往复式压缩机的基本知识及原理
- 格式:doc
- 大小:72.50 KB
- 文档页数:21
往复式活塞压缩机工作原理1. 压缩机的基本原理压缩机是一种将气体进行压缩的设备,常用于工业和冷冻设备中。
往复式活塞压缩机是一种常见的压缩机类型,其工作原理如下:1.活塞沿着气缸内的往复运动,通过汽缸盖与汽缸座之间的密封装置,将气缸分为上下两个工作腔,分别称为吸气腔和压缩腔。
2.当活塞沿着下行运动时,气缸内的压力下降,吸气阀打开,外部气体通过吸气阀进入吸气腔。
活塞继续向下运动,吸气腔内的气体被压缩。
3.当活塞到达下行最低点时,气缸内的压力达到最低值。
此时,吸气阀关闭,压缩阀打开,压缩腔内的气体被压缩。
4.接下来,活塞沿着上行运动,压缩腔内的气体被压缩得更加紧密。
当活塞到达上行最高点时,压缩腔内的气体达到最高压力。
5.循环往复进行上述步骤,将气体不断压缩,最终达到所需的压力。
2. 往复式活塞压缩机的结构往复式活塞压缩机由以下几个主要部件组成:2.1 活塞与气缸活塞是往复式活塞压缩机中最重要的部件之一,它通过往复运动实现气体的压缩。
活塞通常由耐磨合金材料制成,以确保其耐用性。
气缸是活塞的运动轨道,通常由铸铁制成,以承受活塞的压力和摩擦。
2.2 吸气阀与压缩阀吸气阀和压缩阀是活塞压缩机中的两个重要阀门。
吸气阀允许外部气体进入吸气腔,压缩阀则防止气体逆流,确保压缩腔的气体被压缩并防止逃逸。
这些阀门通常由金属或弹性材料制成,以确保密封性能。
2.3 曲轴与连杆曲轴和连杆是将活塞的往复运动转换为旋转运动的部件。
活塞通过连杆与曲轴相连,当活塞往复运动时,连杆将其运动传递给曲轴,进而实现旋转运动。
2.4 冷却系统活塞压缩机在运行过程中会产生大量热量,为了确保其正常工作,需要安装冷却系统。
冷却系统通常由冷却润滑油和冷却水组成,通过散热器等部件将热量散发出去,保持压缩机的适宜工作温度。
3. 往复式活塞压缩机的工作特点往复式活塞压缩机具有以下几个工作特点:3.1 体积效率高往复式活塞压缩机利用活塞的往复运动将气体压缩,相比于其他类型的压缩机,其体积效率更高。
往复式压缩机的工作原理(附结构解剖视频)往复式压缩机3D动画一、往复式压缩机工作过程往复式压缩机都有气缸、活塞和气阀。
压缩气体的工作过程可分成膨胀、吸入、压缩和排气四个过程。
例:单吸式压缩机的气缸,这种压缩机只在气缸的一段有吸入气阀和排除气阀,活塞每往复一次只吸一次气和排一次气。
(1)膨胀:当活塞向左边移动时,缸的容积增大,压力下降,原先残留在气缸中的余气不断膨胀。
(2)吸入:当压力降到稍小于进气管中的气体压力时,进气管中的气体便推开吸入气阀进入气缸。
随着活塞向左移动,气体继续进入缸内,直到活塞移至左边的末端(又称左死点)为止。
(3)压缩:当活塞调转方向向右移动时,缸的容积逐渐缩小,这样便开始了压缩气体的过程。
由于吸入气阀有止逆作用,故缸内气体不能倒回进口管中,而出口管中气体压力又高于气缸内部的气体压力,缸内的气体也无法从排气阀跑到缸外。
出口管中的气体因排出气阀有止逆作用,也不能流入缸内。
因此缸内的气体数量保持一定,只因活塞继续向右移动,缩小了缸内的容气空间(容积),使气体的压力不断升高。
(4)排出:随着活塞右移,压缩气体的压力升高到稍大于出口管中的气体压力时,缸内气体便顶开排除气阀的弹簧进入出口管中,并不断排出,直到活塞移至右边的末端(又称右死点)为止。
然后,活塞右开始向左移动,重复上述动作。
活塞在缸内不断的往复运动,使气缸往复循环的吸入和排出气体。
活塞的每一次往复成为一个工作循环,活塞每来或回一次所经过的距离叫做冲程。
二、压缩气体的三种热过程气体在压缩过程中的能量变化与气体状态(即温度、压力、体积等)有关。
在压缩气体时产生大量的热,导致压缩后气体温度升高。
气体受压缩的程度越大,其受热的程度也越大,温度也就升得越高。
压缩气体时所产生的热量,除了大部分留在气体中使气体温度升高外,还有一部分传给气缸,使气缸温度升高,并有少部分热量通过缸壁散失于空气中。
压缩气体所需的压缩功,决定于气体状态的改变。
说通缩点,压缩机耗功的大小与除去压缩气体所产生的热量有直接关系。
往复式压缩机的基本知识及原理往复式压缩机的基本知识及原理压缩机的分类压缩机种类很多,按照⼯作原理可分为容积式和速度式:容积式包括:往复式和回转式。
往复式包括:活塞式和膜⽚式。
回转式包括:螺杆式、滑⽚式和转⼦式速度式包括:离⼼式、轴流式和混流式。
容积式压缩机:指⽓体直接受到压缩,从⽽使⽓体容积缩⼩,压⼒提⾼的机器。
⼀般这类压缩机具有容纳⽓体的⽓缸。
以及压缩⽓体的活塞。
按容积变化⽅式的不同,有往复式和回转式两种结构。
往复式压缩机往复式压缩机有活塞式和膜⽚式两种式。
在圆筒形⽓缸中有⼀个可做往复运动的活塞,⽓缸上有可控制进、排⽓阀。
当活塞做往复运动时,⽓缸容积便周期性的变化,借以实现⽓体的吸进、压缩和排出。
⼀、往复式压缩机的特点1、往复式压缩机与离⼼式压缩机⽐较(1)⽆论流量⼤⼩都能达到所需压⼒,⼀般单级終压可达0、3⾄0。
5MPa,多级压缩可达到100MPa。
(2)效率较⾼。
(3)⽓量调节时排⽓压⼒⼏乎不变。
(4)在⼀般压⼒范围内,对材料的要求不⾼,可⽤普通的⾦属材料。
2、主要缺点(1)转速底,排⽓量较⼤时机器显得笨重。
(2)结构复杂,易损件多,⽇常维修量⼤。
(3)动平衡性差,运转时有振动,噪⾳⼤。
(4)排⽓量不连续,⽓流不均匀。
3、各类压缩机的使⽤范围活塞式适⽤于中⼩输⽓量,排⽓压⼒可由低压到超⾼压;离⼼式和阻流式适⽤于输送⼤⽓量,中低压情况;回转式适⽤于中⼩输⽓量、中低压情况。
⼆、往复式压缩机的⼯作原理:依靠⽓缸⼯作容积周期性的变化来压缩⽓体,以达到提⾼⼯作压⼒的⽬的。
(活塞在⽓缸内的往复运动造成减压将⽓体吸⼊,继⽽将⽓体压缩⾄⼀定压强⽽将它送出)活塞式压缩机的⼯作原理。
压缩机是⽤以将低压⼒的⽓体压缩⾄⾼压⼒的机器,在完成这项任务时,多采⽤逐次的多级压缩,每级⽓缸中都有相同的吸⽓、压缩和排⽓过程。
1、压缩机的理论循环⽓体在⽓缸内的理论循环,具有以下特点,即压缩机在吸⽓、排⽓时,不存在进排⽓阀处的压⼒损失,进排⽓过程压⼒处保持恒压,压缩过程指数量是⼀个定值,故⽓体在压缩时与⽓缸壁等处皆不发⽣热脚换,缸内不存在余隙容积以贮留⼩部分⾼压⽓体,全部⽓体均能排出⽓缸外。
往复式压缩机的基本知识及原理.活塞式压缩机的基本知识及原理活塞式压缩机的分类:(1)按气缸中心线位置分类立式压缩机:气缸中心线与地面垂直。
卧式压缩机:气缸中心线与地面平行,气缸只布置在机身一侧。
对置式压缩机:气缸中心线与地面平行,气缸布置在机身两侧。
(如果相对列活塞相向运动又称对称平衡式)角度式压缩机:气缸中心线成一定角度,按气缸排列的所呈现的形状。
有分L型、V型、W型和S型。
(2)按气缸达到最终压力所需压级数分类单级压缩机:气体经过一次压缩到终压。
两级压缩机:气体经过二次压缩到终压。
多级压缩机:气缸经三次以上压缩到终压。
(3)按活塞在气缸内所实现气体循环分类单作用压缩机:气缸内仅一端进行压缩循环。
双作用压缩机:气缸内两端进行同一级次的压缩循环。
级差式压缩机:气缸内一端或两端进行两个或两个以上的不同级次的压缩循环。
(4)按压缩机具有的列数分类单列压缩机:气缸配置在机身的一中心线上。
双列压缩机:气缸配置在机身一侧或两侧的两条中心线上。
多列压缩机:气缸配置在机身一侧或两侧的两条以上中线上。
活塞式压缩机工作原理:当活塞式压缩机的曲轴旋转时,通过连杆的传动,活塞便做往复运动,由气缸内壁、气缸内的工作容积则会发生周期性变化。
活塞式压缩机的活塞从气缸盖处开始运动时,气缸内的工作容积逐渐增大,这时,气体即沿着进气管,推开进气阀而进入气缸,直到工作容积变到最大时为止,进气阀关闭;活塞式压缩机的活塞反向运动时,气缸内工作容积缩小,气体压力升高,当气缸内压力达到并略高于排气压力时,排气阀打开,气体排出气缸,直到活塞运动到极限位置为止,排气阀关闭。
当活塞式压缩机的活塞再次反向运动时,上述过程重复出现。
总之,活塞式压缩机的曲轴旋转一周,活塞往复一次,气缸内相继实现进气、压缩、排气的过程,即完成一个工作循环。
活塞式压缩机的基本结构活塞式压缩机基本原理大致相同,具有十字头的活塞式压缩机,主要有机体、曲轴、连杆、十字头、气缸、活塞、填料、气阀等组成。
1、机身:主要由中体、曲轴箱、主轴瓦(主轴承)、轴承压盖及连接和密封件等组成。
曲轴箱可以是整体铸造加工而成,也可以是分体铸造加工后组装而成。
主轴承采用滑动轴承,安装时应注意上下轴承的正确位置,轴承盖设有吊装螺孔和安装测温元件的光孔。
2、曲轴:曲轴是活塞式压缩机的主要部件之一,传递着压缩机的功率。
其主要作用是将电动机的旋转运动通过连杆改变为活塞的往复直线运动。
3、连杆:连杆是曲轴与活塞间的连接件,它将曲轴的回转运动转化为活塞的往复运动,并把动力传递给活塞对气体做功。
连杆包括连杆体、连杆小头衬套、连杆大头轴瓦和连杆螺栓。
4、十字头:十字头是连接活塞与连杆的零件,它具有导向作用。
十字头与活塞杆的连接型式分为螺纹连接、联接器连接、法兰连接等。
大中型压缩机多用联接器和法兰连接结构,使用可靠,调整方便,使活塞杆与十字头容易对中,但结构复杂。
5、气缸:气缸主要由缸座、缸体、缸盖三部分组成,低压级多为铸铁气缸,设有冷却水夹层;高压级气缸采用钢件锻制,由缸体两侧中空盖板及缸体上的孔道形成泠却水腔。
气缸采用缸套结构,安装在缸体上的缸套座孔中,便于当缸套磨损时维修或更换。
气缸设有支承,用于支撑气缸重量和调整气缸水平。
6、活塞:活塞部件是由活塞体、活塞杆、活塞螺母、活塞环、支承环等零件组成,每级活塞体上装有不同数量的活塞环和支承环,用于密封压缩介质和支承活塞重量。
活塞环采用铸铁环或填充聚四氟乙烯塑料环;当压力较高时也可以采用铜合金活塞环;支承环采用四氟或直接在活塞体上浇铸轴承合金。
活塞与活塞杆采用螺纹连接,紧固方式有直接紧固法,液压拉伸法,加热活塞杆尾部法等,加热活塞杆尾部使其热胀产生弹性伸长变形,将紧固螺母旋转一定角度拧至规定位置后停止加热,待杆冷却后恢复变形,即实现紧固所需的预紧力。
活塞杆为钢件锻制成,经调质处理及表面进行硬化处理,有较高的综合机械性能和耐磨性。
活塞体的材料一般为铝合金或铸铁。
7、填料:密封填料是由数组密封元件构成,每组密封元件主要由径向密封环、切向密封环、阻流环和拉伸弹簧组成。
为减轻各组密封元件的工作负担,当密封压力较高时,在靠近气缸侧处设有节流环。
当密封气体属易燃易爆性质时,在密封填料中设有漏气回收孔,用于收集泄漏的气体并引至系统。
有油润滑时,密封填料中设有注油孔,可注入压缩机油进行润滑, 无油润滑时,不设注油孔。
8、气阀气阀是压缩机的一个重要部件,属于易损件。
它的质量及工作的好坏直接影响压缩机的输气量、功率损耗和运转的可靠性。
气阀包括吸气阀和排气阀,活塞每上下往复运动一次,吸、排气阀各启闭一次,从而控制压缩机并使其完成吸气、压缩、排气等工作过程。
气阀主要由阀座、阀片、弹簧、升程限制器和将它们组为一体的螺栓,螺母等组成。
排气阀的结构与吸气阀基本相同,两者仅是阀座与升程限制器的位置互换,吸气阀升程限制器靠近气缸里侧,排气阀则是阀座靠近气缸内侧。
环状阀因其阀片为薄圆环而得名,阀座与升程限制器上都有环形或孔形通道,供气体通过。
阀片与阀座上的密封口贴合形成密封。
升程限制器上有导向凸台,对阀片升降起导向作用。
活塞式压缩机的型号表示法4M40——148/320型压缩机:4列、M型活塞推力40×104N 额定排气量(换算到吸入状态下)148m3/min额定排气压力320x105Pa (32MPa)。
压缩机实际工作中存在的问题(1)余隙与膨胀实际工作的压缩机,必须存在一定的余隙容积,包括活塞运动到止点时与盖端之间的间隙和阀座下面的空间及其它死角。
留此间隙的目的是为了避免因活塞杆、活塞的热膨胀和弹性变形而引起的活塞与气缸的碰撞,同时以可防止气体带液而发生事故。
防止液击的方法在设计上,每级压缩冷却后析出的冷凝液在设计上设置分离器进行气液分离。
余隙内的气体是排不出去的,当活塞离开而返回运动时,这部分气体(排出时的压力)开始膨胀,直至压力降至吸气入开始时的压力,新鲜气体才能进入。
可见余隙的存在,使气缸的实际吸入量小于气缸的行程容积,即减少了新鲜气体的吸入量,降低了生产能力。
因此,余隙容积在保证运行可靠的基础上,应尽量减小。
(2)气阀的阻力损失通道和气阀不可能绝对光滑曲折,所以气体通过气阀和管道时,必须会产生阻力损失。
因此气缸内的吸入压力总低于管道中的压力,气缸内实际排出压力总是高于排出管道的压力。
(3)气体温度升高压缩机工作一段时间后,气缸各部分温度基本为一稳定值,它高于气体的吸入温度,低于排出温度。
而气体每一循环中,传热情况是不断变化的。
如压缩开始时气体温度较气缸温度低,于是气体自气缸吸取热量而提高本身温度,随着压缩机过程的进行,气体温度高于气缸温度。
(气体加热后体积会产生膨胀)所以每经一级压缩后的气体都须经冷却器冷却后才进行下一级压缩。
(4)泄漏:(化工压缩的气体大多属有毒有害气体和易燃易爆气体,若泄漏发生轻则影响环境,重则爆炸着火。
)气体泄漏的主要途径是经气阀、活塞环和填料处泄漏。
1、气阀泄漏:气体得不到充分压缩就排出,吸气时又漏到气缸中如此反复循环(此时泄漏阀门压盖迅速升温),影响了下一级的吸收,本级吸收的新鲜气体就减少。
2、活塞环泄漏:如活塞环断裂、磨损过大时,压缩时气体会漏到吸气端或平衡缸,吸气时又漏回来。
串气影响打气量。
3、填料泄漏:填料磨损过大时,高压气体就会从填料处大量泄漏到大气中。
二、压缩机主要参数(一)转速(n):单位为转/分,指由曲轴每分钟的转数。
(二)行程(s):单位为毫米,指活塞从近止点到远止点的间距,也等于曲拐轴与主轴中心距的两倍。
(三)活塞平均速度(C平):单位为米/秒,活塞运动中速度是变化的,在始点(如外止点)时为零,然后逐渐加速,在中点时为最大,然后逐渐降速,到终点(内死点)又为零,返行时亦如此。
活塞平均速度大则机器轻巧。
但气体流速大,惯过力如未平衡好则振动大,易损件寿命受到影响,目前一般C平=3~5米/秒。
(四)压力比(ε);是指进出口压力之比,即ε=P2/P1。
由于气缸内有余隙容积总是不可避免的。
当压缩比ε越高时,排出压力越高,残留的气体膨胀后所占的容积也就越大,使得吸入气体量减少,效率降低。
如果采用多级压缩可使每一级压力比ε减小,从而提高各级气缸容积利用率,但压缩机级数的选择是根据多方面因素来考虑的。
在实际上,多级压缩的每级压缩比为2.5~3.5。
(五) 排气量(Q):在压缩机排气端测得的单位时间内排出的气体体积,换算到压缩机吸气条件(压力、温度、湿度)下的数值称为排气量,以V表示。
单位为米3/分。
(六)功率与效率:活塞压缩机消耗的功率包括有:压缩气体的功耗,气缸中气阀等阻力损失与各种机械摩擦等功耗。
压缩气体的功耗由于和气体的热力性能有关,当气缸冷却十分完善,气体在气缸中气流速度很慢时,气体在受压缩时所产生的热都及时传走,因而几乎是等温压缩过程,此时消耗功率最省。
当气缸冷却很不好,气流速度又快,气体在压缩时所产生的热全部无法散失,则接近绝热压缩过程,此时功耗最大、实际活塞式压缩机压缩过程和介于两者之间,属于多变过程。
(七)活塞力(P)、单位为吨,压缩机活塞杆、曲轴、连杆等尺寸主要是根据活塞力来设计的故障分析及处理措施压缩机组在运行现场发生了排气量不足,压力.温度异常的现象,其原因及排除措施:故障现象原因分析排除方法1.气缸的故障(1)气缸磨损或擦伤超过最大的允许限度,形成漏气,影响排气量(2)气缸盖与气缸体结合不严,装配时气缸垫破裂或不严密行成漏气,影响排气量(3)气缸冷却水供给不良(冷却水管堵塞或气缸水套水污过多),气体经过阀(1)刮削或重新镗铣气缸,经过研磨修理磨损、拉伤的气缸,并更换加大的活塞、活塞环,重新进行装配(2)刮研气缸盖与气缸体结合面或更换气缸垫(3)保证合适的冷却水,不使气缸超过规定的温度室进入气缸时形成预热,影响排气量(4)活塞与气缸配合不当,间隙过大,形成漏气,影响排气量(4)对检修的压缩机镗铣气缸后,要装配合适的活塞、活塞环2.吸.排气阀的故障(1)吸.排气阀装配不当,彼此的位置相互弄错,不但影响排气量,还会引起压力在各级中重新分配,温度也有变化(2)阀座和阀片之间掉入金属碎片或其他杂物,关闭不严,形成漏气,影响排气量,影响级间压力和温度(3)阀座和阀片接触不严,形成漏气,影响排气量(4)吸气阀弹簧不适当,弹力过强则吸气时开启迟缓,弹力太弱则吸气终了时关闭不及时,影响排气量(1)应立即更正装错的吸、排气阀(2)分别检查吸、排气阀,若吸气阀盖发热,则吸气阀有故障,其它各阀也照此方法检查,检查出问题后拆开气阀修理(3)刮研接触面,或更换新的阀座、阀片(4)检查弹簧,按出厂规定的弹簧弹力选择使用弹簧(5)更换折断的弹簧(5)吸气阀弹簧折断,压缩时也会产生关闭不严和不及时现象,影响排气量(6)阀座与阀片磨损,密封不严,形成漏气,影响排气量(7)吸气开启高度不够,气体流速加快,阻力增大,影响排气量(8)在往气体上阀口处装配气阀时,没有装正而漏气(9)阀弹簧卡住或倾斜,使阀片关闭不严(10)气阀结碳过多,影响开、关(11)排气量减少,排气阀盖特别热,这是排气阀有故障(12)排气量减少,中间冷却器中的压力下降,低于正常压力(由压力表上看出),同时在前级气缸的(6)以研磨的方法加以修理或更换新的阀座、阀片(7)调整升程开启高度(8)详细检查在装配吸、排气阀座与气缸体上阀口处装置是否正确,如有装偏时,重新装正(9)把弹簧取出来倒个头或换新的(10)打开气阀清洗结碳(11)把排气阀盖特别热的那个拆开检查修理(12)前级气缸的排气阀有故障,把前级气缸上发热的排气阀拆开检查修理,并要同时检查垫片是否损坏或没有垫好(13)后级气缸的排气阀有故障,把后级气缸发热的排气阀拆开检查排气阀盖发热(13)排气量减少,中间冷却器中的压力高于正常压力,后级气缸的排气阀盖发热(14)排气量减少,中间冷却器中的压力高于正常压力,但是前级气缸的排气阀并不特别发热,而后级气缸的吸气阀发热,说明后级吸气阀发生故障(15)排气量减少,但是前、后级气阀盖不过分发热。