高数第七章(11)差分方程的概念.
- 格式:ppt
- 大小:941.50 KB
- 文档页数:32
第七节 差分方程对连续型变量而言,我们常常回导致到微分方程的问题. 对离散型变量将导致一类的问题.一、差分的定义定义 设)(x y y =是一个函数, 自变量从x 变化到x +1, 这时函数的增量记为)()1(x y x y y x -+=∆, 我们称这个量为)(x y 在点x 步长为1的一阶差分,简称为)(x y 的一阶差分. 为了方便我们也记)(),1(1x y y x y y x x =+=+,即x x x y y y -=∆+1.称x x x x x x x x y y y y y y y y +-=---=∆∆+++++121122)()()(为)(x y 二阶差分,简记为x y 2∆.同样记)(2x y ∆∆为x y 3∆,并称为三阶差分.一般记)(1x n x n y y -∆∆=∆,称为n 阶差分.且有i n x i ni i n x ny C y -+=-=∆∑)1(0. 性质: 当a,b,C 是常数, y x 和z x 是函数时,(1) Δ(C )=0;(2) Δ(Cy x )= C Δ(y x );(3) Δ(ay x + b z x )= a Δy x + b Δ z x ;(4) Δ(y x z x )= z x+1Δy x +y x Δ z x = y x+1Δz x +z x Δy x ;(5) 1111++++∆-∆=∆-∆=⎪⎪⎭⎫ ⎝⎛∆x x x x x x x x x x x x x x z z z y y z z z z y y z z y .例 已知),0(≠=x x y x α求Δ(y x ).解 Δ(y x )= ααx x -+)1(.特别, 当n 为正整数时, Δ(y x )= i n n i i n x C-=∑1, 阶数降了一阶.推论 若m, ,n 为正整数时, m,> n P(x)为n 次多项式,则0)(=∆x P m .例 已知),10(≠<=a a y x x 求Δ(y x ).解 Δ(y x )= )1(1-=-+a a a a x x x .二、差分方程定义 设是含有未知函数差分的等式,称为差分方程。
差分方程知识点总结一、差分方程的概念差分方程是指用差分运算符号(Δ)表示的方程。
差分运算符Δ表示的是某一变量在两个连续时间点的变化量。
差分方程通常用于描述离散时间下的变化规律,比如时间序列、离散动力系统等。
二、常见的差分方程1. 一阶线性差分方程一阶线性差分方程的一般形式为:y(t+1) - y(t) = a*y(t) + b,其中a和b为常数。
一阶线性差分方程常常用于描述某一变量在不同时间点之间的线性变化规律。
2. 二阶线性差分方程二阶线性差分方程的一般形式为:y(t+2) - 2*y(t+1) + y(t) = a*y(t) + b,其中a和b为常数。
二阶线性差分方程通常用于描述某一变量在不同时间点之间的二阶线性变化规律。
3. 线性非齐次差分方程线性非齐次差分方程的一般形式为:y(t+1) - a*y(t) = b,其中a和b为常数。
线性非齐次差分方程通常用于描述某一变量在不同时间点之间的线性变化规律,并且受到外部条件的影响。
4. 滞后差分方程滞后差分方程的一般形式为:y(t+1) = f(y(t)),其中f为某一函数。
滞后差分方程通常用于描述某一变量在不同时间点之间的非线性变化规律。
5. 差分方程组差分方程组是指由多个差分方程组成的方程组。
差分方程组通常用于描述多个变量之间的变化规律,比如混合动力系统、多变量时间序列等。
三、差分方程的解法1. 特征根法特征根法是解一阶或二阶线性差分方程的一种常用方法。
通过求解特征方程,可以求得差分方程的通解。
2. 递推法递推法是解一阶或二阶非齐次差分方程的一种常用方法。
通过递推关系,可以求得差分方程的特解。
3. Z变换法Z变换法是解一阶或二阶差分方程的一种常用方法。
通过对差分方程进行Z变换,可以将其转换为等价的代数方程,然后求解其解。
4. 数值解法对于复杂的差分方程,通常采用数值解法求解。
数值解法包括Euler法、Runge-Kutta法、递推法等,通过迭代计算逼近差分方程的解。
高考数学中的差分方程及相关概念在高中数学中,我们学习了许多数学知识,其中差分方程是一个比较重要的概念,在高考中也经常出现。
那么差分方程是什么?有什么用处呢?一、什么是差分方程差分方程,也叫离散微积分方程,是指用有限差分代替导数的微分方程,其本质是一种递推式。
差分方程的一般形式为y[n+1] = f(y[n], y[n-1], ... , y[n-k]),其中y[n]是第n个离散点的函数值,y[n-k]是第n-k个离散点的函数值。
差分方程是一种离散的动态系统,可以用来描述各种离散事件的演化。
它广泛应用于数学、物理、工程、经济等领域中各种动态系统的建模与分析。
二、差分方程的分类根据差分方程的阶数及系数对n的依赖关系,差分方程可以分为以下几类:1.一阶线性差分方程一阶线性差分方程的一般形式为y[n+1] = ay[n] + b,其中a和b 是常数。
这种差分方程的解可以用递推公式y[n] = ay[n-1] + b求得。
2.二阶线性差分方程二阶线性差分方程的一般形式为y[n+2] + ay[n+1] + by[n] = f[n],其中a、b是常数,f[n]是已知函数。
这种差分方程的解可以用特征根法或借助于已知解求得通解。
3.非线性差分方程非线性差分方程的一般形式为y[n+1] = f(y[n]),其中f(y[n])是非线性函数。
这种差分方程的解一般需要运用迭代法或数值解法求解。
三、差分方程的应用差分方程是一种用来描述具有离散状态的系统演化的工具,它在许多领域中都有着广泛的应用,例如:1.物理学差分方程在物理学中应用广泛,例如:在天体物理学中,用差分方程描述行星运动的轨迹、研究宇宙星系的演化等;在量子力学中,用差分方程描述粒子的运动状态等。
2.经济学差分方程在经济学中也有着广泛的应用,例如:在货币政策分析中,用差分方程描述货币供应量、利率与物价水平等的变化;在经济增长模型中,用差分方程描述经济增长的变化趋势等。
差分方程基本概念和方法考察定义在整数集上的函数,(),,2,1,0,1,2,n x f n n ==--函数()n x f n =在n 时刻的一阶差分定义为:1(1)()n n n x x x f n f n ∆+=-=+-函数()n x f n =在n 时刻的二阶差分定义为一阶差分的差分:21212n n n n n n x x x x x x ∆∆∆+++=-=-+同理可依次定义k 阶差分k n x ∆定义1.含有自变量n ,未知函数n x 以及n x 的差分2,,n n x x ∆∆的函数方程, 称为常差分方程,简称为差分方程。
出现在差分方程中的差分的最高阶数,称为差分方程的阶。
k 阶差分方程的一般形式为(,,,,)0k n n n F n x x x ∆∆=其中(,,,,)k n n n F n x x x ∆∆为,,,k n n n n x x x ∆∆的已知函数,且至少k n x ∆要在式中出现。
定义2.含有自变量n 和两个或两个以上函数值1,,n n x x +的函数方程,称为(常)差分方程,出现在差分方程中的未知函数下标的最大差,称为差分方程的阶。
k 阶差分方程的一般形式为1(,,,,)0n n n k F n x x x ++=其中1(,,,,)n n n k F n x x x ++为1,,,n n n k n x x x ++的已知函数,且n x 和n k x +要在式中一定要出现。
定义3.如果将已知函数()n x n ϕ=代入上述差分方程,使其对0,1,2,n =成为恒等式,则称()n x n ϕ=为差分方程的解。
如果差分方程的解中含有k 个独立的任意常数,则称这样的解为差分方程的通解,而通解中给任意常数以确定值的解,称为差分方程的特解。
例如: 设二阶差分方程 21n n n F F F ++=+,可以验证12nnn F c c =+⎝⎭⎝⎭是其通解,其满足条件121F F ==的特解为:n n n F ⎡⎤⎥=-⎥⎝⎭⎝⎭⎦。
差分方程的定义差分方程的定义差分方程是一种数学方程,用于描述离散化的动态系统。
它可以被视为微分方程的离散版本,通常用于模拟和预测离散时间下的自然现象和工程问题。
一、差分方程的基本概念1.1 差分方程的定义差分方程是一种数学方程,描述一个序列在相邻时间点之间如何变化。
它通常采用递推公式表示,其中当前时刻的值是前一时刻值和其他参数的函数。
1.2 差分方程的分类根据差分方程中所涉及到变量的类型,可以将其分类为一阶差分方程、二阶差分方程等。
此外,还可以根据其递推公式中所包含的项数进行分类。
1.3 差分运算符在差分方程中,通常使用差分运算符来表示序列在相邻时间点之间发生了什么变化。
最常见的两个运算符是前向差分运算符和后向差分运算符。
二、解差分方程2.1 差分方程求解方法求解差分方程需要使用递推法或转换法等方法。
其中递推法是最基本也是最常见的方法,它通过逐个计算序列中每个时间点的值来得到整个序列的解。
2.2 初始条件和边界条件在求解差分方程时,需要给出初始条件和边界条件。
初始条件是指序列在起始时刻的值,而边界条件则是指序列在某些时间点上的限制。
三、应用领域3.1 差分方程在物理学中的应用差分方程广泛应用于物理学中,例如描述运动物体的速度、加速度等问题。
此外,在热力学和电磁学等领域也有广泛的应用。
3.2 差分方程在经济学中的应用差分方程在经济学中也有广泛的应用,例如描述市场需求和供给之间的关系、货币政策对通货膨胀率的影响等问题。
3.3 差分方程在工程学中的应用差分方程在工程学中也有广泛的应用,例如描述机器人运动轨迹、控制系统稳定性等问题。
四、总结差分方程是一种重要的数学工具,在模拟和预测离散时间下自然现象和工程问题时具有重要作用。
其基本概念包括差分方程定义、分类以及差分运算符等。
求解差分方程需要使用递推法或转换法等方法,并给出初始条件和边界条件。
差分方程在物理学、经济学和工程学等领域都有广泛的应用。
差分方程基本概念和方法差分方程是一种描述离散系统行为的数学模型,与微分方程类似。
差分方程的解描述了系统的演化过程,这使得差分方程在多个领域中有广泛的应用,如物理、生物、经济学等。
差分方程的基本概念:1.序列:差分方程的解是一个序列,即有序数字集合。
通常用{x_n}表示,其中n是自然数。
2.差分算子:在差分方程中,通常使用差分算子△来表示序列的递推关系。
差分算子△的作用是将序列中的元素转化为下一个元素。
3.初始条件:差分方程还需要初始条件。
初始条件是差分方程的一个边界条件,用来确定序列的起点。
差分方程的一般形式为:x_{n+1}=f(x_n)其中,x_{n+1}是序列中的下一个元素,f是一个给定的函数。
差分方程的解法可以分为两种方法:定解条件法和递推法。
1.定解条件法:此方法适用于已知一些递推关系的问题。
定解条件法的基本思想是找到满足差分方程的序列,并给出初始条件来解决方程。
步骤如下:a.先猜测一个可能的递推关系,并将其代入差分方程中。
b.解得的递推关系与给定的初始条件进行比较,如果相符,则该递推关系为差分方程的解。
c.如果猜测的递推关系与初始条件不符,可以再次猜测一个新的递推关系,继续以上步骤,直到找到满足条件的递推关系。
2.递推法:此方法适用于无法直接找到递推关系的情况。
递推法的基本思想是通过已知的序列元素来逐步计算下一个元素,以构造出满足差分方程的序列。
步骤如下:a.给出初始条件,即序列的前几项。
b.根据初始条件计算出序列的下一项,再利用这一项计算出下下一项,以此类推。
c.最终得到满足差分方程的序列。
需要注意的是,差分方程的解不一定存在,且可能存在多个解。
此外,解的形式可能是递推公式、闭式公式或者一个序列。
总之,差分方程是一种离散系统行为的数学模型,差分方程的解描述了系统的演化过程。
通过定解条件法和递推法,我们可以解决差分方程问题并得到满足条件的解。