电力电子DC-AC逆变讲解
- 格式:ppt
- 大小:1.81 MB
- 文档页数:37
DC/AC逆变器,DC/AC逆变器的基本原理背景知识:DC/AC逆变技术能够实现直流电能到交流电能的转换,可以从蓄电池、太阳能电池等直流电能变换得到质量较高的、能满足负载对电压和频率要求的交流电能。
DC/AC逆变技术在交流电机的传动、不间断电源(UPS)、变频电源、有源滤波器、电网无功补偿器等许多场合得到了广泛的应用。
DC/AC逆变技术的基本原理是通过半导体功率开关器件(例如SCR,GTO,GTR,IGBT 和功率MOSFET模块等)的开通和关断作用,把直流电能变换成交流电能,因此是一种电能变换装置。
由子是通过半导体功率开关器件的开通和关断来实现电能转换的,因此转换效率比较高。
但转换输出的波形却很差,是含有相当多谐波成分的方波。
而多数应用场合要求逆变器输出的是理想的正弦波,因此如何利用半导体功率开关器件的开通和关断的转换,使逆变器输出正弦波和准正弦波就成了DC/AC逆变器技术发展中的一个主要问题。
基本原理:常用逆变器主电路的基本形式有两种分类方法:按照相数分类,可以分为单相和三相;按照直流侧波形和交流侧波形分类,可以分为电压型逆变器和电流型逆变器。
具体如下:DC/AC逆变器按拓扑结构划分,分为Buck型DC/AC逆变器,Boost型DC/AC逆变器,Buck-Boost型DC/AC逆变器。
1,Buck型DC/AC逆变器Buck型DC/AC逆变器电路基本拓扑如图所示。
采用了两组对称的Buck电路,负载跨接在两个Buck变换器的输出端,并以正弦的方式调节Buck变换器的输出电压,进行DC/AC的变换。
它包括直流供电电源Vm,输出滤波电感L1和L2,功率开关管S1-S4 。
滤波电容C1和C2,续流二极管D1-D4,以及负载电阻R。
通过滑模控制,使输出电容电压V1和V2随参考电压的变化而变化,从而使两个Buck变换器各产生一个有相同直流偏置的正弦波输出电压,并且V1和V2在相位上互差180度。
由于负载跨接在K和代的两端,则DC/AC变换器的输出电压玲为如下式所示的正弦波,图2所示即为逆变器的基本工作原理。
第三章逆变控制器的组成及工作原理DC-AC变换结构:DC-AC全桥变换的基本原理如上图所示,Ud为直流电压,V1,V2,V3,V4为可控开关。
当V1,V4导通V2,V3断开时,负载端电压Us为上正下负。
反之,当V2,V3导通V1,V4断开时,负载端电压Us为下正上负。
Spwm调制介绍随着逆变器控制技术的发展,电压型逆变器出现了多种变压、变频控制方法。
目前采用较多的是正弦脉宽调制调制技术,即 SPWM 控制技术。
SPWM(Sinusoidal Pulse Width Modulation)技术,是指调制信号正弦化的 PWM技术。
由于其具有开关频率固定、输出电压只含有固定频率的高次谐波分量、滤波器设计简单等一系列优点,SPWM 技术已成为目前应用最为广泛的逆变用 PWM 技术。
SPWM (正弦脉宽调制)应用于正弦波逆变器主要基于采样控制理论中的一个结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上,效果基本相同。
图3-1是将正弦波的半个周期分成等宽(π/N)的 N个脉冲,(b)是N个宽度不等的矩形脉冲,但矩形中点与正弦等分脉冲中点重合,并且矩形脉冲的面积和相应正弦脉冲面积相等。
图3-1 数字PWM控制基本原理SPWM 技术按工作原理可以分为单极性调制和双极性调制。
单极性调制的原理如图 3-2(a),其特点是在一个开关周期内两只功率管以较高的开关频率互补开关,保证可以得到理想的正弦输出电压;另两只功率管以较低的输出电压基波频率工作,从而在很大程度上减少了开关损耗。
但并不是固定其中以个桥臂始终工作在低频,而是每半个周期切换工作,即同一桥臂在前半个周期工作在低频,而后半个周期工作在高频。
这样可以使两个桥臂的工作状态均衡,器件使用寿命更均衡,有利于增加可靠性。
2) 双极性调制双极性调制的原理如3-2(b),其特点是四个功率管都工作在较高的频率(载波频率),虽然能够=得到较好的输出电压波形,但是其代价是产生了较大的开关损耗。
dc ac逆变器电路图dcac逆变器电路图这里介绍的逆变器(见图)主要由MOS场效应管,普通电源变压器构成。
其输出功率取决于MOS场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。
下面介绍该逆变器的工作原理及制作过程。
电路图工作原理这里我们将详细介绍这个逆变器的工作原理。
方波信号发生器(见图3)这里采用六反相器CD4069构成方波信号发生器。
电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率工作原理这里我们将详细介绍这个逆变器的工作原理。
方波信号发生器(见图3)这里采用六反相器CD4069构成方波信号发生器。
电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。
电路的振荡是通过电容C1充放电完成的。
其振荡频率为f=1/2.2RC。
图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz。
由于元件的误差,实际值会略有差异。
其它多余的反相器,输入端接地避免影响其它电路。
场效应管驱动电路由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V。
如图4所示。
MOS场效应管电源开关电路。
这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。
图5MOS 场效应管也被称为MOS FET,既Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。
它一般有耗尽型和增强型两种。
本文使用的为增强型MOS 场效应管,其内部结构见图5。
它可分为NPN型PNP型。
NPN型通常称为N沟道型,PNP型也叫P沟道型。
第五章直流-交流(DC-AC)变换一、概述DC-AC变换器(无源逆变器)V1、V4和V2、V3轮流切换导通,u o为交变电压(1)电网换流 利用电网电压换流,只适合可控整流、有源逆变电路、交—交变频器(2)负载谐振式换流 利用负载回路中形成的振荡特性,使电流自动过零,只要负载 电流超前于电压时间大于t q ,即能实现换流,分串,并联。
VT 2、VT 3通后,u 0经VT 2、VT 3反向加在VT 1、VT 4上1. 晶闸管逆变电路的换流方式换流概念:直流供电时,如何使已通元件关断VT 1导通,C 充电左(-)右(+),为换流做准备; VT 2导通,C 上电压反向加至VT 1,换流,C 反向充电。
(3)强迫换流附加换流环节,任何时刻都能换流直接耦合式强迫换流2. 逆变电路的类型(1)电压源型逆变器电流源型逆变器电流源型逆变器功率流向控制(3)两类逆变器的比较比较点电流型电压型直流回路滤波环节电抗器电容器输出电压波形决定于负载,当负载为异步电动机时,近似为正弦波矩形输出电流波形矩形近似正弦波,有较大谐波分量输出动态阻抗大小续流二极管不需要需要过流及短路保护容易困难线路结构较简单较复杂适用范围适用于单机拖动,频繁加减速下运行,需经常反向的场合适用于多机供电不可逆拖动,稳速工作,快速性不高的场合二、强迫换流式逆变电路1.串联二极管式电流源型逆变器结构VT1~VT6为晶闸管C1~C6为换流电容VD1~VD6为隔离二极管2.工作过程(换流机理)(1)换流前运行阶段(2)晶闸管换流与恒流充、放电阶段(3)二极管换流阶段(4)换流后运行阶段diL dt引起三、逆变器的多重化技术及多电平化1. 多重化技术改善方波逆变的输出波形:中小容量:SPWM大容量:多重化技术思路:用阶梯波逼近正弦波(1)串联多重化特点:适合于电压源型逆变器二重化三相电压源逆变器单个三相逆变电路输出电压波形桥Ⅱ输出电压相位比桥Ⅰ滞后30º桥Ⅰ输出变压器△/Y,桥Ⅱ输出变压器△/Z变比为1变比为13二重化逆变电路输出电压比单个逆变电路输出电压台阶更多、更接近正弦。