生,从中任选3名学生参加比赛,求不同的参赛组合数。
3.求(x+y)^6的展开式。
高中数学备课教案排列组合与二项式定理备课教案:排列组合与二项式定理一、引言数学是一门复杂而又神奇的学科,它在我们的日常生活以及各个学科领域中起着重要的作用。
作为高中数学教师,我们需要深入理解和准确教授各个数学概念和原理。
本教案将重点涵盖排列组合与二项式定理的重要概念和应用。
二、排列组合1. 排列的概念排列是指从给定的元素中取出若干个元素按照一定的顺序进行排列。
具体来说,从n个不同元素中,取出r个元素按照顺序进行排列的个数表示为P(n,r)。
2. 组合的概念组合是指从给定的元素中取出若干个元素,不考虑其顺序的进行组合。
具体来说,从n个不同元素中,取出r个元素进行组合的个数表示为C(n,r)。
3. 排列与组合的计算公式排列和组合的计算公式是我们在解决实际问题中经常使用的重要工具。
- 排列的计算公式:P(n,r) = n! / (n-r)!- 组合的计算公式:C(n,r) = n! / (r! * (n-r)!)三、二项式定理1. 二项式的概念二项式是指具有以下形式的多项式:(a + b)^n,其中a和b是实数或变量,n是非负整数。
2. 二项式定理的表达式二项式定理是指将二项式的幂展开的公式。
根据二项式定理,可以得出以下表达式:(a + b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 + ... + C(n,r) * a^(n-r) * b^r + ... + C(n,n) * a^0 * b^n四、应用举例为了帮助学生更好地理解排列组合和二项式定理的应用,我们针对具体的例子进行练习。
例1:某班有10名学生,要从中选出5名代表参加学校的比赛,问有多少种选择方法?解析:根据组合的计算公式,我们可以计算C(10,5),即从10名学生中选出5名学生的组合数。
根据计算公式可得,C(10,5) = 10! / (5! * (10-5)!) = 252,因此选择方法的种数为252种。
排列、组合、二项式定理2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.3.理解组合的意义,掌握组合数计算公式和组合数性质,并能用它们解决一些简单的应用问题.4.掌握二排列与组合高考重点考察学生理解问题、综合运用分类计数原理和分步计数原理分析问题和解决问题的能力及分类讨论思想.它是高中数学中从内容到方法都比较独特的一个组成部分,是进一步学习概率论的基础知识.由于这部分内容概念性强,抽象性强,思维方法新颖,同时解题过程中极易犯“重复”或“遗漏”的错误,而且结果数目较大,无法一一检验,因此学生要学好本节有一定的难度.解决该问题的关键是学习时要注意加深对概念的理解,掌握知识的内在联系和区别,严谨而周密地去思考分析问题.二项式定理是进一步学习概率论和数理统计的基础知识,高考重点考查展开式及通项,难度与课本内容相当.另外利用二项式定理及二项式系数的性质解决一些较简单而有趣的小题,在高考中也时有出现.第1课时两1.分类计数原理(也称加法原理):做一件事情,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事共有N =种不同的方法.2.分步计数原理(也称乘法原理):做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做n 步有m n 种不同的方法,那么完成这件事共有N =种不同的方法.3.解题方法:枚举法、插空法、隔板法.(2)、(3)班分别有学生48,50,52人(1) 从中选1人当学生代表的方法有多少种?(2) 从每班选1人组成演讲队的方法有多少种?(3) 从这150名学生中选4人参加学代会有多少种方法?(4) 从这150名学生中选4人参加数理化四个课外活动小组,共有多少种方法?解:(1)48+50+52=150种 (2)48×50×52=124800种 (3)4150C (4)4150A 变式训练1:在直角坐标x -o -y 平面上,平行直线x=n ,(n=0,1,2,3,4,5),y=n ,(n=0,1,2,3,4,5),组成的图形中,矩形共有( )A 、25个B 、36个C 、100个D 、225个解:在垂直于x 轴的6条直线中任意取2条,在垂直于y 轴的6条直线中任意取2条,这样的4条直线相交便得到一个矩形,所以根据分步记数原理知道:得到的矩形共有22515152626=⨯=⋅C C 个, 故选D 。
国规教材
教育学生数据真实性与诚信、社会责任与公共利益、团队协作
教学流程图
4知识点检测:
(1)从甲、乙、丙3名同学中选出两名同学,一名担任班长,一名担任副班长,有多少种不同的选法?
(2)从甲、乙、丙3名同学中选出2名分别参加上午和下午的活动,有多少种不同的方法?
1.组织学生在了解的基础上理解排列的概念,掌握排列数公
1.组合的概念
从n个不同的元素中,任取m(m≤n)个元素组成一组,称为从n个不同元素中取出m个元素的一个组合.
排列与组合的区别:排列是从n个不同的元素中任取m(m≤n)个元素,按照一定的顺序排成一列,与m个元素的排列顺序有关;组合是从n个不同元素中任取m(m≤n)个元素组成一组,与m个元素的排列顺序无关.
2.组合数
从n个不同的元素中,任取m(m≤n)个元素的所有组合的个数,称为从n个不同元素中取出m个元素的组合数,
用符号表示.
5、知识点检测:
某天上午共4节课,排语文、数学、体育、计算机课,其中体育课不排在第一节课,那么这天上午课表的不同排法种数是()
1.引导并组织学生根据信息进行讨论.区别排列与组合。
国主义情怀.
1.二项式定理的内容
设 a.,b是任意实数,n是任意给定的正整数,则
2.二项展开式的通项公式
3.二项式系数与二项展开式中某项的系数
3.知识点检测:
组织学生运用二项式定理的相关内容解决实际问题.。
一、教材分析【教材的地位及作用】二项式定理安排在高中数学选修2-3第三节,是排列组合内容后的一部分内容,其形成过程是组合知识的应用,同时也是自成体系的知识块,为随后学习的概率知识及概率与统计,作知识上的铺垫。
二项展开式与多项式乘法有密切的联系,本节知识的学习,必然从更广的视角和更高的层次来审视初中学习的关于多项式变形的知识。
运用二项式定理可以解决一些比较典型的数学问题,例如近似计算、整除问题、不等式的证明等。
【学生情况分析】授课对象是高二中等程度班级的学生。
学生具有一般的归纳推理能力,学生思维较活跃,但创新思维能力较弱。
在学习过程中,大部分学生只重视定理、公式的结论,而不重视其形成过程。
(根据以上分析,结合新课标的理念,制订如下的教学目标和教学重、难点)。
【教学目标】1、知识目标:理解二项式定理及其推导方法,识记二项展开式的有关特征,并能运用二项式定理计算或证明一些简单的问题。
2、能力目标:在学生对二项式定理形成过程的参与探讨过程中,培养学生观察、猜想、归纳的能力,以及学生的化归意识与知识迁移的能力。
3、情感目标:(1)通过学生自主参与和探讨二项式定理的形成过程,培养学生解决数学问题的兴趣和信心. (2)通过学生自主参与和探讨二项式定理的形成过程,使学生体会到数学内在的和谐对称美.【教学重点、难点】重点:二项式定理的内容及应用。
难点:掌握运用多项式乘法以及组合知识推导二项式定理的过程。
二、教法、学法分析数学是一门培养人的思维发展的重要学科。
因此,在教学中让学生自己发现规律是最好的途径。
正所谓“学问之道,问而得,不如求而得之,深固之。
”本节课的教法贯穿启发式教学原则以启发学生主动学习,积极探求为主,创设一个以学生为主体,师生互动,共同探索的教与学的情境,采用引导发现法,由学生熟悉的多项式乘法入手,进行分析,又可利用组合的有关知识加以分析、归纳,通过对二项展开式规律的探索过程,培养学生由特殊到一般,经过观察分析、猜想、归纳(证明)来解决问题的数学思想方法,培养了学生观察、联想、归纳能力。
数学教案-排列、组合、二项式定理-基本原理一、引言本教案主要介绍数学中的排列、组合和二项式定理的基本原理。
通过学习,学生能够了解到排列、组合和二项式定理的概念、性质和应用,提高数学思维和解决实际问题的能力。
二、排列与组合2.1 排列排列是指从n个不同元素中取出m个元素进行有序排列的方法数。
排列的计算公式为:其中,n为总元素个数,m为需要取出的元素个数,“!”表示阶乘运算。
2.2 组合组合是指从n个不同元素中取出m个元素进行无序组合的方法数。
组合的计算公式为:其中,n为总元素个数,m为需要取出的元素个数,“!”表示阶乘运算。
2.3 示例例如,从数字1、2、3中取出2个数字进行排列,使用排列公式计算有:即有6种排列方法。
再例如,从数字1、2、3中取出2个数字进行组合,使用组合公式计算有:即有3种组合方法。
三、二项式定理3.1 基本概念二项式定理是指任意一个二项式的幂展开后各项系数的规律。
二项式定理的公式表达为:其中,a、b为任意实数,n为非负整数,C为组合的计算公式。
3.2 使用方法二项式定理可以应用于多个方面,如多项式展开、概率计算等。
在多项式展开中,可以通过二项式定理将一个多项式化简为一系列项的和。
3.3 示例例如,将二项式展开为更多项的和:即:通过二项式定理,我们可以快速求解幂次较高的多项式。
四、总结本教案主要介绍了数学中的排列、组合和二项式定理的基本原理。
排列和组合是数学中常见的计数方法,可以用于解决实际问题中的选择和排列情况;二项式定理则是多项式展开中的重要工具,可以化简复杂的多项式表达式。
通过对这些概念和公式的学习和应用,可以提高数学思维能力和解决实际问题的能力。
希望通过本教案的学习,学生能够掌握排列、组合和二项式定理的基本原理,并能够应用于实际问题中,提升自己的数学能力。
高三数学教案《二项式定理》优秀3篇1. 介绍本文档将介绍三篇优秀的高三数学教案,主题为《二项式定理》。
这些教案从不同的角度和方法讲解了二项式定理,帮助学生更好地理解和应用该定理,提高数学解题能力。
2. 教案一:《二项式定理初步认识》2.1 教学目标•了解二项式的定义和性质•掌握二项式展开的基本方法•能够灵活应用二项式定理解决实际问题2.2 教学内容1.二项式的定义和性质–介绍二项式的概念和表达形式–讲解二项式的性质,如二项式系数的对称性等2.二项式展开的基本方法–介绍二项式在展开时的基本方法–给出一些例题进行演示和练习3.实际问题的应用–利用二项式定理解决实际问题,如排列组合问题等–给出一些实际问题的例题和练习2.3 教学方法•讲授与演示相结合:通过讲解二项式的定义和性质,并用例题演示二项式展开的基本方法,加深学生对二项式定理的理解•提问与讨论:引导学生参与讨论,思考问题的解决方法,培养学生的分析和解决问题的能力•练习与巩固:给学生一定数量的练习题,巩固所学知识,并能够应用到实际问题中2.4 教学评价与反馈•教学评价:通过课堂上教师的观察、学生的表现及课后作业的完成情况,进行教学评价•教学反馈:及时给予学生反馈,并指导学生改正错误,提高学习效果3. 教案二:《二项式定理的证明与应用》3.1 教学目标•掌握二项式定理的证明方法•理解二项式定理的应用领域•提高数学推理和证明能力3.2 教学内容1.二项式定理的证明方法–讲解二项式定理的组合证明方法,如二项式系数的递推关系等–通过数学推理,证明二项式定理的正确性2.二项式定理的应用–介绍二项式定理在组合数学、概率论等领域的应用–给出一些应用题进行练习,提高学生的应用能力3.数学推理与证明–培养学生的数学推理和证明能力,通过解答证明题加深学生对二项式定理的理解3.3 教学方法•讲授与演示相结合:通过讲解二项式定理的证明方法,并演示具体的证明过程,加强学生对二项式定理的理解•课堂讨论:引导学生进行证明题的讨论和分析,提高学生的数学推理能力•练习与应用:给学生一些练习题,加深学生对二项式定理的应用理解3.4 教学评价与反馈•教学评价:通过课堂上的表现、学生的参与情况以及课后作业的完成情况综合评价学生的学习情况•教学反馈:及时给予学生反馈,并指导学生改进学习方法,提高学习效果4. 教案三:《二项式定理与三角恒等式》4.1 教学目标•掌握二项式定理与三角恒等式的联系和应用•理解二项式定理与三角恒等式在数学中的重要性•提高学生的综合应用能力4.2 教学内容1.二项式定理与三角恒等式的联系和应用–介绍二项式定理与三角恒等式之间的联系和应用–分析二项式展开式的三角形式及其与三角恒等式的关系2.二项式定理与三角恒等式的具体应用–给出一些具体的二项式展开题目,引导学生将其化简成三角恒等式形式–通过练习题,锻炼学生的综合应用能力4.3 教学方法•讲授与实例演示:通过讲解二项式定理与三角恒等式的联系,并给出具体的例题进行演示,加深学生对二项式定理和三角恒等式的理解•练习与应用:给学生一些练习题,锻炼学生将二项式展开式化简成三角恒等式形式的能力•问题探究与讨论:引导学生思考和探索二项式定理与三角恒等式之间的更多联系4.4 教学评价与反馈•教学评价:通过观察学生的课堂表现、参与讨论的情况以及课后作业的完成情况综合评价学生的学习情况•教学反馈:及时给予学生反馈,并指导学生改进问题解决的方法,提高学习效果5. 总结本文档介绍了三篇优秀的高三数学教案,主题为《二项式定理》。
会用计数原理、二项式定理解决问题练结合11 D](1)由通项公式,的值,求解8.21)因此1)区别二项式系数与展开式中项的系数,灵活利用二项式【变式训练(1________答案人,每人至少课堂要求学生掌握的内容:两个计数原理及应用;排建二.排列与组合后精美句子1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
4、成功与失败种子,如果害怕埋没,那它永远不能发芽。
鲜花,如果害怕凋谢,那它永远不能开放。
矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。
蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。
航船,如果害怕风浪,那它永远不能到达彼岸。
5、墙角的花,当你孤芳自赏时,天地便小了。
井底的蛙,当你自我欢唱时,视野便窄了。
笼中的鸟,当你安于供养时,自由便没了。
山中的石!当你背靠群峰时,意志就坚了。
水中的萍!当你随波逐流后,根基就没了。
空中的鸟!当你展翅蓝天中,宇宙就大了。
空中的雁!当你离开队伍时,危险就大了。
地下的煤!你燃烧自己后,贡献就大了6、朋友是什么?朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。
城东蜊市阳光实验学校第十章排列、组合和和概率二、二项式定理学习指导:1.有关二项式定理,要记住公式,弄清与其相关的概念:二项式系数、系数、项、项数、通项等,从而正确运用二项式系数的性质进展计算,解一些应用题。
重点是二项式定理的应用、难点是对通项的理解。
2.二项式定理:n n n r r n r n n n n n n n nb C b a C b a C b a C a C b a +⋅⋅⋅++⋅⋅⋅+++=+---222110)(。
右边的多项式叫做nb a )(+的二项展开式,一一共有1+n 项,其中各项的系数),,1,0(n r C rn ⋅⋅⋅=叫做二项式系数,r rn rn b aC -叫做二项展开式的通项,用1+r T 表示。
3.二项式系数的性质〔1〕对称性:与首末两端“等间隔〞的两个二项式系数相等。
〔2〕增减性与最大值 当21+<n k时,二项式系数是逐渐增大的;当21+>n k 时,二项式系数是逐渐减小的, 当n 是偶数时,中间一项的二项式系数2nnC获得最大值;当n是奇数时,中间的两项的二项式系数2121+-=n nn nCC相等,且同时获得最大值。
〔3〕nb a )(+的展开式的各个二项式系数的和等于n 2,即n n n n n nC C C C 2210=+⋅⋅⋅+++〔4〕nb a )(+的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和,即131202-=⋅⋅⋅++=⋅⋅⋅++n n n n n C C C C 。
例题选讲例1.求153)1(xx -展开式中的常数项。
解:展开式的通项为23151521315151)1()(rr rr rrrr xC x xC T ----+-=-⋅=。
令2315rr =-得6=r∴展开式的常数项为5057=T 。
注:假设把上题改为“求153)1(xx -展开式中的有理项〞,由)61(565302315rr r r -=-=--知r 为6的倍数,又150≤≤r ;12,6,0=∴r ∴展开式中的有理项为51x T =,50057=T ,531513-=x C T 。
二项式定理一、知识梳理1.二项展开式的通项公式是解决与二项式定理有关问题的基础.2.二项展开式的性质是解题的关键.3.利用二项式展开式可以证明整除性问题,讨论项的有关性质,证明组合数恒等式,进行近似计算等.二、基础训练1.已知(1-3x )9=a 0+a 1x +a 2x 2+…+a 9x 9,则|a 0|+|a 1|+|a 2|+…+|a 9|等于A.29B.49C.39D.12.(2x +x )4的展开式中x 3的系数是 A.6B.12C.24D.483.(2x 3-x1)7的展开式中常数项是 A.14B.-14C.42D.-424.已知(x 23+x31-)n 的展开式中各项系数的和是128,则展开式中x 5的系数是_____________.(以数字作答)5.若(x +1)n =x n +…+ax 3+bx 2+cx +1(n ∈N *),且a ∶b =3∶1,那么n =_____________.三、例题分析例1. 如果在(x +421x)n 的展开式中,前三项系数成等差数列,求展开式中的有理项.例2. 求式子(|x |+||1x -2)3的展开式中的常数项. 思考讨论(1)求(1+x +x 2+x 3)(1-x )7的展开式中x 4的系数; (2)求(x +x4-4)4的展开式中的常数项;(3)求(1+x )3+(1+x )4+…+(1+x )50的展开式中x 3的系数.解:(1)原式=xx --114(1-x )7=(1-x 4)(1-x )6,展开式中x 4的系数为(-1)4C - 1=14.(2)(x +x 4-4)4=442)44(x x x +-=48)2(xx -,展开式中的常数项为C 4482·(-1)4=1120.(3)方法一:原式=1)1(]1)1[()1(483-+-++x x x =x x x 351)1()1(+-+.展开式中x 3的系数为C 451.方法二:原展开式中x 3的系数为C+C+C+…+C 350=C+C+…+C 350=C+C+…+C 350=…=C 451.评述:把所给式子转化为二项展开式形式是解决此类问题的关键. 例3. 设a n =1+q +q 2+…+q 1-n (n ∈N *,q ≠±1),A n =C a 1+C a 2+…+C a n . (1)用q 和n 表示A n ; (2)(理)当-3<q <1时,求lim ∞→n nn A 2.例4 求(a -2b -3c )10的展开式中含a 3b 4c 3项的系数.四、同步练习 g3.1093 二项式定理1.一串装饰彩灯由灯泡串联而成,每串有20个灯泡,只要有一只灯泡坏了,整串灯泡就不亮,则因灯泡损坏致使一串彩灯不亮的可能性的种数为A.20B.219C.220D.220-1 2.已知(x -xa )8展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是 A.28B.38C.1或38D.1或283.在(1-x )5-(1-x )6的展开式中,含x 3的项的系数是( )(A) -5 (B) 5 (C) -10 (D) 104.如果3nx ⎛ ⎝的展开式中各项系数之和为128,则展开式中31x 的系数是( ) (A )7 (B )7- (C )21 (D )21-5. 若nx x ⎪⎭⎫ ⎝⎛-12展开式中含21x 项的系数与含41x 项的系数之比为-5,则n 等于( )(A) 4; (B) 5; (C) 6; (D) 10。
6. 在(1+2x )n 展开式中含x 3的项的系数等于含x 的项的系数的8倍,则n 等于( ) (A) 5; (B) 7; (C) 9; (D) 11。
7.9)12(xx -的展开式中,常数项为 。
(用数字作答)8.(x -x1)8展开式中x 5的系数为_____________.9.若(x 3+xx 1)n 的展开式中的常数项为84,则n =_____________.10.已知(x x lg +1)n 展开式中,末三项的二项式系数和等于22,二项式系数最大项为20000,求x 的值.11.若(1+x )6(1-2x )5=a 0+a 1x +a 2x 2+…+a 11x 11.求:(1)a 1+a 2+a 3+…+a 11; (2)a 0+a 2+a 4+…+a 10.12.在二项式(ax m +bx n )12(a >0,b >0,m 、n ≠0)中有2m +n =0,如果它的展开式里最大系数项恰是常数项.(1)求它是第几项;(2)求ba的范围. 13.在二项式(x +421x)n 的展开式中,前三项的系数成等差数列,求展开式中的有理项.14.求证:2<(1+n1)n <3(n ≥2,n ∈N *).参考答案基本训练: BCA 4. 35 5. 11例1.解:展开式中前三项的系数分别为1,2n ,8)1(-n n , 由题意得2×2n =1+8)1(-n n ,得n =8. 设第r +1项为有理项,T 1+r =C ·r 21·x4316r -,则r 是4的倍数,所以r =0,4,8.有理项为T 1=x 4,T 5=835x ,T 9=22561x. 评述:求展开式中某一特定的项的问题常用通项公式,用待定系数法确定r . 例 2.解法一:(|x |+||1x -2)3=(|x |+||1x -2)(|x |+||1x -2)(|x |+||1x -2)得到常数项的情况有:①三个括号中全取-2,得(-2)3;②一个括号取|x |,一个括号取||1x ,一个括号取-2,得CC (-2)=-12, ∴常数项为(-2)3+(-12)=-20. 解法二:(|x |+||1x -2)3=(||x -||1x )6. 设第r +1项为常数项, 则T 1+r =C ·(-1)r ·(||1x )r ·|x |r -6=(-1)6·C ·|x |r 26-,得6-2r =0,r =3. ∴T 3+1=(-1)3·C=-20. 例3.解:(1)因为q ≠1, 所以a n =1+q +q 2+…+q1-n =qq n--11. 于是A n =q q --11 C+q q --112 C+…+qq n--11 C=q-11[(C+C+…+C )-(C q +C q 2+…+C q n )] =q-11{(2n -1)-[(1+q )n -1]} =q-11[2n -(1+q )n ]. (2)nn A 2=q -11[1-(21q +)n ]. 因为-3<q <1,且q ≠-1, 所以0<|21q+ |<1. 所以lim ∞→n nn A 2=q-11. 例4.解:(a -2b -3c )10=(a -2b -3c )(a -2b -3c )…(a -2b -3c ),从10个括号中任取3个括号,从中取a ;再从剩余7个括号中任取4个括号,从中取-2b ;最后从剩余的3个括号中取-3c ,得含a 3b 4c 3的项为C 310a 3C ·(-2b )4C (-3c )3=C 310CC 4332(-3)3a 3b 4c 3.所以含a 3b 4c 3项的系数为-C 310C ×16×27.同步练习1—6 DCD C C A 7.672 8. 28 9. 9 10.110.10x x ==或 11. (1)-65; (2) -32.12. 解:(1)设T 1+r =C r 12(ax m )12-r ·(bx n )r =C r12a 12-r b r x m (12-r )+nr 为常数项,则有m (12-r )+nr =0,即m (12-r )-2mr =0,∴r =4,它是第5项.(2)∵第5项又是系数最大的项,C 412a 8b 4≥C 312a 9b 3,①C 412a 8b 4≥C 512a 7b 5.② 由①得2349101112⨯⨯⨯⨯⨯a 8b 4≥23101112⨯⨯⨯a 9b 3,∵a >0,b >0,∴49 b ≥a ,即ba ≤49.由②得b a ≥58,∴58≤b a ≤49.13.解:前三项系数为C ,21C ,41C ,由已知C=C+41C ,即n 2-9n +8=0,解得n =8或n =1(舍去). T 1+r =C (x )8-r(24x )-r=C ·r 21·x 434r-.∵4-43r∈Z 且0≤r ≤8,r ∈Z , ∴r =0,r =4,r =8.∴展开式中x 的有理项为T 1=x 4,T 5=835x ,T 9=2561 x -2. 14.证明:(1+n 1)n =C+C ×n 1 +C (n 1)2+…+C (n 1)n =1+1+C ×21n +C ×31n+…+C×n n 1=2+!21×2)1(n n n -+!31×3)2)(1(n n n n --+…+!1n ×n nn n 12)1(⨯⨯⨯-⨯ <2+!21+!31 +!41+…+!1n <2+21+221+321+…+121-n =2+211])21(1[211---n =3-(21)1-n <3.显然(1+n 1)n =1+1+C×21n +C ×31n+…+C ×n n 1>2.所以2<(1+n 1)n <3. ∴有。