高一数学必修三统计习题
- 格式:doc
- 大小:69.00 KB
- 文档页数:3
一、选择题1.2015年年岁史诗大剧《芈月传》风靡大江南北,影响力不亚于以前的《甄嬛传》.某记者调查了大量《芈月传》的观众,发现年龄段与爱看的比例存在较好的线性相关关系,年龄在[]10,14,[]15,19,[]20,24,[]25,29,[]30,34的爱看比例分别为10%,18%,20%,30%,%t .现用这5个年龄段的中间值x 代表年龄段,如12代表[]10,14,17代表[]15,19,根据前四个数据求得x 关于爱看比例y 的线性回归方程为( 4.68)%y kx =-,由此可推测t 的值为( )A .33B .35C .37D .392.为了了解某同学的数学学习情况,对他的6次数学测试成绩进行统计,作出的茎叶图如图所示,则下列关于该同学数学成绩的说法正确的是( )A .中位数为83B .众数为85C .平均数为85D .方差为193.某农业科学研究所分别抽取了试验田中的海水稻以及对照田中的普通水稻各10株,测量了它们的根系深度(单位:cm ),得到了如图所示的茎叶图,其中两竖线之间表示根系深度的十位数,两边分别是海水稻和普通水稻根系深度的个位数,则下列结论中不正确的是( )A .海水稻根系深度的中位数是45.5B .普通水稻根系深度的众数是32C .海水稻根系深度的平均数大于普通水稻根系深度的平均数D .普通水稻根系深度的方差小于海水稻根系深度的方差4.在一段时间内,某种商品的价格x (元)和销售量y (件)之间的一组数据如下表: 价格x (元) 4 6 8 10 12 销售量y (件)358910若y 与x 呈线性相关关系,且解得回归直线ˆˆˆybx a =+的斜率0.9b ∧=,则a ∧的值为( ) A .0.2 B .-0.7 C .-0.2 D .0.75.已知一组数据的茎叶图如图所示,则该组数据的平均数为( )A .85B .84C .83D .816.某班有50名学生,在一次考试中统计出平均分数为70,方差为75,后来发现有2名学生的成绩统计有误,学生甲实际得分是80分却误记为60分,学生乙实际得分是70分却误记为90分,更正后的平均分数和方差分别是( ) A .70和50B .70和67C .75和50D .75和677.下列说法正确的是( )①设某大学的女生体重(kg)y 与身高(cm)x 具有线性相关关系,根据一组样本数据(,)(1,2,3,,)i i x y i n =,用最小二乘法建立的线性回归方程为0.8585.71y x =- ,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;②关于x 的方程210(2)x mx m -+=>的两根可分别作为椭圆和双曲线的离心率; ③过定圆C 上一定点A 作圆的动弦AB ,O 为原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;④已知F 是椭圆22143x y +=的左焦点,设动点P 在椭圆上,若直线FP 的斜率大于3,则直线OP (O 为原点)的斜率的取值范围是3333(,)(,)22-∞-.A .①②③B .①③④C .①②④D .②③④8.甲、乙两名同学在五次数学考试中的成绩统计如下面的茎叶图所示,若甲、乙两人的平均成绩分别是1x ,2x ,观察茎叶图,下列结论正确的是( )A .12x x <,乙比甲成绩稳定B .12x x >,乙比甲成绩稳定C .12x x <,甲比乙成绩稳定D .12x x >,甲比乙成绩稳定9.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为310.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用x (万元) 2 3 4 5 销售额y (万元)25374454根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为( ) A .61.5万元B .62.5万元C .63.5万元D .65.0万元11.甲、乙两名选手参加歌手大赛时,5名评委打的分数用如图所示的茎叶图表示,s 1,s 2分别表示甲、乙选手分数的标准差,则s 1与s 2的关系是( ).A .s 1>s 2B .s 1=s 2C .s 1<s 2D .不确定12.设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位D .y 平均减少2个单位二、填空题13.已知一组数1,2,m ,6,7的平均数为4,则这组数的方差为______.14.随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,则在[50,60)年龄段抽取的人数为______.15.已知某8个数据的平均数为5,方差为3,现又加入一个新数据5,此时这9个数据的方差为______.16.由茎叶图可知,甲组数据的众数和乙组数据的极差分别是__________.17.某高中有高一学生320人,高二学生400人,高三学生360人.现采用分层抽样调查学生的视力情况.已知从高一学生中抽取了8人,则三个年级一共抽取了__________人。
一、选择题1.我校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一、高二、高三各年级抽取的人数分别为 ( ) A .45,75,15 B .45,45,45C .45,60,30D .30,90,152.工人月工资y (元)与劳动生产率x (千元)变化的回归直线方程为=50+80x ,下列判断不正确的是( )A .劳动生产率为1000元时,工资约为130元B .工人月工资与劳动者生产率具有正相关关系C .劳动生产率提高1000元时,则工资约提高130元D .当月工资为210元时,劳动生产率约为2000元3.若一组数据12345,,,,x x x x x 的平均数为5,方差为2,则12323,23,23x x x ---,4523,23x x --的平均数和方差分别为( )A .7,-1B .7,1C .7,2D .7,84.采用系统抽样的方法从400人中抽取20人做问卷调查,为此将他们随机编号为1,2,3…,400.适当分组后在第一组采用随机抽样的方法抽到的号码为5,则抽到的20人中,编号落入区间[201,319]内的人员编号之和为( ) A .600B .1225C .1530D .18555.在2018年1月15日那天,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价元和销售量件之间的一组数据如下表所示: 价格99.510.5 11销售量 1186 5由散点图可知,销售量与价格之间有较强的线性相关关系,其线性回归方程是,且,则其中的( ) A .10B .11C .12D .10.56.2018年12月12日,某地食品公司对某副食品店某半月内每天的顾客人数进行统计得到样本数据的茎叶图如图所示,则该样本的中位数是( )A .45B .47C .48D .637.某班有50名学生,在一次考试中统计出平均分数为70,方差为75,后来发现有2名学生的成绩统计有误,学生甲实际得分是80分却误记为60分,学生乙实际得分是70分却误记为90分,更正后的平均分数和方差分别是( ) A .70和50B .70和67C .75和50D .75和678.总体由编号为01,02,,29,30的30个个体组成,利用下面的随机数表选取4个个体.选取的方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出的第4个个体的编号为( ).7806 6572 0802 6314 2947 1821 98003204 9234 4935 3623 4869 6938 7481A .02B .14C .18D .299.已知某8个数的平均数为3,方差为2,现加入一个新数据3,此时这9个数的平均数为x ,方差为2s ,则( ) A .3x =,22s < B .3x =,22s > C .3x >,22s <D .3x >,22s >10.已知x ,y 的取值如表: x 2 6 7 8y若x ,y 之间是线性相关,且线性回归直线方程为,则实数a 的值是A .B .C .D .11.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是()0 1nn P P k =+(1k >-),n P 为预测人口数,0P 为初期人口数,k 为预测期内年增长率,n 为预测期间隔年数.如果在某一时期有10k -<<,那么在这期间人口数 A .呈下降趋势B .呈上升趋势C .摆动变化D .不变12.为了考察两个变量x 和y 之间的线性相关性,甲.乙两个同学各自独立地做10次和15次试验,并且利用线性回归方法,求得回归直线分别为l 1和l 2.已知在两个人的试验中发现对变量x 的观测数据的平均值恰好相等,都为s ,对变量y 的观测数据的平均值也恰好相等,都为t.那么下列说法正确的是( ) A .直线l 1和l 2有交点(s ,t)B .直线l 1和l 2相交,但是交点未必是点(s ,t)C .直线l 1和l 2由于斜率相等,所以必定平行D .直线l 1和l 2必定重合二、填空题13.如图是某地区2018年12个月的空气质量指数以及相比去年同期变化幅度的数据统计图表,根据图表,下面叙述正确的是______.①2月相比去年同期变化幅度最小,3月的空气质量指数最高;②第一季度的空气质量指数的平均值最大,第三季度的空气质量指数的平均值最小; ③第三季度空气质量指数相比去年同期变化幅度的方差最小; ④空气质量指数涨幅从高到低居于前三位的月份为6、8、4月. 14.已知数据1x ,2x ,…,10x 的方差为1,且()()()222123222x x x -+-+-()2102170x ++-=,则数据1x ,2x ,…,10x 的平均数是________.15.下列说法正确的是__________(填序号)(1)已知相关变量(),x y 满足回归方程ˆ24yx =-,若变量x 增加一个单位,则y 平均增加4个单位(2)若,p q 为两个命题,则“p q ∨”为假命题是“p q ∧”为假命题的充分不必要条件(3)若命题0:p x R ∃∈,20010x x -+<,则:p x R ⌝∀∉,210x x -+≥(4)已知随机变量()22X N σ~,,若()0.32P X a <=,则()40.68P X a >-=16.某地区共有4所普通高中,这4所普通高中参加2018年高考的考生人数如下表所示: 学校 A 高中B 高中C 高中D 高中参考人数80012001000600现用分层抽样的方法在这4所普通高中抽取144人,则应在D 高中中抽取的学生人数为_______.17.下图是华师一附中数学讲故事大赛7位评委给某位学生的表演打出的分数的茎叶图.记分员在去掉一个最高分和一个最低分后,算得平均分为91分,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是____________.18.已知x,y的取值如下表:x2345y 2.2 3.8 5.5 6.5从散点图分析,y与x线性相关,且回归方程为y=1.46x+a,则实数a的值为________.,上,其频率分布直方图如19.某班60名学生参加普法知识竞赛,成绩都在区间[40100]图所示,则成绩不低于60分的人数为___.20.总体由编号为01,02, ,29,30的30个个体组成.利用下面的随机数表选取样本,选取方法是从随机数表第2行的第6列数字开始由左到右依次选取两个数字,则选出来的第3个个体的编号为__________.三、解答题21.某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:年份2007200820092010201120122013年份代号x1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9 x(2)预测该地区2015年农村居民家庭人均纯收入.附:77211134.4,140i ii i i x yx ====∑∑.回归直线的斜率和截距的最小二乘法估计公式分别为:1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-22.据统计某品牌服装专卖店一周内每天获取得纯利润y (百元)与每天销售这种服装件数x (百件)之间有如下一组数据.该专卖店计划在国庆节举行大型促销活动以提高该品牌服装的知名度,为了检验服装的质量,现从厂家购进的500件服装中抽取60件进行检验,(服装进货编号为001-500). (1)利用随机数表抽样本时,如果从随机数表第8行第2列的数开始按三位数连贯向右读取,试写出最先检测的5件服装的编号;(2)求该专卖店每天的纯利y 与每天销售件数x 之间的回归直线方程.(精确到0.01) (3)估计每天销售1200件这种服装时获多少纯利润? 附表:(随机数表第7行至第9行)84421 75331 57245 50688 77047 44767 21763 35025 83921 20676 63016 47859 16955 56719 98105 07185 12867 35807 44395 23879 33211 23429 78645 60782 52420 74438 15510 01342 99660 27954 参考数据:721280i i x==∑,72145309i i y ==∑,713487i i i x y ==∑.参考公式:1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-23.某校2011年到2019年参加“北约”“华约”考试而获得加分的学生人数(每位学生只能参加“北约”“华约”中的一种考试)可以通过以下表格反映出来.(为了方便计算,将2011年编号为1,2012年编号为2,依此类推)(1)求这九年来,该校参加“北约”“华约”考试而获得加分的学生人数的平均数和方差; (2)根据最近五年的数据,利用最小二乘法求出y 与x 的线性回归方程,并依此预测该校2020年参加“北约”“华约”考试而获得加分的学生人数.(最终结果精确至个位) 参考数据:回归直线的方程是y bx a =+,其中()()()1221121ni iinniniiiiiix y nx ybnx xxxyxxy====-=---=-∑∑∑∑,a y bx=-.95293i iix y==∑,925255iix==∑.24.2018年中秋节到来之际,某超市为了解中秋节期间月饼的销售量,对其所在销售范围内的1000名消费者在中秋节期间的月饼购买量(单位:g)进行了问卷调查,得到如下频率分布直方图:()1求频率分布直方图中a的值;()2以频率作为概率,试求消费者月饼购买量在600g1400g~的概率;()3已知该超市所在销售范围内有20万人,并且该超市每年的销售份额约占该市场总量的5%,请根据这1000名消费者的人均月饼购买量估计该超市应准备多少吨月饼恰好能满足市场需求(频率分布直方图中同一组的数据用该组区间的中点值作代表)?25.近年来,国家对西部发展出台了很多优惠政策,为了更有效促进发展,需要对一种旧能源材料进行技术革新,为了了解此种材料年产量x(吨)对价格y(万元/吨)和年利润z(万元)的影响,有关部门对近五年此种材料的年产量和价格统计如表,若 5.5y=.x12345 y8764c (1)求表格中c的值;(2)求y关于x的线性回归方程y bx a=+;(3)若每吨该产品的成本为2万元,假设该产品可全部卖出,预测当年产量为多少时,年利润z取得最大值?参考公式:1221ni iiniix y nx ybx nx==-=-∑∑,a y bx=-.26.在社会实践活动中,“求知”小组为了研究某种商品的价格x(元)和需求量y(件)之间的关系,随机统计了11月1日至11月5日该商品价格和需求量的情况,得到如下资料:日期 11月1日 11月2日 11月3日 11月4日 11月5日 x (元) 14 16 18 20 22 y (件)1210743该小组所确定的研究方案是:先从这五天中选取2天数据,用剩下的3天数据求线性回归方程,再对被选取的2天数据进行检验.(1)若选取的是11月1日与11月5日两天数据,请根据11月2日至11月4日的数据,求出y 关于x 的线性回归方程y bx a =+;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2件,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?参考公式:()()()1122211nniii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】因为共有学生2700,抽取135,所以抽样比为1352700,故各年级分别应抽取135900452700⨯=,1351200602700⨯=,135600302700⨯=,故选C. 2.C解析:C 【解析】试题分析:根据线性回归方程=50+80x 的意义,对选项中的命题进行分析、判断即可. 解:根据线性回归方程为=50+80x ,得;劳动生产率为1000元时,工资约为50+80×1=130元,A 正确; ∵=80>0,∴工人月工资与劳动者生产率具有正相关关系,B 正确;劳动生产率提高1000元时,工资约提高=80元,C 错误;当月工资为210元时,210=50+80x ,解得x=2,此时劳动生产率约为2000元,D 正确. 故选C .考点:线性回归方程.3.D解析:D 【分析】根据平均数的性质,方差的性质直接运算可得结果. 【详解】令23(1,2,,5)i i y x i =-=1234555x x x x x x ++++==,1234523232323232310375x x x x x y x -+-+-+-+-∴==-=-=,(也可()(23)2()32537E y E x E x =-=-=⨯-=) ()()()2y 232428D D x D x =-==⨯=故选:D 【点睛】本题主要考查方差及平均值的性质的简单应用,属于中档题.4.C解析:C 【分析】根据系统抽样所得的编号为等差数列,再用等差数列的求和公式求解即可. 【详解】由系统抽样的定义可知,在区间[201,319]内抽取的编号数构成以205为首项,公差为20的等差数列,并且项数为6,所以6(61)62052015302⨯-⨯+⨯=. 故选:C 【点睛】本题考查系统抽样的知识,考查数据处理能力和应用意识.5.A解析:A 【解析】 【分析】由表求得,,代入回归直线方程,联立方程组,即可求解,得到答案.【详解】由题意,5家商场的售价元和销售量件之间的一组数据, 可得,,又由回归直线的方程,则,即,又因为,解得,故选A.【点睛】本题主要考查了回归直线方程的特征及其应用,其中解答中熟记回归直线方程的特征,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.6.A解析:A【解析】【分析】由茎叶图确定所给的所有数据,然后确定中位数即可.【详解】各数据为:122031323445454547474850506163,最中间的数为:45,所以,中位数为45.本题选择A选项.【点睛】本题主要考查茎叶图的阅读,中位数的定义与计算等知识,意在考查学生的转化能力和计算求解能力.7.B解析:B【解析】【分析】根据平均数、方差的概念表示出更正前的平均数、方差和更正后的平均数、方差,比较其异同,然后整体代入即可求解.【详解】设更正前甲,乙,…的成绩依次为a1,a2,…,a50,则a1+a2+…+a50=50×70,即60+90+a3+…+a50=50×70,(a1﹣70)2+(a2﹣70)2+…+(a50﹣70)2=50×75,即102+202+(a3﹣70)2+…+(a50﹣70)2=50×75.更正后平均分为x=150×(80+70+a3+…+a50)=70;方差为s2=150×[(80﹣70)2+(70﹣70)2+(a3﹣70)2+…+(a50﹣70)2]=150×[100+(a3﹣70)2+…+(a50﹣70)2]=150×[100+50×75﹣102﹣202]=67.故选B.【点睛】本题考查平均数与方差的概念与应用问题,是基础题.8.D解析:D 【解析】分析:根据随机数表法则取数:取两个数,不小于30的舍去,前面已取的舍去. 详解:从表第1行5列,6列数字开始由左到右依次选取两个数字中小于30的编号为:08,02,14,29.∴第四个个体为29. 选D .点睛:本题考查随机数表,考查对概念基本运用能力.9.A解析:A 【分析】由题意计算出加入新数据后的平均数,然后比较方差 【详解】()18138x x +⋯+=, ()181339x x +⋯++=, 3x ∴=,由方差的定义可知加入新数据3,样本数据会变得更加稳定 故22s < 故选A 【点睛】本题主要考查了加入数据后平均数和方差的变化,代入公式计算出结果,较为基础10.B解析:B 【解析】 【分析】根据所给的两组数据,做出横标和纵标的平均数,写出这组数据的样本中心点,根据线性回归方程一定过样本中心点,得到线性回归直线一定过的点的坐标. 【详解】 根据题意可得,,由线性回归方程一定过样本中心点,.【点睛】本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题.11.A解析:A 【分析】可以通过n P 与0P 之间的大小关系进行判断. 【详解】当10k -<<时,()011011nk k <+<<+<,, 所以()001nn P P k P =+<,呈下降趋势. 【点睛】判断变化率可以通过比较初始值与变化之后的数值之间的大小来判断.12.A解析:A 【分析】由题意知,两个人在试验中发现对变量x 的观测数据的平均值都是s ,对变量y 的观测数据的平均值都是t ,所以两组数据的样本中心点是(s ,t ),回归直线经过样本的中心点,得到直线l 1和l 2都过(s ,t ). 【详解】∵两组数据变量x 的观测值的平均值都是s , 对变量y 的观测值的平均值都是t , ∴两组数据的样本中心点都是(s ,t ) ∵数据的样本中心点一定在线性回归直线上, ∴回归直线l 1和l 2都过点(s ,t ) ∴两条直线有公共点(s ,t ) 故选A . 【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x 与Y 之间的关系,这条直线过样本中心点.二、填空题13.①②③【分析】根据折线的变化率得到相比去年同期变化幅度、升降趋势逐一验证即可【详解】根据折现统计图可得2月相比去年同期变化幅度最小3月的空气质量指数最高故①正确;第一季度的空气质量指数的平均值最大第解析:①②③根据折线的变化率,得到相比去年同期变化幅度、升降趋势,逐一验证即可. 【详解】根据折现统计图可得,2月相比去年同期变化幅度最小,3月的空气质量指数最高,故①正确;第一季度的空气质量指数的平均值最大,第三季度的空气质量指数的平均值最小,故②正确;第三季度空气质量指数相比去年同期变化幅度的方差最小,故③正确; 空气质量指数涨幅从高到低居于前三位的月份为6、8、9月,故④错误, 故答案为:①②③. 【点睛】本题考查条形统计图和折线图的应用,重点考查数据分析,从表中准确获取信息是关键,属于中档题型.14.或6【分析】由数据…的方差为1且把所给的式子进行整理两式相减得到关于数据的平均数的一元二次方程解方程即可【详解】数据…的方差为1①②将②-①得解得或故答案为:或6【点睛】本题主要考查一组数据的平均数解析:2-或6. 【分析】由数据1x ,2x ,…,10x 的方差为1,且()()()()2222123102222170x x x x -+-+-++-=,把所给的式子进行整理,两式相减,得到关于数据的平均数的一元二次方程,解方程即可. 【详解】数据1x ,2x ,…,10x 的方差为1,()()()()22221231010x x x x x x x x∴-+-+-++-=,()()22221210121010210x x x x x x x x ∴++++-+++=,()222212101010x x xx∴+++-=,①()()()()2222123102222170x x x x -+-+-++-=, ()()22212101210440170x x x x x x ∴+++-++++=,()22212104040170x x x x ∴+++-+=,②将②-①得24120x x --=,解得2x =-,或6x =, 故答案为:2-或6. 【点睛】本题主要考查一组数据的平均数的求法,解题时要熟练掌握方差的计算公式的灵活运用,属于中档题.15.【分析】(1)由回归方程知相关变量与成负相关(2)为假命题则同时为假命题为假命题则中至少有一假命题(3)全称命题与特称命题转换条件不变结论变相反(4)由正态曲线的对称性可解【详解】(1)由回归方程知 解析:(2)【分析】(1)由回归方程ˆ24yx =-知相关变量y 与x 成负相关,(2) “p q ∨”为假命题则,p q 同时为假命题,“p q ∧”为假命题则,p q 中至少有一假命题(3)全称命题与特称命题转换条件不变,结论变相反 (4)由正态曲线的对称性可解. 【详解】(1)由回归方程ˆ24yx =-知相关变量y 与x 成负相关,若变量x 增加一个单位,则y 平均增加4-个单位,故(1)错误(2) “p q ∨”为假命题则,p q 同时为假命题,“p q ∧”为假命题则,p q 中至少有一假命题,所以“p q ∨”为假命题是“p q ∧”为假命题的充分不必要条件是正确的.故(2)正确 (3)全称命题与特称命题转换条件不变,结论变相反,故(3)错误 (4)由正态曲线的对称性知,随机变量()22X N σ~,,若()0.32P X a <=,对称轴是2x = ,则()40.32P X a >-=,故(4)错误. 故答案为; (2) 【点睛】利用正态曲线的对称性求概率是常见的正态分布应用问题.解题的关键是利用对称轴=x μ确定所求概率对应的随机变量的区间与已知概率对应的随机变量的区间的关系,必要时可借助图形判断.对于正态分布2()N μσ,,由=x μ是正态曲线的对称轴知:(1)对任意的a ,有()()P X a P X a μμ<->+=; (2)()001;()P X x P X x -≥=<;(3)()()=()P a X b P X b P X a <<<≤-.16.24【分析】计算出高中人数占总人数的比例乘以得到在高中抽取的学生人数【详解】应在高中抽取的学生人数为【点睛】本小题主要考查分层抽样考查频率的计算属于基础题解析:24 【分析】计算出D 高中人数占总人数的比例,乘以144得到在D 高中抽取的学生人数. 【详解】应在D 高中抽取的学生人数为6001442480012001000600⨯=+++.【点睛】本小题主要考查分层抽样,考查频率的计算,属于基础题.17.1【分析】因为题目中要去掉一个最高分所以对进行分类讨论然后结合平均数的计算公式求出结果【详解】若去掉一个最高分和一个最低分86分后平均分为不符合题意故最高分为94分去掉一个最高分94分去掉一个最低分解析:1 【分析】因为题目中要去掉一个最高分,所以对x 进行分类讨论,然后结合平均数的计算公式求出结果 【详解】若4x >,去掉一个最高分()90x +和一个最低分86分后,平均分为()1899291949291.65++++=,不符合题意,故4x ≤,最高分为94分,去掉一个最高分94分,去掉一个最低分86分后,平均分()18992909192915x +++++=,解得1x =,故数字x 为1 【点睛】本题考查了由茎叶图求平均值,理解题目意思运用平均数计算公式即可求出结果,注意分类讨论18.—061【分析】根据所给条件求出把样本中心点代入回归直线方程可以得到关于的方程解出即可得到答案【详解】根据题意可得则这组数据的样本中心点是代入到回归直线方程故答案为【点睛】本题考查了线性回归方程解题解析:—0.61 【分析】根据所给条件求出x ,y ,把样本中心点()x y ,代入回归直线方程 1.4ˆ6ˆyx a +=,可以得到关于ˆa的方程,解出即可得到答案 【详解】 根据题意可得23453.54x +++== 2.2 3.8 5.5 6.54.54y +++==则这组数据的样本中心点是()3.54.5,代入到回归直线方程 1.4ˆ6ˆyx a += 4.5 1.46 3.ˆ5a∴⨯+= ˆ0.61a=- 故答案为0.61- 【点睛】本题考查了线性回归方程,解题的关键是线性回归方程一定过样本中心点,这是求解线性回归方程的步骤之一,是线性回归方程考查的常见题型,体现了回归直线方程与样本中心19.30【解析】由题意可得:则成绩不低于分的人数为人解析:30 【解析】 由题意可得:()400.0150.0300.0250.0051030⨯+++⨯=则成绩不低于60分的人数为30人20.【解析】依次选取两个数字为237593211504……所以选出来的第个个体的编号为15 解析:15【解析】依次选取两个数字为23,75,93,21,15,04,…… 所以选出来的第3个个体的编号为15.三、解答题21.(1)0.5 2.3y x =+;(2)6800元. 【分析】(1)根据表中数据计算出4x =, 4.3y =,再结合参考数据利用公式即可计算出,b a ,进而得出线性回归方程; (2)将9x =代入即可预测. 【详解】解:(1)由表可得:123456747++++++==x ,2.93.3 3.64.4 4.85.2 5.94.37y ++++++==,又77211134.4,140i ii i i x yx ====∑∑,71722217134.474 4.30.5140747i ii i i x y x yb x x==--⨯⨯∴===-⨯-∑∑ 4.30.54 2.3a y bx ∴=-=-⨯=y ∴关于x 的线性回归方程为0.5 2.3y x =+;(2)由(1)可得:0.5 2.3y x =+,∴当9x =时,0.59 2.3 6.8y =⨯+=,即该地区2015年农村居民家庭人均纯收入约为6800元.本题考查线性回归方程的求法,考查由线性回归方程进行预测,属于基础题. 22.(1)301,169,105,071,286;(2) 4.7551.36y x =+;(3)10836元. 【分析】(1)按照规则直接读取随机数表即可得解;(2)由题中数据可得x 、y ,代入公式即可得b 、a ,即可得解; (3)将12x =代入线性回归方程中,即可得解. 【详解】(1)由随机数表可得,最先检测的5件服装的编号为:301,169,105,071,286; (2)由题意345678967x ++++++==,6669738189909155977y ++++++==,所以717222155973487767 4.75280767i ii ii x y x yb xx==--⨯⨯===-⨯-∑∑,5596 4.7551.367a y bx -⨯≈=-=, 所以该专卖店每天的纯利y 与每天销售件数x 之间的回归直线方程为 4.7551.36y x =+; (3)当12x =时, 4.751251.36108.36y =⨯+=(百元), 故可估计每天销售1200件这种服装时获纯利润10836元. 【点睛】本题考查了随机数表的应用及线性回归方程的求解与应用,考查了运算求解能力,属于中档题. 23.(1)6;689;(2) 1.3 1.1y x =-,12人. 【分析】(1)由表格中的数据,利用平均数和方差的公式,即可求解;(2)由表中近五年的数据,利用公式,求得ˆˆ,ba ,求得回归直线方程,代入10x =,即可作出结论. 【详解】(1)由表格中的数据,利用平均数的计算公式,可得2354578101069++++++++=.由方差的公式,可得()()()2222168263610699s ⎡⎤=-+-++-=⎣⎦.(2)由表中近五年的数据知,7x =,8y =,95293i ii x y==∑,925255i i x ==∑,9592255293578ˆ 1.32555495i ii i i x y xybx x==--⨯⨯===-⨯-∑∑,又a y bx =-,所以8 1.37 1.1a =-⨯=-, 故y 与x 的线性回归方程为 1.3 1.1y x =-, 当10x =时, 1.310 1.111.912y =⨯-=≈,故估计该校2020年参加“北约”“华约”考试而获得加分的学生有12人. 【点睛】本题主要考查了平均数与方差的计算,以及回归直线方程的求解及应用,其中解答中认真审题,根据公式准确计算是解答的关键,着重考查运算与求解能力. 24.(1)a 0.001=;(2)0.62;(3)12.08吨 【分析】(1)由频率分布直方图列出方程能求出a .(2)由频率分布直方图先求出满足题意的频率,即得概率.(3)由频率分布直方图先求出人均月饼购买量,由此能求出该超市应准备12.08吨月饼恰好能满足市场需求. 【详解】()1由()0.00020.00055a 0.00050.000254001++++⨯=,解得a 0.001=. ()2消费者月饼购买量在600g 1400g ~的频率为: ()0.000550.0014000.62+⨯=,∴消费者月饼购买量在600g 1400g ~的概率为0.62.()3由频率分布直方图得人均月饼购买量为:()4000.00028000.0005512000.00116000.000520000.000254001208g⨯+⨯+⨯+⨯+⨯⨯=,∴2012085%1208⨯⨯=万克12.08?=吨, ∴该超市应准备12.08吨月饼恰好能满足市场需求. 【点睛】本题考查用样本的频率分布估计总体分布及识图的能力,求解的重点是对题设条件及直方图的理解,了解直方图中每个小矩形的面积的意义,是中档题.25.(1)2.5;(2) 1.49.7y x =-+;(3)年产量约为3.5吨时,年利润z 取得最大值. 【分析】(1)由均值概念求得c ;(2)根据所给数据计算系数即得;(3)利用(2)中回归直线方程作出预估值进行计算利润后,再由二次函数性质得最大值. 【详解】 (1)8764 5.55cy ++++==,解得 2.5c =;(2)1234535x ++++==,5118275 2.568.5i ii x y==⨯+⨯++⨯=∑,1222222168.553 5.51.4(125)53ni ii ni i x y nx yb x nx==--⨯⨯===-+++-⨯-∑∑,5.5(1.4)39.7a y bx =-=--⨯=,所以回归直线方程为 1.49.7y x =-+.(3)由(2)2(2)(1.49.7) 1.49.7z y x x x x x =-=-+=-+, 所以9.73.52( 1.4)x =-≈⨯-(吨)利润最大.【点睛】本题考查线性回归直线方程,考查回归方程的实际应用.考查学生的数据处理能力,运算求解能力.26.(1) 1.534y x =-+;(2)详见解析. 【分析】(1)利用表中数据,分别求得:,x y ,再利用公式求得,b a ,然后写出回归直线方程即可. (2)根据(1)中的回归直线方程,令14x =, 22x =求得相应的y 值,再与实际值结合误差要求比较即可. 【详解】 由表中数据得: ()()1116182018,10747,33x y =++==++= 311610187204366i ii x y==⨯+⨯+⨯=∑,322221161820980ii x==++=∑,3132221336631871.59803183i ii i i x y x yb x x==--⨯⨯===--⨯-∑∑,()7 1.51834a y bx =-=--⨯=,所以y 关于x 的线性回归方程是 1.534y x =-+.(2)当14x =时, 1.5143413y =-⨯+=,131212-=<, 当22x =时, 1.522341y =-⨯+=,1322-=≤, 所以(1)中所得到的线性回归方程是可靠的. 【点睛】本题主要考查回归直线方程的求法以及应用,还考查了运算求解的能力,属于中档题.。
高中数学必修三--统计卷I(选择题)一、选择题(本题共计 12 小题,每题 5 分,共计60分,)1. 下列调查中,适合用全面调查方式的是()A.了解某班学生“50米跑”的成绩B.了解一批灯泡的使用寿命C.了解一批炮弹的杀伤半径D.了解一批袋装食品是否含有防腐剂2. 某单位200名职工中,年龄在50岁以上占20%,40∼50岁占30%,40岁以下占50%;现要从中抽取40名职工作样本.若用系统抽样法,将全体职工随机按1∼200编号,并按编号顺序平均分为40组(1∼5号,6∼10号,…,196∼200号).若第5组抽出的号码为22,则第8组抽出的号码应是①;若用分层抽样方法,则40岁以下年龄段应抽取②人.①②两处应填写的数据分别为()A.82,20B.37,20C.37,4D.37,503. 某学校有教师160人,其中有高级职称的32人,中级职称的56人,初级职称的72人.现抽取一个容量为20的样本,用分层抽样法抽取的中级职称的教师人数应为()A.4B.6C.7D.94. 2013年中国政府提出共建丝绸之路经济带,受到了世界各国的高度重视和积极响应,并提出打造海上丝绸之路的总体规划,被简称为“一带一路”.经调查,沿线某地区自2013年到2019年经过6年的经济新建设,经济收入增加了3倍.为更好地了解该地区经济收入变化情况,统计了该地区建设前后经济收入构成比例,得到如下表格:则2019年与2013年经济收入相比较,下面结论中正确的是( )A.石油出口收入减少B.其他收入增加了三倍以上C.百姓购物收入增加了三倍D.百姓购物收入与教育文化收入的总和超过了经济收入的一半的样本,若采用系统抽样,则分段的间隔k为()A.50B.60C.30D.406. 如图是某社区工会对当地企业工人月收入情况进行一次抽样调查后画出的频率分布直方图,其中第二组月收入在[1.5, 2)千元的频数为300,则此次抽样的样本容量为()A.1000B.2000C.3000D.40007. 一样本的所有数据分组及频数如下:[−0.5, 0.5),C50;[0.5, 1.5),C51;[1.5, 2.5),C52;[2.5, 3.5),C53;[3.5, 4.5),C54;[4.5, 5.5),C55.则在[1.5, 4.5)的频率为()A.5 8B.12C.2532D.15168. 2019年,全国各地区坚持稳重求进工作总基调,经济运行总体平稳,发展水平迈上新台阶,发展质量稳步上升,人民生活福祉持续增进,全年最终消费支出对国内生产总值增长的贡献率为57.8%.下图为2019年居民消费价格月度涨跌幅度:(同比=本期数−去年同期数去年同期数×100%,环比=本期数−上期数上期数×100%),下列结论中不正确的是()A.2019年第三季度的居民消费价格一直都在增长B.2018年7月份的居民消费价格比同年8月份要低一些C.2019年全年居民消费价格比2018年涨了2.5%以上D.2019年3月份的居民消费价格全年最低A.数据4、4、6、7、9、6的众数是4B.一组数据的标准差是这组数据的方差的平方C.数据3,5,7,9的标准差是数据6、10、14、18的标准差的一半D.频率分布直方图中各小长方形的面积等于相应各组的频数10. 某中学就到校的方式问题对初三年级的所有学生进行了一次调查,并将调查结果制作了扇形统计图,已知步行的人数为60,则初三学生乘公交车的人数为( )A.60B.78C.132D.911. 绘制1000人的寿命直方图时,若组距均为20,60∼80岁范围的纵轴高为0.03,则60∼80岁的人数为()A.300B.500C.600D.80012. 以下两个图表是2019年初的4个月我国四大城市的居民消费价格指数(上一年同月=100)变化图表,给出下列结论:其中正确的是()(注:图表一每个城市的条形图从左到右依次是1、2、3、4月份;图表二每个月份的条形图从左到右四个城市依次是北京、天津,上海、重庆)①3月份四个城市之间的居民消费价格指数与其它月份相比增长幅度较为平均;②4月份仅有三个城市居民消费价格指数超过102;③仅有天津市从年初开始居民消费价格指数的增长呈上升趋势;④四个月的数据显示北京市的居民消费价格指数增长幅度波动较大.A.①②B.②④C.①②④D.①③④卷II(非选择题)二、填空题(本题共计 6 小题,每题 5 分,共计30分,)13. 某城市收集并整理了该市2018年1月份至10月份各月最低气温与最高气温(单位:∘C)的数据,绘制了下面的折线图.已知该市的各月最低气温与最高气温具有较好的线性关系,则根据该折线图,下列结论错误的是_______.①最低气温与最高气温为正相关;②10月的最高气温不低于5月的最高气温;③月温差(最高气温减最低气温)的最大值出现在1月;④最低气温低于0∘C的月份有4个.14. 为了估计鱼塘中鱼的尾数,先从鱼塘中捕出2000尾鱼,并给每条尾鱼做上标记(不影响存活),然后放回鱼塘,经过适当的时机,再从鱼塘中捕出600尾鱼,其中有标记的鱼为40尾,根据上述数据估计该鱼塘中鱼的尾数为________.15. 已知数据:x,y,10,11,9,这组数据的平均值10,方差为2,则|x−y|=________.16. 抽样统计甲,乙两个城市连续5天的空气质量指数(AQI),数据如下:17. 某校从参加高一年级期末考试的学生中抽出60名学生,并统计了他们的数学成绩(成绩均为整数且满分为100分),把其中不低于50分的分成五段[50, 60),[60, 70),[70, 80),[80, 90),[90, 100]然后画出如下图的部分频率分布直方图.观察图形的信息,可知数学成绩低于50分的学生有________人;估计这次考试数学学科的及格率(60分及以上为及格)为________;18. 为了调查某野生动物保护区内某种野生动物的数量,调查人员逮到这种动物1200只作过标记后放回,一星期后,调查人员再次逮到该种动物1000只,其中作过标记的有100只,估算保护区有这种动物________只.三、解答题(本题共计 5 小题,每题 12 分,共计60分,)19. 已知甲、乙、丙三个车间一天内生产的产品分别是150件、130件、120件,为了掌握各车间产品质量情况,从中取出一个容量为40的样本,该用什么抽样方法?简述抽样过程.20. 某机构为了了解不同年龄的人对一款智能家电的评价,随机选取了50名购买该家电的消费者,让他们根据实际使用体验进行评分.(1)设消费者的年龄为x ,对该款智能家电的评分为y .若根据统计数据,用最小二乘法得到y 关于x 的线性回归方程为y ̂=1.2x +40,且年龄x 的方差为s x 2=14.4,评分y 的方差为s y 2=22.5.求y 与x 的相关系数r ,并据此判断对该款智能家电的评分与年龄的相关性强弱.(2)按照一定的标准,将50名消费者的年龄划分为“青年”和“中老年”,评分划分为“ 好评”和“差评”,整理得到如下数据,请判断是否有99%的把握认为对该智能家电的评价与年龄有关.附:线性回归直线y ̂=b ̂x +a ̂的斜率b̂=∑(x i −x ¯)n i=1(y i −y ¯)∑(x i −x ¯)2n i=1相关系数r =∑(x −x ¯)n (y −y ¯)√∑(x i −x )2n i=1∑(y i −y )2n i=1.独立性检验中的K 2=n(ad−bc)2(a+b)(a+c)(b+d)(c+d), 其中n =a +b +c +d .临界值表:21. 某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,⋯,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑x i 20i=1=60 ,∑y i 20i=1=1200, ∑(x i −x ¯)220i=1=80, ∑(y i −y ¯)220i=1=9000,∑(x i −x ¯)20i=1(y i −y ¯)=800.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,⋯,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物短盖面积差异很大,为提高样本的代表性以获得附:相关系数: r =∑(x −x ¯)n (y −y ¯)√∑(x i −x )2n i=1∑(y i −y )2n i=1√2≈1.414.22. 某个服装店经营某种服装,在某周内获纯利y (元),与该周每天销售这种服装件数x 之间的一组数据关系见表:i i−1i i−1x i 7i−1y i =3487. (1)求x ¯,y ¯;参考公式:b ̂=∑=n ∑(ni−1x i −x ¯)2∑n ∑x i 2n i−1−nx−2,a ̂=y ¯−b ̂x ¯(2)画出散点图;(3)判断纯利y 与每天销售件数x 之间是否线性相关,如果线性相关,求出回归方程.23. 某网站欲调查网民对当前网页的满意程度,在登录的所有网民中,收回有效帖子共50000份,其中持各种态度的份数如下表所示:为了了解网民的具体想法和意见,以便决定如何更改才能使网页更完美,打算从中抽选500份,为使样本更具代表性,每类中各应抽选出多少份?并且写出具体操作过程.参考答案与试题解析高中数学必修三--统计一、选择题(本题共计 12 小题,每题 5 分,共计60分)1.【解答】A、了解某班学生“50米跑”的成绩,是精确度要求高的调查,适于全面调查;B、C、D了解一批灯泡的使用寿命,了解一批炮弹的杀伤半径,了解一批袋装食品是否含有防腐剂,都是具有破坏性的调查,无法进行普查,故不适于全面调查.2.【解答】解:若用系统抽样,则样本间隔为5,若第5组抽出的号码为22,则第8组抽出的号码应22+15=37,若用分层抽样方法,则40岁以下年龄段应抽取40×50%=20,故选:B.3.【解答】解:∵中级职称的56人,∴抽取一个容量为20的样本,用分层抽样法抽取的中级职称的教师人数为56160=n20,解得n=7,即抽取的中级职称的教师人数应为7人.故选C.4.【解答】解:假设建设前经济收入为a,则建设后经济收入为4a,所以石油出口收入在建设前为0.49a,建设后为4a×0.33=1.32a,石油出口收入较之前增加;其他收入在建设前为0.06a,建设后为0.24a,即其他收入增加了三倍;百姓购物收入建设前为0.3a,建设后为0.38×4a=1.52a,即百姓购物收入增加了四倍以上;教育文化收入建设前为0.1a,建设后为0.15×4a=0.6a,百姓购物收入与教育文化收入的总和为1.52a+0.6a=2.12a>2a,超过了经济收入的一半.故选D.5.【解答】解:由题意知本题是一个系统抽样问题,总体中个体数是3000,样本容量是100,根据系统抽样的步骤,得到分段的间隔k=3000100=30,解:由频率的意义可知,从左到右各个小组的频率之和是1,同时每小组的频率=小组的频数样本容量.∴[1.5, 2)长方形的面积为0.3.第二组月收入在[1.5, 2)千元的频数为300,所以此次统计的样本容量是300÷0.3=1000.故选A.7.【解答】解:由题意知本题共有C50+C51+C52+C53+C54+C55=25个数据,在[1.5, 4.5)的频数是C52+C53+C54∴在[1.5, 4.5)的频率为:C52+C53+C5425=2532,故选C.8.【解答】解:A,从环比看,2019年第三季度的居民消费价格一直都在增长,故A正确;B,从同比看,2018年7月份的居民消费价格比同年8月份要低一些,故B正确;C,从同比看,1.7+1.5+2.3+2.5+2.7+2.7+2.8+2.8+3.0+3.8+4.5+4.512=2.9,所以2019年全年居民消费价格比2018年涨了2.5%以上,故C正确;D,从环比看,2019年1月份的居民消费价格最低,故D错误.故选D.9.【解答】解:数据4、4、6、7、9、6的众数是4和6,故A错误;一组数据的标准差是这组数据的方差的算术平方根,故B错误;∵3,5,7,9的平均数=14(3+5+7+9)=6,∴3,5,7,9的标准差=√14[(3−6)2+(5−6)2+(7−6)2+(9−6)2]=√5.∵6、10、14、18的平均数=14(6+10+14+18)=12,∴6、10、14、18的标准差√14[(6−12)2+(10−12)2+(14−12)2+(18−12)2]= 2√5,∴数据3,5,7,9的标准差是数据6、10、14、18的标准差的一半,故C正确;频率分布直方图中各小长方形的面积等于相应各组的频率,故D错误.故选:C.10.【解答】解:调查的学生总数是:60÷20%=300(人),则乘公交车的人数为:300×(1−20%−33%−3%)=300×44%=132(人).解:因为:组距均为20,60∼80岁范围的纵轴高为0.03,所以;频率为:0.03×20=0.6.∴60∼80岁的人数为:0.6×1000=600.故选:C.12.【解答】解:根据题目所给信息,①,3月份四个城市之间的居民消费价格指数与其它月份相比增长幅度较为大,不平均,①错误;②,4月份仅有三个城市居民消费价格指数超过102;③,天津市和上海从年初开始居民消费价格指数的增长呈上升趋势,③错误;④,四个月的数据显示北京市的居民消费价格指数增长幅度波动较大,④正确.故正确的有②④.故选B.二、填空题(本题共计 6 小题,每题 5 分,共计30分)13.【解答】解:由该市2018年1月份至10月份各月最低气温与最高气温(单位:∘C)的数据的折线图,得:在①中,最低气温与最高气温为正相关,故①正确;在②中,10月的最高气温不低于5月的最高气温,故②正确;在③中,月温差(最高气温减最低气温)的最大值出现在1月,故③正确;在④中,最低气温低于0∘C的月份有3个,故④错误.故答案为:④.14.【解答】解:根据题意,设该鱼塘中鱼的尾数为x,则;x 2000=60040,解得x=30000;∴估计该鱼塘中鱼的尾数为30000.故答案为:30000.15.【解答】解:由平均值10得,x+y+10+11+9=50,则x+y=20,①由方差为2得,2=15[(x−10)2+(y−10)2+0+1+1],即(x−10)2+(y−10)2=8,②设x=10+t,y=10−t,代入②2t2=8,解得t=±2,∴|x−y|=2|t|=4,故答案为:4.16.甲城市连续5天的空气质量指数是109,111,132,118,110;它的极差是132−109=23,且数据的波动性较大些;乙城市连续5天的空气质量指数是110,111,115,132,112;它的极差是132−110=22,且数据的波动性较小些;由此得出,空气质量指数较为稳定(方差较小)的城市是乙.故答案为:乙.17.【解答】解:由图可知,成绩在[50, 60)的频率为0,015×10=0.15,成绩在[60, 70)的频率为0.015×10=0.15,成绩在[70, 80)的频率为0.030×10=0.3,成绩在[80, 90)的频率为0.025×10=0.25,成绩在[90, 100]的频率为0.005×10=0.05,∴成绩不低于50分的频率为0.15+0.15+0.3+0.25+0.05=0.9,成绩不低于60分的频率为0.15+0.3+0.25+0.05=0.75∴成绩低于50分的频率为为1−0.9=0.1∵共有60名学生,∴成绩低于50分的学生数为60×0.1=6,这次考试数学学科的及格率为75%.故答案为6;75%18.【解答】解:设保护区有这种动物有x只,则由题意可得1200x =1001000,求得x=12000,故答案为12000.三、解答题(本题共计 5 小题,每题 12 分,共计60分)19.【解答】解:由于三个车间的产品有差别,故应采用分层抽样的方法,先计算抽样比:k=40150+130+120=110,再计算各车间内抽取样本的件数:甲车间:150×110=15,乙车间:130×110=13,丙车间:120×110=12,再分析使用简单随机抽样的办法在各个车间中抽取样本,最后终成一个样本.20.【解答】解:(1)相关系数r=∑(x−x¯)50(y−y¯)√∑(xi−x)250i=1∑(y i−y)250i=1;=∑(x i−x¯)50i=1(y i−y¯)∑(x i−x¯)250i=1√∑(xi−x¯)250i=1√∑(yi−y)250i=1=b̂⋅√50s x2√50s y =1.2×1215=0.96.故对该款智能家电的评分与年龄的相关性较强.(2)由列联表可得K 2=50×(8×6−20×16)224×26×28×22≈9.624>6.635.故有99%的把握认为对该智能家电的评价与年龄有关.21.【解答】解:(1)由题意可知,1个样区这种野生动物数量的平均数=120020=60,故这种野生动物数量的估计值=60×200=12000;(2)由参考公式得 ,r =∑(x i −x ¯)n i=1(y i −y ¯)√∑(x i −x )2n i=1∑(y i −y )2n i=1=80×9000=62≈0.94 ;(3)由题意可知,各地块间植物短盖面积差异很大,因此在调查时,先确定该地区各地块间植物短盖面积大小并且由小到大排序, 每十个分为一组,采用系统抽样的方法抽取20个地块作为样区进行样本统计. 22.【解答】解:(1)x ¯=17(3+4+5+6+7+8+9)=6, y ¯=17(66+69+73+81+89+90+91)=5597≈79.86;(2)把所给的7对数据写成对应的点的坐标,在坐标系中描出来,得到散点图.(3)∵ 3×66+4×69+5×73+6×81+7×89+8×90+9×91=3487,32+42+52+62+72+82+92=280,∴ b =3487−7×6×5597280−7×36=4.75,a =5597−6×4.75≈51.36,故线性回归方程为y =4.75x +51.36.23.【解答】解:每个个体被抽到的频率是 50050000=1100,10800×1100=108,12400×1100=124,15600×1100=156,11200×1100=112,每类中各应抽选出有效帖子的份数:很满意的108份,满意的124份,一般的156份,不满意的112份.在很满意的有效帖子中采用简单随机抽样的方法随机抽取108份,在满意的有效帖子中采用简单随机抽样的方法随机抽取124份,在一般的有效帖子中采用简单随机抽样的方法随机抽取156份,在不满意的有效帖子中采用简单随机抽样的方法随机抽取112份.。
高一数学必修3第二章统计测试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高一数学必修3第二章统计测试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高一数学必修3第二章统计测试题及答案(word版可编辑修改)的全部内容。
数学必修3 第二章 统计 测试题班级 姓名 学号 成绩第Ⅰ卷(选择题,共60分)一选择题:(本题共12小题,每小题5分,共60分)1。
对于随机抽样,个体被抽到的机会是 ( )A .相等B .不相等C .不确定D .与抽取的次数有关2。
用随机数表法从100名学生(男生25人)中抽取20人进行评教,某男生被抽取的机率是 ( )A .1001B .251C .51D .41 3.从N 个编号中抽取n 个号码入样,若采用系统抽样方法进行抽取,则分段间隔应为 ( )A .n N B .n C .⎥⎦⎤⎢⎣⎡n N D.1+⎥⎦⎤⎢⎣⎡n N 4. 有50件产品编号从1到50,现在从中抽取5件检验,用系统抽样确定所抽取的编号为 ( )A .5,10,15,20,25B .5,15,20,35,40C .5,11,17,23,29D .10,20,30,40,505.一个容量为20的样本数据,分组后组距与频数如下表:则样本在区间(-∞,50)上的频率为()A.0。
5 B.0.25 C.0。
6 D.0.76.用样本频率分布估计总体频率分布的过程中,下列说法正确的是 ( )A.总体容量越大,估计越精确 B.总体容量越小,估计越精确C.样本容量越大,估计越精确 D.样本容量越小,估计越精确7.对于两个变量之间的相关系数,下列说法中正确的是 ( )A.|r|越大,相关程度越大B.|r|()∈,0,|r|越大,相关程度越小,|r|越小,相关程度越大+∞C.|r|≤1且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小 D.以上说法都不对8.若样本x1+1,x2+1,…,x n+1的平均数为10,方差为2,则对于样本x1+2,x2+2,…,x n+2,下列结论正确的是( )A.平均数为10,方差为2 B.平均数为11,方差为3C.平均数为11,方差为2 D.平均数为14,方差为45发子弹,命中环数如下9.甲,乙两人在相同条件下练习射击,每人打则两人射击成绩的稳定程度是 ( )A .甲比乙稳定B .乙比甲稳定C .甲、乙的稳定程度相同D .无法进行比较10.已知一组数据为0,—1,x,15,4,6,且这组数据的中位数为5,则数据的众数为 ( )A .5B .6C .4D .5.511.在统计中,样本的方差可以近似地反映总体的( )A .平均状态B .分布规律C .波动大小D .最大值和最小值12.线性回归方程 a bx y += 必经过点 ( )A .(0,0)B .)0,(xC .),0(yD .),(y x二填空题:(本题共4小题,每小题5分,共20分)13.条形图用 来表示各取值的频率,直方图用 来表示频率.14.若数据x 1,x 2,x 3,…,x n 的平均数为x ,方差为S 2,则3x 1+5,3x 2+5,…,3x n +5的平均数和方差为 , 。
一、选择题1.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x 万 8.3 8.6 9.9 11.1 12.1 支出y 万5.97.88.18.49.8根据上表可得回归直线方程ˆˆˆybx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( ) A .12.68万元B .13.88万元C .12.78万元D .14.28万元2.某校举行演讲比赛,9位评委给选手A 打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若统计员计算无误,则数字x 应该是( )A .5B .4C .3D .23.已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则( ) A .270,75x s =< B .270,75x s => C .270,75x s ><D .270,75x s <>4.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x的回归方程类型的是( ) A .y a bx =+ B .2y a bx =+ C .e x y a b =+D .ln y a b x =+5.采用系统抽样的方法从400人中抽取20人做问卷调查,为此将他们随机编号为1,2,3…,400.适当分组后在第一组采用随机抽样的方法抽到的号码为5,则抽到的20人中,编号落入区间[201,319]内的人员编号之和为( ) A .600B .1225C .1530D .18556.下列说法正确的是( )①设某大学的女生体重(kg)y 与身高(cm)x 具有线性相关关系,根据一组样本数据(,)(1,2,3,,)i i x y i n =,用最小二乘法建立的线性回归方程为0.8585.71y x =- ,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;②关于x 的方程210(2)x mx m -+=>的两根可分别作为椭圆和双曲线的离心率; ③过定圆C 上一定点A 作圆的动弦AB ,O 为原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;④已知F 是椭圆22143x y +=的左焦点,设动点P 在椭圆上,若直线FP 的斜率大于3,则直线OP (O 为原点)的斜率的取值范围是3333(,)(,)282-∞-. A .①②③B .①③④C .①②④D .②③④7.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( )A .2,5B .5,5C .5,8D .8,88.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x (cm )174176176176178儿子身高y (cm )175175176177177则y 对x 的线性回归方程为A .y = x-1B .y = x+1C .y =88+12x D .y = 1769.为了了解某社区居民是否准备收看电视台直播的“龙舟大赛”,某记者分别从社区60~70岁,40~50岁,20~30岁的三个年龄段中的128,192,x 人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x 为( ) A .64B .96C .144D .16010.某校高一年级有学生1800人,高二年级有学生1500人,高三年级有1200人,为了调查学生的视力状况,采用分层抽样的方法抽取学生,若在抽取的样本中,高一年级的学生有60人,则该样本中高三年级的学生人数为( ) A .60B .50C .40D .3011.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是()0 1nn P P k =+(1k >-),n P 为预测人口数,0P 为初期人口数,k 为预测期内年增长率,n 为预测期间隔年数.如果在某一时期有10k -<<,那么在这期间人口数 A .呈下降趋势B .呈上升趋势C .摆动变化D .不变12.某校高中三个年级共有学生1050人,其中高一年级300人,高二年级350人,高三年级400人.现要从全体高中学生中通过分层抽样抽取一个容量为42的样本,那么应从高三年级学生中抽取的人数为 A .12B .14C .16D .18二、填空题13.东汉·王充《论衡·宜汉篇》:“且孔子所谓一世,三十年也.”,清代·段玉裁《说文解字注》:“三十年为一世.按父子相继曰世”.“一世”又叫“一代”,到了唐朝,为了避李世民的讳,“一世”方改为“一代”,当代中国学者测算“一代”平均为25年.另据美国麦肯锡公司的研究报告显示,全球家庭企业的平均寿命其实只有24年,其中只有约30%的家族企业可以传到第二代,能够传到第三代的家族企业数量为总量的13%,只有5%的家族企业在第三代后还能够继续为股东创造价值.根据上述材料,可以推断美国学者认为“一代”应为__________年.14.下列说法正确的是__________(填序号)(1)已知相关变量(),x y 满足回归方程ˆ24yx =-,若变量x 增加一个单位,则y 平均增加4个单位(2)若,p q 为两个命题,则“p q ∨”为假命题是“p q ∧”为假命题的充分不必要条件(3)若命题0:p x R ∃∈,20010x x -+<,则:p x R ⌝∀∉,210x x -+≥(4)已知随机变量()22X N σ~,,若()0.32P X a <=,则()40.68P X a >-=15.中医药是反映中华民族对生命、健康和疾病的认识,具有悠久历史传统和独特理论及技术方法的医药学体系,是中华文明的瑰宝.某科研机构研究发现,某品种中成药的药物成份A 的含量x (单位:g )与药物功效y (单位:药物单位)之间具有关系:(20)y x x =-.检测这种药品一个批次的5个样本,得到成份A 的平均值为8g ,标准差为2g ,估计这批中成药的药物功效的平均值为__________药物单位.16.为调查某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本.其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生2000人,则该校学生总人数是_______..17.玉林市有一学校为了从254名学生选取部分学生参加某次南宁研学活动,决定采用系统抽样的方法抽取一个容量为42的样本,那么从总体中应随机剔除的个体数目为__________.18.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.19.某高中有高一学生320人,高二学生400人,高三学生360人.现采用分层抽样调查学生的视力情况.已知从高一学生中抽取了8人,则三个年级一共抽取了__________人。
第二章 统计章末综合检测1一、选择题1.某学校有男、女学生各500名,为了解男、女学生在学习爱好与业余爱好方面是不是存在显著不同,拟从全部学生中抽取100名学生进行调查,那么宜采纳的抽样方式是( )A .抽签法B .随机数法C .系统抽样法D .分层抽样法2.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,那么有( )A .a>b>cB .b>c>aC .c>a>bD .c>b>a3.2021年某大学自主招生面试环节中,七位评委为一考生打出分数的茎叶图如图21,去掉一个最高分和一个最低分,所剩数据的平均数和方不同离为( )图21 A .84,4.84 B .84,1.6C .85,1.6D .85,44甲 乙 丙 丁平均环数x 8.6 8.9 8.9 8.2方差s 2 3.5 3.5 2.1 5.6A .甲B .乙C .丙D .丁5.某校数学教研组为了解学生学习数学的情形,采纳分层抽样的方式从高一600人、高二780人、高三n 人中,抽取35人进行问卷调查,已知高二被抽取的人数为13人,那么n =( )A .660B .720C .780D .8006气温/℃ 18 13 10 4 -1杯数/杯 24 34 39 51 63假设热茶杯数y 与气温( )A .y =x +6B .y =x +42C .y =-2x +60D .y =-3x +787.x 是x 1,x 2,…,x 100的平均数,a 是x 1,x 2,…,x 40的平均数,b 是x 41,x 42,…,x 100的平均数,那么以下各式正确的选项是( )A.x =40a +60b 100B.x =60a +40b 100C.x =a +bD.x =a +b 28.在抽查某产品的尺寸进程中,将其尺寸数据分成假设干组,[a ,b ]是其中一组,抽查出的个体数在该组上的频率是m,该组上的直方图的高为h,那么|a-b|=( )A.h·m B.hmC.mhD.与m,h无关9.图25是某县参加2021年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1,A2,…,A m(如A2表示身高(单位:cm)在[150,155)内的学生人数).图26是统计图中身高在必然范围内学生人数的一个算法流程图.现要统计身高在160~180 cm(含160 cm,不含180 cm)的学生人数,那么在流程图中的判定框内应填写的条件是( )图25图26A.i<9? B.i<8? C. i<7? D.i<6?10.图228是依照某班学生在一次数学考试中的成绩画出的频率散布直方图,假设80分以上为优秀,依照图形信息可知:这次考试的优秀率为( )图228A.25%B.30%C.35%D.40%11.一个社会调查机构就某地居民的月收入调查了10 000人,并依照所得数据得出样本频率散布直方图(如图229).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人顶用分层抽样方式抽出100人做进一步伐查,那么在[2500,3000)(单位:元)月收入段中应抽出________人.图229二、填空题12.以下四种说法中,①数据4,6,6,7,9,3的众数与中位数相等;②一组数据的标准差是这组数据的方差的平方;③数据3,5,7,9的标准差是数据6,10,14,18的标准差的一半;④频率散布直方图中各小长方形的面积等于相应各组的频数.其中正确的有__________(填序号).13.将参加数学竞赛的1000名学生编号如下:0001,0002,003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方式把编号分成50个部份,若是第一部份编号为0001,0002,0003,…,0020,第一部份随机抽取一个号码为0015,那么抽取的第40个号码为________.14.超速行驶已成为马路上最大杀手之一,已知某中段属于限速路段,规定通过该路段的汽车时速不超过80 km/h,不然视为违规.某天,有1000辆汽车通过了该路段,通过雷达测速取得这些汽车运行时速的频率散布直方图如图27,那么违规的汽车大约为________辆.图2715.已知回归直线斜率估量值为1.23,样本点中心为(4,5),那么回归方程是____________.三、解答题16.某校文学社开展“红五月”征文活动,作品上交时刻为5月2号~5月22号,评委从收到的作品中抽出200,经统计,其频率散布直方图如图2216.(1)样本中的作品落在[6,10)内的频数是多少?(2)估量众数、中位数和平均数各是多少?17.对甲、乙两名自行车赛手在相同条件下进行了8次测试,测得他们的最大速度(单位:m/s)的数据如下表:甲2738303735312450乙3329383428364345(1)画出茎叶图。
一、选择题1.工人月工资y(元)与劳动生产率x(千元)变化的回归直线方程为=50+80x,下列判断不正确的是()A.劳动生产率为1000元时,工资约为130元B.工人月工资与劳动者生产率具有正相关关系C.劳动生产率提高1000元时,则工资约提高130元D.当月工资为210元时,劳动生产率约为2000元2.某教研机构随机抽取某校20个班级,调查各班关注汉字听写大赛的学生人数,根据所得数据的茎叶图,以组距为5将数据分组成[)[)[)[)[)[)[)[]0,5,5,10,10,15,15,20,20,25,25,30,30,35,35,40时,所作的频率分布直方图如图所示,则原始茎叶图可能是()A.B.C.D.3.为了解一片经济树林的生长情况,随机测量了其中100株树木的底部周长(单位:cm),根据所得数据画出样本的频率分布直方图如图所示.那么在这100株树木中,底部周长小于110cm的株数n是()A.30 B.60C .70D .804.下表是某两个相关变量x ,y 的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程ˆ0.70.35yx =+,那么表中t 的值为( ) x 3 4 5 6 y2.5t44.5A .3B .3.15C .3.5D .4.55.采用系统抽样的方法从400人中抽取20人做问卷调查,为此将他们随机编号为1,2,3…,400.适当分组后在第一组采用随机抽样的方法抽到的号码为5,则抽到的20人中,编号落入区间[201,319]内的人员编号之和为( ) A .600B .1225C .1530D .18556. 2.5PM 是衡量空气质量的重要指标,我国采用世卫组织的最宽值限定值,即 2.5PM 日均值在335/g m μ以下空气质量为一级,在335~75/g m μ空气量为二级,超过375/g m μ为超标.如图是某地12月1日至10日的 2.5PM (单位:3/g m μ)的日均值,则下列说法不正确...的是( )A .这10天中有3天空气质量为一级B .从6日到9日 2.5PM 日均值逐渐降低C .这10天中 2.5PM 日均值的中位数是55D .这10天中 2.5PM 日均值最高的是12月6日7.2018年12月12日,某地食品公司对某副食品店某半月内每天的顾客人数进行统计得到样本数据的茎叶图如图所示,则该样本的中位数是( )A .45B .47C .48D .638.某班有50名学生,在一次考试中统计出平均分数为70,方差为75,后来发现有2名学生的成绩统计有误,学生甲实际得分是80分却误记为60分,学生乙实际得分是70分却误记为90分,更正后的平均分数和方差分别是( ) A .70和50B .70和67C .75和50D .75和679.为了了解某社区居民是否准备收看电视台直播的“龙舟大赛”,某记者分别从社区60~70岁,40~50岁,20~30岁的三个年龄段中的128,192,x 人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x 为( ) A .64 B .96C .144D .16010.若某中学高二年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数是( )A .90.5B .91.5C .90D .9111.已知某企业上半年前5个月产品广告投入与利润额统计如下: 月份1 2 3 4 5 广告投入(x 万元) 9.5 9.3 9.1 8.9 9.7 利润(y 万元)9289898793由此所得回归方程为7.5ˆyx a =+,若6月份广告投入10(万元)估计所获利润为( ) A .97万元B .96.5万元C .95.25万元D .97.25万元12.有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经统计,得到一个卖出的热饮杯数与当天气温的对比表: 温度℃ -5 0 4 7 12 15 19 23 27 31 36 热饮杯数15615013212813011610489937654根据上表数据确定的线性回归方程应该是( )A .ˆ 2.352147.767yx =-+ B .ˆ 2.352127.765yx =-+ C .ˆ 2.35275.501yx =+D .ˆ 2.35263.674yx =+ 二、填空题13.水痘是一种传染性很强的病毒性疾病,易在春天爆发.市疾控中心为了调查某校高年级学生注射水症疫苗的人数,在高一年级随机抽取5个班级,每个班抽取的人数互不相同,若把每个班级抽取的人数作为样本数据.已知样本平均数为7,样本方差为4,则样本数据中的最小值是______.14.某校共有学生1600人,其中高一年级400人.为了解各年级学生的兴趣爱好情况,用分层抽样的方法从中抽取容量为80的样本,则应抽取高一学生____人.15.上海市普通高中学业水平等级考成绩共分为五等十一级,各等级换算成分数如表所示: 等级A + AB + BB -C + CC -D + DE 分数 7067646158555249464340上海某高中2018届高三()1班选考物理学业水平等级考的学生中,有5人取得A +成绩,其他人的成绩至少是B 级及以上,平均分是64分,这个班级选考物理学业水平等级考的人数至少为______人.16.已知某8个数据的平均数为5,方差为3,现又加入一个新数据5,此时这9个数据的方差为______.17.由茎叶图可知,甲组数据的众数和乙组数据的极差分别是__________.18.为了解某地区某种农产品的年产量x (单位:吨)对价格y (单位:千元/吨)的影响,对近五年该农产品的年产量和价格统计如下表:x1 2 3 4 5 y 7.06.5m3.82.2已知x 和y 具有线性相关关系,且回归方程为 1.238.69y x =-+,那么表中m 的值为__________.19.某种产品的广告费支出x 与销售额y 之间有如下对应数据(单位:百万元),根据下表求出y 关于x 的线性回归方程为 6.517.5y x =+,x 2 4 5 68 y 304057a69则表中a 的值为__________.20.如图是某工厂对一批新产品长度(单位:)mm 检测结果的频率分布直方图.估计这批产品的中位数为______.三、解答题21.某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表: 年份 2007 2008 2009 2010 2011 2012 2013 年份代号x 1 2 3 4 5 6 7 人均纯收入y2.93.33.64.44.85.25.9x (2)预测该地区2015年农村居民家庭人均纯收入. 附:77211134.4,140i ii i i x yx ====∑∑.回归直线的斜率和截距的最小二乘法估计公式分别为:1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-22.为保护农民种粮收益,促进粮食生产,确保国家粮食安全,调动广大农民生产粮食的积极性,从2014年开始,国家实施了对种粮农民直接补贴的政策通过对2014~2018年的数据进行调查,发现某地区发放粮食补贴额x (单位:亿元)与该地区粮食产量y (单位:万亿吨)之间存在着线性相关关系,统计数据如下表: 年份 2014 2015 2016 2017 2018 补贴额x /亿元 9 10 12 11 8 粮食产量y /万亿2526312721(1)请根据上表所给的数据,求出y 关于x 的线性回归直线方程ˆˆˆybx a =+; (2)通过对该地区粮食产量的分析研究,计划2019年在该地区发放粮食补贴7亿元,请根据(1)中所得到的线性回归直线方程,预测2019年该地区的粮食产量.参考公式:()() ()121ˆni iiniix x y ybx x==--=-∑∑,ˆˆa y bx=-.23.某城市100户居民的月平均用水量(单位:吨),以[0,2)[2,4)[4,6)[6,8)[8,10)[10,12)[12,14)分组的频率分布直方图如图.(1)求直方图中x的值;并估计出月平均用水量的众数.(2)求月平均用水量的中位数及平均数;(3)在月平均用水量为[6,8),[8,10),[10,12),[12,14)的四组用户中,用分层抽样的方法抽取22户居民,则应在[10,12)这一组的用户中抽取多少户?(4)在第(3)问抽取的样本中,从[10,12)[12,14)这两组中再随机抽取2户,深入调查,则所抽取的两户不是来自同一个组的概率是多少?24.为了解某小卖部冷饮销量与气温之间的关系,随机统计并制作了6天卖出的冷饮的数量与当天最高气温的对照表:气温()x℃272930323335数量y121520272836(1)画出散点图,并求出y 关于x 的线性回归方程;(2)根据天气预报,某天最高气温为36.6℃,请你根据这些数据预测这天小卖部卖出的冷饮数量.附:一组数据11(,)x y ,22(,)x y ,,(,)n n x y 的回归直线y a bx =+的斜率和截距的最小二乘估计为()()()121ˆniii nii x x y y bx x ==--=-∑∑,ˆa y bx=- 25.某校为了了解甲、乙两班的数学学习情况,从两班各抽出10名学生进行数学水平测试,成绩如下(单位:分):甲班:82 84 85 89 79 80 91 89 79 74 乙班:90 76 86 81 84 87 86 82 85 83 (1)求两个样本的平均数; (2)求两个样本的方差和标准差; (3)试分析比较两个班的学习情况.26.学生甲在一次试验中用显微镜观察某种环境下细菌的个数,发现时间x (分钟)时刻的细菌个数为y 个,统计结果如下:x 1 2 3 4 5 y23445(Ⅰ)在给出的坐标系中画出x ,y 的散点图,说明细菌个数和时间是正相关还是负相关.(Ⅱ)根据表格中的5组数据,求y 关于x 的回归直线方程ˆˆˆybx a =+,并根据回归直线方程估计从实验开始,什么时刻细菌个数为12.参考公式:(1221ˆˆˆ,ni ii ni i x y nx yx n axby bx ====---∑∑)【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题分析:根据线性回归方程=50+80x 的意义,对选项中的命题进行分析、判断即可. 解:根据线性回归方程为=50+80x ,得;劳动生产率为1000元时,工资约为50+80×1=130元,A 正确; ∵=80>0,∴工人月工资与劳动者生产率具有正相关关系,B 正确;劳动生产率提高1000元时,工资约提高=80元,C 错误;当月工资为210元时,210=50+80x ,解得x=2, 此时劳动生产率约为2000元,D 正确. 故选C .考点:线性回归方程.2.A解析:A 【解析】由频率分布直方图可知:第一组的频数为20×0.01×5=1个, [0,5)的频数为20×0.01×5=1个, [5,10)的频数为20×0.01×5=1个, [10,15)频数为20×0.04×5=4个, [15,20)频数为20×0.02×5=2个, [20,25)频数为20×0.04×5=4个, [25,30)频数为20×0.03×5=3个, [30,35)频数为20×0.03×5=3个, [35,40]频数为20×0.02×5=2个, 则对应的茎叶图为A , 本题选择A 选项.点睛:茎叶图、频率分布表和频率分布直方图都是用来描述样本数据的分布情况的.茎叶图由所有样本数据构成,没有损失任何样本信息,可以随时记录;而频率分布表和频率分布直方图则损失了样本的一些信息,必须在完成抽样后才能制作.3.C解析:C 【解析】解:由图可知:则底部周长小于110cm 段的频率为(0.01+0.02+0.04)×10=0.7, 则频数为100×0.7=70人. 故选C .4.A解析:A 【分析】计算得到 4.5x =,114t y +=,代入回归方程计算得到答案. 【详解】3456 4.54x +++==, 2.54 4.51144t t y ++++==,中心点(),x y 过ˆ0.70.35yx =+, 即114.50.70.354t +=⨯+,解得3t =. 故选:A . 【点睛】本题考查了回归方程的相关问题,意在考查学生的计算能力.5.C解析:C 【分析】根据系统抽样所得的编号为等差数列,再用等差数列的求和公式求解即可. 【详解】由系统抽样的定义可知,在区间[201,319]内抽取的编号数构成以205为首项,公差为20的等差数列,并且项数为6,所以6(61)62052015302⨯-⨯+⨯=. 故选:C 【点睛】本题考查系统抽样的知识,考查数据处理能力和应用意识.6.C解析:C 【分析】认真观察题中所给的折线图,对照选项逐一分析,求得结果. 【详解】这10天中第一天,第三天和第四天共3天空气质量为一级,所以A 正确;从图可知从6日到9日 2.5PM 日均值逐渐降低,所以B 正确; 从图可知,这10天中 2.5PM 日均值最高的是12月6日,所以D 正确; 由图可知,这10天中 2.5PM 日均值的中位数是4145432+=,所以C 不正确; 故选C. 【点睛】该题考查的是有关利用题中所给的折线图,描述对应变量所满足的特征,在解题的过程中,需要逐一对选项进行分析,正确理解题意是解题的关键.7.A解析:A 【解析】 【分析】由茎叶图确定所给的所有数据,然后确定中位数即可. 【详解】各数据为:12 20 31 32 34 45 45 45 47 47 48 50 50 61 63, 最中间的数为:45,所以,中位数为45. 本题选择A 选项. 【点睛】本题主要考查茎叶图的阅读,中位数的定义与计算等知识,意在考查学生的转化能力和计算求解能力.8.B解析:B 【解析】 【分析】根据平均数、方差的概念表示出更正前的平均数、方差和更正后的平均数、方差,比较其异同,然后整体代入即可求解. 【详解】设更正前甲,乙,…的成绩依次为a 1,a 2,…,a 50, 则a 1+a 2+…+a 50=50×70,即60+90+a 3+…+a 50=50×70, (a 1﹣70)2+(a 2﹣70)2+…+(a 50﹣70)2=50×75, 即102+202+(a 3﹣70)2+…+(a 50﹣70)2=50×75. 更正后平均分为x =150×(80+70+a 3+…+a 50)=70; 方差为s 2=150×[(80﹣70)2+(70﹣70)2+(a 3﹣70)2+…+(a 50﹣70)2] =150×[100+(a 3﹣70)2+…+(a 50﹣70)2] =150×[100+50×75﹣102﹣202]=67.故选B . 【点睛】本题考查平均数与方差的概念与应用问题,是基础题.9.D解析:D 【解析】 【分析】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81=12816,因为共抽出30人,所以总人数为3016=480⨯人,即可求出20~30岁年龄段的人数. 【详解】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81=12816, 因为共抽出30人,所以总人数为3016=480⨯人,所以,20~30岁龄段的人有480128192160--=,故选D. 【点睛】本题主要考查了分层抽样,抽样,样本容量,属于中档题10.A解析:A 【分析】共有8个数据,中位数就是由小到大中间两数的平均数,求解即可. 【详解】根据茎叶图,由小到大排列这8个数为84,85,89,90,91,92,93,95, 所以中位数为90+91=90.52,故选A. 【点睛】本题主要考查了中位数,茎叶图,属于中档题.11.C解析:C 【解析】 【分析】首先求出x y ,的平均数,将样本中心点代入回归方程中求出a 的值,然后写出回归方程,然后将10x =代入求解即可 【详解】()19.59.39.18.99.79.35x =⨯++++=()19289898793905y =⨯++++=代入到回归方程为7.5ˆyx a =+,解得20.25a =7.25ˆ50.2yx ∴=+ 将10x =代入7.50.5ˆ22yx =+,解得ˆ95.25y = 故选C 【点睛】本题是一道关于线性回归方程的题目,解答本题的关键是求出线性回归方程,属于基础题。
一、选择题1.某商场为了了解毛衣的月销售量y (件)与月平均气温x (C ︒)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表: 月平均气温x C ︒171382月销售量y (件)24334055由表中数据算出线性回归方程y bx a =+中的2b =-,气象部门预测下个月的平均气温为6C ︒,据此估计该商场下个月毛衣销售量约为( )A .58件B .40件C .38件D .46件2.图1是某学习小组学生数学考试成绩的茎叶图,1号到16号的同学的成绩依次为1A ,216,,A A ⋯,图2是统计茎叶图中成绩在一定范围内的学生情况的程序框图,那么该程序框图输出的结果是( )A .10B .6C .7D .163.有一个容量为200的样本,样本数据分组为[50,70),[70,90),[90,110),[110,130),[130,150),其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间[90,110)内的频数为( )A .48B .60C .64D .724.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生B .200号学生C .616号学生D .815号学生5.统计某校n 名学生的某次数学同步练习成绩,根据成绩分数依次分成六组:[)[)[)[)[)[]90,100,100,110,110,120,120,130,130,140,140,150,得到频率分布直方图如图所示,若不低于140分的人数为110.①0.031m =;②800n =;③100分以下的人数为60;④分数在区间[)120,140的人数占大半.则说法正确的是( )A .①②B .①③C .②③D .②④6.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3 D .丁地:总体均值为2,总体方差为37.若某中学高二年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数是( )A .90.5B .91.5C .90D .918.设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位D .y 平均减少2个单位9.某校高中三个年级共有学生1050人,其中高一年级300人,高二年级350人,高三年级400人.现要从全体高中学生中通过分层抽样抽取一个容量为42的样本,那么应从高三年级学生中抽取的人数为 A .12B .14C .16D .1810.已知某企业上半年前5个月产品广告投入与利润额统计如下:由此所得回归方程为7.5ˆyx a =+,若6月份广告投入10(万元)估计所获利润为( ) A .97万元B .96.5万元C .95.25万元D .97.25万元11.已知一组数据12,,,n x x x 的平均数3x =,则数据1232,32,,32n x x x +++的平均数为( ) A .3B .5C .9D .1112.从8名女生4名男生中,选出3名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法数为( ) A .112种B .100种C .90种D .80种二、填空题13.用系统抽样方法从400名学生中抽取容量为20的样本,将400名学生随机地编号为1~400,按编号顺序平均分为20个组.若第1组中用抽签的方法确定抽出的号码为11,则第17组抽取的号码为________.14.对具有线性相关关系的变量x ,y 有一组观测数据()(),1,2,3,,8i i x y i =,其回归直线方程是12y x a =+,且8116i i x ==∑,8148i i y ==∑,则实数a =__________.15.通过市场调查,得到某种产品的资金投入x (单位:万元)与获得的利润y (单位:万元)的数据,如表所示:根据表格提供的数据,用最小二乘法求线性回归直线方程为0.36ˆˆybx =-,现投入资金15万元,求获得利润的估计值(单位:万元)为_____________.16.已知某市A 社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是________人.17.为弘扬我国优秀的传统文化,某小学六年级从甲、乙两个班各选出7名学生参加成语知识竞赛,他们取得的成绩的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则的值为__________.18.总体由编号为01,02,⋅⋅⋅,29,30的30个个体组成.利用下面的随机数表选取样本,选取方法是从随机数表第2行的第6列数字开始由左到右依次选取两个数字,则选出来的第3个个体的编号为__________.19.已知某人连续5次投掷飞镖的环数分别是8,9,10,10,8,则该组数据的方差为______.20.已知一组数据x ,8,7,9,7,若这组数据的平均数为8,则它们的方差为______.三、解答题21.2020年1月末,新冠疫情爆发,经过全国人民的努力,2月中旬,疫情得到了初步的控制,湖北省以外地区的每日新增确诊人数开始减少,某同学针对这个问题,选取他在统计学中学到的一元线性回归模型,作了数学探究:他于2月17日统计了2月7日至16日这十天湖北省以外地区的每日新增确诊人数,表格如下: 日期 2.7 2.8 2.9 2.10 2.11 2.12 2.132.14 2.15 2.16代号x 123 45 6 78910新增确诊人数y558 509444381 377 312 267221166 115y x y x 计算出: 5.5,335x y ==,()()1013955iii x x y y =--=-∑,()210182.5ii x x =-=∑(1)请你帮这位同学计算出y 与x 的线性回归方程(精确到0.1),然后根据这个方程估计湖北省以外地区新增确诊人数为零时的大概日期;附:回归方程y bx a =+中斜率和截距的最小二乘法估计公式分别为:()()()1012101iii ii x x y y b x x ==--=-∑∑,a y bx =-(2)实际上2月17日至2月22日的新增确诊人数如下:出评价.22.据统计某品牌服装专卖店一周内每天获取得纯利润y (百元)与每天销售这种服装件数x (百件)之间有如下一组数据.该专卖店计划在国庆节举行大型促销活动以提高该品牌服装的知名度,为了检验服装的质量,现从厂家购进的500件服装中抽取60件进行检验,(服装进货编号为001-500). (1)利用随机数表抽样本时,如果从随机数表第8行第2列的数开始按三位数连贯向右读取,试写出最先检测的5件服装的编号;(2)求该专卖店每天的纯利y 与每天销售件数x 之间的回归直线方程.(精确到0.01) (3)估计每天销售1200件这种服装时获多少纯利润? 附表:(随机数表第7行至第9行)84421 75331 57245 50688 77047 44767 21763 35025 83921 20676 63016 47859 16955 56719 98105 07185 12867 35807 44395 23879 33211 23429 78645 60782 52420 74438 15510 01342 99660 27954 参考数据:721280i i x==∑,72145309i i y ==∑,713487i i i x y ==∑.参考公式:1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-23.某市为了解疫情过后制造业企业的复工复产情况,随机调查了100家企业,得到这些企业4月份较3月份产值增长率x 的频率分布表如下:企业数13 40 35 8 4(1)估计制造业企业中产值增长率不低于60%的企业比例及产值负增长的企业比例; (2)求制造业企业产值增长率的平均数与方差的估计值(同一组中的数据用该组区间的中点值为代表).24.为了解某小卖部冷饮销量与气温之间的关系,随机统计并制作了6天卖出的冷饮的数量与当天最高气温的对照表: 气温()x ℃ 27 29 30 32 33 35 数量y121520272836(1)画出散点图,并求出y 关于x 的线性回归方程;(2)根据天气预报,某天最高气温为36.6℃,请你根据这些数据预测这天小卖部卖出的冷饮数量.附:一组数据11(,)x y ,22(,)x y ,,(,)n n x y 的回归直线y a bx =+的斜率和截距的最小二乘估计为()()()121ˆniii ni i x x y y bx x ==--=-∑∑,ˆa y bx=- 25.某学校高一100名学生参加数学竞赛,成绩均在40分到100分之间.学生成绩的频率分布直方图如图:(1)估计这100名学生分数的中位数与平均数;(精确到0.1)(2)某老师抽取了10名学生的分数:12310,,,...,x x x x ,已知这10个分数的平均数90x =,标准差6s =,若剔除其中的100和80两个分数,求剩余8个分数的平均数与标准差.(参考公式:221nii xnx s n=-=∑(3)该学校有3座构造相同教学楼,各教学楼高均为20米,东西长均为60米,南北宽均为20米.其中1号教学楼在2号教学楼的正南且楼距为40米,3号教学楼在2号教学楼的正东且楼距为72米.现有3种型号的考试屏蔽仪,它们的信号覆盖半径依次为35,55,105米,每个售价相应依次为1500,2000,4000元.若屏蔽仪可在地下及地上任意位置安装且每个安装费用均为100元,求让各教学楼均被屏蔽仪信号完全覆盖的最小花费.(参考数据:22221044100,19236864,11012100===)26.在社会实践活动中,“求知”小组为了研究某种商品的价格x (元)和需求量y (件)之间的关系,随机统计了11月1日至11月5日该商品价格和需求量的情况,得到如下资料: 日期 11月1日 11月2日 11月3日 11月4日 11月5日 x (元) 14 16 18 20 22 y (件)1210743该小组所确定的研究方案是:先从这五天中选取2天数据,用剩下的3天数据求线性回归方程,再对被选取的2天数据进行检验.(1)若选取的是11月1日与11月5日两天数据,请根据11月2日至11月4日的数据,求出y 关于x 的线性回归方程y bx a =+;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2件,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?参考公式:()()()1122211nniii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】试题分析:由表格得(),x y 为:()10,38,因为(),x y 在回归方程y bx a =+上且2b =-,()38102a ∴=⨯-+,解得58a =∴2ˆ58y x =-+,当6x =时,26ˆ5846y=-⨯+=,故选D. 考点:1、线性回归方程的性质;2、回归方程的应用.2.A解析:A 【分析】先弄清楚程序框图中是统计成绩不低于90分的学生人数,然后从茎叶图中将不低于90分的个数数出来,即为输出的结果. 【详解】176A =,1i =,16i ≤成立,190A ≥不成立,112i =+=; 279A =,2i =,16i ≤成立,290A ≥不成立,112i =+=;792A =,7i =,16i ≤成立,790A ≥成立,011n =+=,718i =+=;依此类推,上述程序框图是统计成绩不低于90分的学生人数,从茎叶图中可知,不低于90分的学生数为10,故选A . 【点睛】本题考查茎叶图与程序框图的综合应用,理解程序框图的意义,是解本题的关键,考查理解能力,属于中等题.3.B解析:B 【分析】由(0.00500.00750.01000.0125)201a ++++⨯=,求出a ,计算出数据落在区间[90,110)内的频率,即可求解.【详解】由(0.00500.00750.01000.0125)201a ++++⨯=, 解得0.015a =,所以数据落在区间[90,110)内的频率为0.015200.3⨯=, 所以数据落在区间[90,110)内的频数2000.360⨯=, 故选B. 【点睛】本题主要考查了频率分布直方图,频率、频数,属于中档题.4.C解析:C 【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n =+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.5.B解析:B 【分析】根据频率分布直方图的性质和频率分布直方图中样本估计总体,准确运算,即可求解. 【详解】由题意,根据频率分布直方图的性质得10(0.0200.0160.0160.0110.006)1m +++++=,解得0.031m =.故①正确;因为不低于140分的频率为0.011100.11⨯=,所以11010000.11n ==,故②错误; 由100分以下的频率为0.00610=0.06⨯,所以100分以下的人数为10000.06=60⨯,故③正确;分数在区间[120,140)的人数占0.031100.016100.47⨯+⨯=,占小半.故④错误. 所以说法正确的是①③. 故选B. 【点睛】本题主要考查了频率分布直方图的应用,其中解答熟记频率分布直方图的性质,以及在频率分布直方图中,各小长方形的面积表示相应各组的频率,所有小长方形的面积的和等于1,着重考查了分析问题和解答问题的能力,属于基础题.6.D解析:D 【详解】试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.考点:众数、中位数、平均数、方差7.A解析:A 【分析】共有8个数据,中位数就是由小到大中间两数的平均数,求解即可. 【详解】根据茎叶图,由小到大排列这8个数为84,85,89,90,91,92,93,95, 所以中位数为90+91=90.52,故选A. 【点睛】本题主要考查了中位数,茎叶图,属于中档题.8.C解析:C 【解析】 【分析】细查题意,根据回归直线方程中x 的系数是 1.5-,得到变量x 增加一个单位时,函数值要平均增加 1.5-个单位,结合回归方程的知识,根据增加和减少的关系,即可得出本题的结论. 【详解】因为回归直线方程是2 1.5ˆyx =-, 当变量x 增加一个单位时,函数值平均增加 1.5-个单位, 即减少1.5个单位,故选C.【点睛】本题是一道关于回归方程的题目,掌握回归方程的分析时解题的关键,属于简单题目.9.C解析:C【解析】【分析】根据分层抽样的定义求出在各层中的抽样比,即样本容量比上总体容量,按此比例求出在高三年级中抽取的人数.【详解】 根据题意得,用分层抽样在各层中的抽样比为421105020=, 则在高三年级抽取的人数是14001625⨯=人, 故选C.【点睛】该题所考查的是有关分层抽样的问题,在解题的过程中,需要明确无论采用哪种抽样方法,都必须保证每个个体被抽到的概率是相等的,所以注意成比例的问题. 10.C解析:C【解析】【分析】首先求出x y ,的平均数,将样本中心点代入回归方程中求出a 的值,然后写出回归方程,然后将10x =代入求解即可【详解】()19.59.39.18.99.79.35x =⨯++++= ()19289898793905y =⨯++++= 代入到回归方程为7.5ˆyx a =+,解得20.25a = 7.25ˆ50.2yx ∴=+ 将10x =代入7.50.5ˆ22yx =+,解得ˆ95.25y = 故选C【点睛】本题是一道关于线性回归方程的题目,解答本题的关键是求出线性回归方程,属于基础题。
一、选择题1.2020年,一场突如其来的“新型冠状肺炎”使得全国学生无法在春季正常开学,不得不在家“停课不停学”.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如下图所示),已知学习时长在[)9,11的学生人数为25,则n的值为()A.40 B.50 C.80 D.1002.在一个容量为5的样本中,数据均为整数,已测出其平均数为8,但墨水污损了后面两个数据,其中一个数据的十位数字1未污损,即5,7,8,,那么这组数据的方差2s 可能的最大值是()A.185B.18 C.36 D.63.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数B.平均数C.方差D.极差4.下图是某公司2018年1月至12月空调销售任务及完成情况的气泡图,气泡的大小表示完成率的高低,如10月份销售任务是400台,完成率为90%,则下列叙述不正确的是()A .2018年3月的销售任务是400台B .2018年月销售任务的平均值不超过600台C .2018年第一季度总销售量为830台D .2018年月销售量最大的是6月份5.2018年12月12日,某地食品公司对某副食品店某半月内每天的顾客人数进行统计得到样本数据的茎叶图如图所示,则该样本的中位数是( )A .45B .47C .48D .636.在一次53.5公里的自行车个人赛中,25名参赛选手的成绩(单位:分钟)的茎叶图如图所示,现将参赛选手按成绩由好到差编为125-号,再用系统抽样方法从中选取5人,已知选手甲的成绩为85分钟,若甲被选取,则被选取的其余4名选手的成绩的平均数为()A .95B .96C .97D .987.甲、乙两名同学在五次数学考试中的成绩统计如下面的茎叶图所示,若甲、乙两人的平均成绩分别是1x ,2x ,观察茎叶图,下列结论正确的是( )A .12x x <,乙比甲成绩稳定B .12x x >,乙比甲成绩稳定C.12x x<,甲比乙成绩稳定D.12x x>,甲比乙成绩稳定8.高二某班共有学生60名,座位号分别为01, 02, 03,···, 60.现根据座位号,用系统抽样的方法,抽取一个容量为4的样本.已知03号、18号、48号同学在样本中,则样本中还有一个同学的座位号是()A.31号B.32号C.33号D.34号9.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,...,960,分组后某组抽到的号码为41.抽到的32人中,编号落入区间[]401,755的人数为()A.10 B.11C.12 D.1310.若某中学高二年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数是()A.90.5 B.91.5 C.90 D.9111.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某时间段车流量与PM2.5浓度的数据如下表:时间周一周二周三周四周五车流量x(万辆)100102108114116浓度y(微克)7880848890根据上表数据,用最小二乘法求出y与x的线性回归方程是()参考公式:121()()()ni iiniix x y ybx x==--=-∑∑,a y b x=-⋅;参考数据:108x=,84y=;A.0.6274ˆ.2y x=+B.0.7264ˆ.2y x=+C.0.7164ˆ.1y x=+D.0.6264ˆ.2y x=+ 12.在学校组织的考试中,45名学生的数学成绩的茎叶图如图所示,若将学生按成绩由低到高编为1-45号,再用系统抽样方法从中抽取9人,则其中成绩在区间[120,135]上的学生人数是()A .4B .5C .6D .7二、填空题13.用系统抽样方法从400名学生中抽取容量为20的样本,将400名学生随机地编号为1~400,按编号顺序平均分为20个组.若第1组中用抽签的方法确定抽出的号码为11,则第17组抽取的号码为________.14.如图,这是某校高一年级一名学生七次数学测试成绩(满分100分)的茎叶图. 去掉一个最高分和一个最低分后,所剩数据的方差是 _____15.已知一组数据6,7,8,x ,y 的平均数是8,且90xy =,则该组数据的方差为_______. 16.某校共有学生1600人,其中高一年级400人.为了解各年级学生的兴趣爱好情况,用分层抽样的方法从中抽取容量为80的样本,则应抽取高一学生____人. 17.已知数据(1,2,3,4,5)i x i =的平均值为a ,数列2{()}i x a -为等差数列,且3||0.1x a -________.18.为了解某地区某种农产品的年产量x (单位:吨)对价格y (单位:千元/吨)的影响,对近五年该农产品的年产量和价格统计如下表:x1 2 3 4 5 y7.06.5m3.82.2已知x 和y 具有线性相关关系,且回归方程为 1.238.69y x =-+,那么表中m 的值为__________.19.能够说明“若甲班人数为m ,平均分为a ;乙班人数为n n m ≠(),平均分为b ,则甲乙两班的数学平均分为2a b+”是假命题的一组正整数a ,b 的值依次为_____. 20.已知一组数据x ,8,7,9,7,若这组数据的平均数为8,则它们的方差为______.三、解答题21.“湖广熟,天下足”,鱼米之乡的湖北是全国重要的农产品生产地.而受疫情影响,像莲藕、小龙虾等湖北很多优质农副产品近期都面临销售难题.为了让淜北尽快恢复正常,央视主持人朱广权化身直播带货官,和网红们一起为湖北产品做公益直播.在为湖北某地区的小龙虾进行带货时,需大致了解该地区小龙虾的产量,通过调查发现湖北某地区近几年的小龙虾产量统计如下表: 年份 2014 2015 2016 2017 2018 2019 年份代码t123456年产量y (万吨)6.6 6.97.4 7.7 8 8.4(1)根据表中数据,建立关于t 的线性回归方程y bt a =+; (2)请你根据线性回归方程预测今年(2020年)该地区小龙虾的年产量.附:对于一组数据()11,t y ,()22,t y ,…,(),n n t y ,其回归直线y bt a =+的斜率和截距的最小二乘估计分别为:()()()121ˆniii ni i t t y y bt t ==--=-∑∑,a y bt =-.(参考数据:()()616.3iii t t y y =--=∑)22.某学校进行体验,现得到所有男生的身高数据,从中随机抽取50人进行统计(已知这50个身高介于155cm 到195cm 之间),现将抽取结果按如下方式分成八组:第一组[155,160),第二组[160,165),...,第八组[190,195],并按此分组绘制如图所示的频率分布直方图,其中第六组[180,185)和第七组[185,190)还没有绘制完成,已知第一组与第八组人数相同,第六组和第七组人数的比为5:2.(1)补全频率分布直方图;(2)根据频率分布直方图估计这50位男生身高的中位数;(3)用分层抽样的方法在身高为[170,180]内抽取一个容量为5的样本,从样本中任意抽取2位男生,求这两位男生身高都在[175,180]内的概率. 23.为了了解高中新生的体能情况,某学校抽取部分高一学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从 左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12﹒(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.24.某公司为了制定下一季度的投入计划,收集了今年前6个月投入量x (单位:万元)和产量y (单位:吨)的数据,用两种模型①y bx a =+,②y b x a =分别进行拟合,得到相应的回归方程111.2 2.0y x =+,228.29.8y x =,进行残差分析得到如图所示的残差值及一些统计量的值: 月份 1 2 3 4 5 6 3.5x =41y =611049i ii x y==∑62191ii x==∑投入量x (万元) 1 2 3 4 5 6 产量y (吨) 13 22 4345 55 68 模型①的残差值 -0.2 -2.4-1.8 -3 -1.2 模型②的残差值-5.4-8.04.0-1.61.69.0(1)求上表中空格内的值;(2)残差值的绝对值之和越小说明模型拟合效果越好,根据残差比较模型①,②的拟合效果,应选择哪一个模型?并说明理由;(3)残差绝对值大于3的数据认为是异常数据,需要剔除,剔除异常数据后,重新求出(2)中所选模型的回归方程.(参考公式:i i ie y bx a =--,1221ni iinii x y nx yb xnx==-=-∑∑,a y bx =-)25.学生甲在一次试验中用显微镜观察某种环境下细菌的个数,发现时间x (分钟)时刻的细菌个数为y 个,统计结果如下:x 1 2 3 4 5 y23445(Ⅰ)在给出的坐标系中画出x ,y 的散点图,说明细菌个数和时间是正相关还是负相关.(Ⅱ)根据表格中的5组数据,求y 关于x 的回归直线方程ˆˆˆy bx a =+,并根据回归直线方程估计从实验开始,什么时刻细菌个数为12.参考公式:(1221ˆˆˆ,ni ii ni i x y nx yx n axby bx ====---∑∑) 26.某城市200户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,280,[)280,300分组的频率分布直方图如图:(1)求直方图中x 的值;(2)在月平均用电量为[)220,240,[)240,260,[)260,280的三组用户中,用分层抽样的方法抽取20户居民,则月平均用电量在[)220,240的用户中应抽取多少户? (3)求月平均用电量的中位数和平均数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由频率分布直方图的性质,求得0.25x =,再结合频率分布直方图的频率的计算方法,即可求解. 【详解】由频率分布直方图的性质,可得()20.050.150.051x +++=,解得0.25x =, 所以学习时长在[)9,11的频率2520.5x n==,解得50n =. 故选:B . 【点睛】本题主要考查了频率分布直方图性质及其应用,其中解答中熟记频率分布直方图的性质是解答的关键,着重考查了数据分析能力,以及计算能力.2.C解析:C 【分析】设出最后两个数,然后根据已知条件列方程,求得方程2s 的表达式,根据表达式的结构求得2s 的最大值. 【详解】设这组数据的最后2个分别是10x +,y 则5781085x y +++++=⨯, 得10x y +=,故10y x =-. ∴()222211910(2)(2)21855s x x x ⎡⎤=+++++-=+⎣⎦, 显然当9x =时,2s 最大,最大为36. 故选:C 【点睛】本小题主要考查平均数和方差的计算,考查方程的思想,属于基础题.3.A【分析】可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案. 【详解】设9位评委评分按从小到大排列为123489x x x x x x ≤≤≤≤≤.则①原始中位数为5x ,去掉最低分1x ,最高分9x ,后剩余2348x x x x ≤≤≤,中位数仍为5x ,∴A 正确. ②原始平均数1234891()9x x x x x x x =+++++,后来平均数234817x x x x x '=+++()平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确 ③()()()222219119S x x x x x x ⎡⎤=-+-++-⎣⎦()()()222223817s x x x x x x ⎡⎤'=-'+-'++-'⎢⎥⎣⎦由②易知,C 不正确.④原极差91=x -x ,后来极差82=x -x 可能相等可能变小,D 不正确. 【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.4.D解析:D 【分析】根据图形中给出的数据,对每个选项分别进行分析判断后可得错误的结论. 【详解】对于选项A ,由图可得3月份的销售任务是400台,所以A 正确. 对于选项B ,由图形得2018年月销售任务的平均值为1(3245810743413)10045012⨯+++++++++++⨯=,所以B 正确. 对于选项C ,由图形得第一季度的总销售量为13002001400 1.28302⨯+⨯+⨯=台,所以C 正确.对于选项D ,由图形得销售量最大的月份是5月份,为800台,所以D 不正确. 故选D . 【点睛】本题考查统计中的识图、用图和计算,解题的关键是从图中得到相关数据,然后再根据要求进行求解,属于基础题.5.A解析:A【分析】由茎叶图确定所给的所有数据,然后确定中位数即可. 【详解】各数据为:12 20 31 32 34 45 45 45 47 47 48 50 50 61 63, 最中间的数为:45,所以,中位数为45. 本题选择A 选项. 【点睛】本题主要考查茎叶图的阅读,中位数的定义与计算等知识,意在考查学生的转化能力和计算求解能力.6.C解析:C 【分析】结合系统抽样法的方法,得出其他四名选手的成绩,然后计算平均数,即可. 【详解】结合系统抽样法,可知间隔5个人抽取一次,甲为85,则其他人分别是88,94,99,107,故平均数为88+94+99+107=974,故选C.【点睛】考查了系统抽样法,关键该抽取方法每间隔相同人数中抽取一人,计算平均数,即可,难度中等.7.A解析:A 【解析】 【分析】根据茎叶图中的数据,即可计算出两人平均分,再根据茎叶图的分布情况可知乙成绩稳定. 【详解】 由茎叶图知, 甲的平均数是110210410511413391.65x ++++==,乙的平均数是2108115116122123116.85x ++++==,所以12x x <,从茎叶图上可以看出乙的数据比甲的数据集中,乙比甲成绩稳定 故选:A . 【点睛】本题考查茎叶图中两组数据的平均数和稳定程度,平均数要进行计算,稳定程度可通过计算方差或通过数据排布形状作出比较.8.C解析:C 【解析】根据系统抽样知,组距为604=15÷,即可根据第一组所求编号,求出各组所抽编号.【详解】学生60名,用系统抽样的方法,抽取一个容量为4的样本,所以组距为604=15÷,已知03号,18号被抽取,所以应该抽取181533+=号,故选C.【点睛】本题主要考查了抽样,系统抽样,属于中档题.9.C解析:C【分析】由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,求得此等差数列的通项公式为a n=30n﹣19,由401≤30n﹣21≤755,求得正整数n的个数,即可得出结论.【详解】∵960÷32=30,∴每组30人,∴由题意可得抽到的号码构成以30为公差的等差数列,又某组抽到的号码为41,可知第一组抽到的号码为11,∴由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,∴等差数列的通项公式为a n=11+(n﹣1)30=30n﹣19,由401≤30n﹣19≤755,n为正整数可得14≤n≤25,∴做问卷C的人数为25﹣14+1=12,故选C.【点睛】本题主要考查等差数列的通项公式,系统抽样的定义和方法,根据系统抽样的定义转化为等差数列是解决本题的关键,比较基础.10.A解析:A【分析】共有8个数据,中位数就是由小到大中间两数的平均数,求解即可.【详解】根据茎叶图,由小到大排列这8个数为84,85,89,90,91,92,93,95,所以中位数为90+91=90.52,故选A.【点睛】本题主要考查了中位数,茎叶图,属于中档题.11.B解析:B【解析】【分析】利用最小二乘法做出线性回归直线的方程的系数,写出回归直线的方程,得到结果.由题意,b=22222210078102801088411488116905108841001021081141165108⨯+⨯+⨯+⨯+⨯-⨯⨯++++-⨯=0.72, a=84﹣0.72×108=6.24, ∴y =0.72x+6.24, 故选:B . 【点睛】本题主要考查线性回归方程,属于难题.求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算211,,,nnii i i i x y x x y ==∑∑的值;③计算回归系数ˆˆ,ab ;④写出回归直线方程为ˆˆˆy bx a =+; 回归直线过样本点中心(),x y 是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.12.B解析:B 【解析】分析:首先写出所有学生的乘积,然后结合系统抽样的方法整理计算即可求得最终结果. 详解:由题意可知,学生的成绩如下:111,111,112,113,113; 116,117,117,118,118; 120,120,121,122,122; 123,124,124,126127;128,128,129,129,129; 131,131,131,132,132; 132,133,134,134,135; 137,138,138,138,139; 140,142,142,143,144.用系统抽样方法从中抽取9人,则每5人中抽取一人,即上述分组中每组抽取一人, 则所抽取的学生的成绩在区间[]120,135上的学生人数为5. 本题选择B 选项.点睛:本题主要考查系统抽样的概念及其应用,茎叶图的识别等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.331【分析】分段抽样由抽取时的分段间隔是20利用等差数列知识得解【详解】由抽取时的分段间隔是20即抽取20名同学其编号构成首项为11公差为20的等差数列第17组抽取的号码故答案为:331【点睛】本解析:331 【分析】分段抽样由抽取时的分段间隔是20,利用等差数列知识得解. 【详解】由抽取时的分段间隔是20.即抽取20名同学,其编号构成首项为11,公差为20的等差数列,第17组抽取的号码11(171)20331+-⨯= 故答案为:331 【点睛】本题考查系统抽样,属于基础题.14.或【分析】利用平均数与方差公式直接求解即可【详解】由题去掉最高与最低分后的测试成绩为8284848689则平均数方差故答案为:或【点睛】本题考查茎叶图考查平均数与方差的计算是基础题解析:5.6或285【分析】利用平均数与方差公式直接求解即可 【详解】由题去掉最高与最低分后的测试成绩为82,84,84,86,89,则平均数8284848689855x ++++==方差()()()()()2222221288582858485848586858955s ⎡⎤=-+-+-+-+-=⎣⎦ 故答案为:5.6或285【点睛】本题考查茎叶图,考查平均数与方差的计算,是基础题15.2【分析】根据题意列出关于的等量关系式结合求得的值利用方差公式求得结果【详解】一组数据的平均数是8且所以化简得又所以的值分别为或所以该组数据的方差为:故答案是:2【点睛】该题考查的是有关求一组数据的解析:2 【分析】根据题意,列出关于,x y 的等量关系式,结合90xy =,求得,x y 的值,利用方差公式求得结果. 【详解】一组数据6,7,8,,x y 的平均数是8,且90xy =, 所以6788540x y ++++=⨯=, 化简得19x y +=,又90xy =, 所以,x y 的值分别为10,9或9,10, 所以该组数据的方差为:222222110[(68)(78)(88)(98)(108)]255s =-+-+-+-+-==,故答案是:2. 【点睛】该题考查的是有关求一组数据的方差的问题,涉及到的知识点有方差公式,属于简单题目.16.20【解析】【分析】利用分层抽样方法直接求解【详解】由题意应抽取高一学生(人)故答案是20【点睛】该题考查的是有关分层抽样中某层所抽个体数的问题涉及到的知识点有分层抽样要求每个个体被抽到的概率是相等解析:20 【解析】 【分析】利用分层抽样方法直接求解. 【详解】由题意,应抽取高一学生40080201600⨯=(人), 故答案是20. 【点睛】该题考查的是有关分层抽样中某层所抽个体数的问题,涉及到的知识点有分层抽样要求每个个体被抽到的概率是相等的,列式求得结果,属于简单题目.17.1【分析】先根据数列为等差数列求出再根据方差公式可得【详解】因为数列为等差数列且所以所以该组数据的方差为故填01【点睛】考查方差的计算基础题解析:1 【分析】先根据数列2{()}i x a -为等差数列求出()521i i x a =-∑,再根据方差公式可得.【详解】因为数列2{()}i x a -为等差数列,且3x a -=()()52231550.1=ii x a x a =-=-=⨯∑ 0.5,所以该组数据的方差为()52110.15i i x a =-=∑.故填0.1. 【点睛】考查方差的计算,基础题.18.5【解析】将样本中心代入回归方程得到m=55故答案为:55解析:5 【解析】19.5,15,5my x +== 将样本中心代入回归方程得到m=5.5. 故答案为:5.5.19.是不相等的正整数即可【解析】∵甲班人数为平均分为乙班人数为平均分为∴甲乙两班的数学平均分为∵∴当时∴该命题是假命题时应满足是不相等的正整数故答案为:是不相等的正整数解析:,a b 是不相等的正整数即可 【解析】∵甲班人数为m ,平均分为a ,乙班人数为()n n m ≠,平均分为b ∴甲、乙两班的数学平均分为ma nbm n++ ∵m n ≠ ∴当a b =时,2ma nb a bm n ++=+ ∴该命题是假命题时,应满足,a b 是不相等的正整数 故答案为:,a b 是不相等的正整数20.【解析】因为平均数为所以方差为解析:45【解析】因为平均数为8,所以9,x = 方差为222214[10111]55++++=三、解答题21.(1)0.36 6.24y x =+;(2)8.76万吨. 【分析】(1)由题意求得知 3.5t =,7.5=y ,()62117.5i i t t =-=∑,运用公式求得b ,代入可求得y 关于t 的线性回归方程.(2)由(1)得的线性回归方程,代入年份代码7t =计算,可预测2020年该地区小龙虾的年产量. 【详解】(1)由题知 3.5t =,7.5=y ,()62117.5i i t t =-=∑,()()()616216.30.3617.5ˆiii i i t t y y bt t ==--===-∑∑, 又 6.24=-=a y bt .所以,y 关于t 的线性回归方程为0.36 6.24y x =+.(2)由(1)得,当年份为2020年时,年份代码7t =,此时0.367 6.248.76=⨯+=y .所以,可预测,2020年该地区小龙虾的年产量为8.76万吨. 【点睛】本题考查线性回归方程的求解,利用线性回归方程对总体进行估计,属于中档题. 22.(1)见解析;(2)174.5cm;(3)0.3.【详解】试题分析:(1)先分别算出第六组和第七组的人数,进而算出其频率与组距的比,补全直方图;(2)利用中位数两边频率相等,求出中位数的值;(3)先借助分层抽样的特征求出第四、第五组的人数,再运用列举法列举出所有可能数及满足题设的条件的数,运用古典概型的计算公式求解:解:(1)第六组与第七组频率的和为:∵第六组和第七组人数的比为5:2.∴第六组的频率为0.1,纵坐标为0.02;第七组频率为0.04,纵坐标为0.008.(2)设身高的中位数为,则∴估计这50位男生身高的中位数为174.5(3)由于第4,5组频率之比为2:3,按照分层抽样,故第4组中应抽取2人记为1,2,第5组应抽取3人记为3,4,5则所有可能的情况有:{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5}共10种满足两位男生身高都在[175,180]内的情况有{3,4},{3,5},{4,5}共3种,因此所求事件的概率为.23.(1)0.08,150;(2)88%;(3)第四小组,理由见解析【解析】试题分析:(1)由频率分布直方图中各小矩形面积之和为1结合面积之比得到第二小组的频率,从而求得样本容量;(2)由频率分布直方图中各小矩形的面积和为1与面积之比可求出达标的频率即达标率;(3)求出前四组的频数即可得到中位数所在的区间.试题(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为: 又因为频率=所以(2)由图可估计该学校高一学生的达标率约为(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内. 考点:频率分布直方图24.(1)7.4;(2)选模型①,理由见解析;(3)111y x =+. 【分析】(1)根据i i ie y bx a =--,结合表中所给数据,即可求得空格内的值;(2)分别计算出模型①和模型②的残差值绝对值之和,比较其大小,即可求得应选择哪一个模型;(3)根据所给数据计算出x ,y ,51i ii x y =∑,521ii x=∑,带入1221ni ii nii x y nx yb xnx==-=-∑∑,即可求得答案. 【详解】(1)根据i i ie y bx a =--∴空格处的值为()43311.2 2.07.4-⨯+=(2)应选择模型①模型①的残差值的绝对值之和为0.2 2.47.4 1.83 1.216+++++= 模型②的残差值的绝对值之和为5.48.0 4.0 1.6 1.69.029.6+++++=1629.6<∴模型①的拟合效果好,应该选模型①.(3)剔除异常数据,即剔除3月份的数据后, 得()1 3.563 3.65x =⨯-=,()14164340.65y =⨯-=, 511049343920i ii x y==-⨯=∑,522191382i i x ==-=∑.∴51522159205 3.640.6189.211825 3.6 3.617.25i iiiix y x ybx x==--⨯⨯====-⨯⨯-∑∑,40.611 3.61a y bx=-=-⨯=.所以y关于x的回归方程为111y x=+.【点睛】本题解题关键是掌握残差的定义和回归直线方程的求解步骤,考查了分析能力和计算能力,属于中档题.25.(Ⅰ)图象见解析,正相关;(Ⅱ)ˆ0.7 1.5y x=+,当15x=时细菌个数为12个.【分析】(Ⅰ)根据数据描点即得散点图,看图即判断结果;(Ⅱ)利用公式代入数据计算即可.【详解】解:(Ⅰ)图形如下,观察图像可知细菌个数和时间是正相关.(Ⅱ)由数据计算得,()11234535x=⨯++++=,()123445 3.65y=⨯++++=,1122334445561ni iix y==⨯+⨯+⨯+⨯+⨯=∑,22222211234555niix==++++=∑122216153 3.67ˆ0.7555310ni iiniix y nx yxbx n==-⨯⨯====-⨯--∑∑,ˆˆ 3.60.73 1.5a y bx=-=-⨯=,所以ˆ0.7 1.5yx =+, 当0.7 1.512x +=时,解得15x =. 所以当15x =时细菌个数为12个. 【点睛】本题考查了散点图、线性回归方程及其应用,属于基础题. 26.(1)0.0075;(2)10户;(3)224a =,225.6x =. 【分析】(1)由频率和为1列出方程求解x ;(2)求出三组用户的月平均用电量的频率推出比例关系,用20乘以月平均用电量在[)220,240的用户所占比例即可得解;(3)根据中位数左边和右边的直方图面积相等列出等式估计中位数,平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和. 【详解】(1)由直方图的性质可得()0.0020.00950.0110.01250.0050.0025201x ++++++⨯=,解得0.0075x =,所以直方图中x 的值是0.0075.(2)因为月平均用电量为[)220,240,[)240,260,[)260,280的三组用户的频率分别为0.25、0.15、0.1,所以这三组用户的月平均用电量比例为5:3:2, 所以月平均用电量在[)220,240的用户中应抽取5201010⨯=(户). (3)因为()0.0020.00950.011200.450.5++⨯=<, 所以月平均用电量的中位数在[)220,240内,设中位数为a ,则()()0.0020.00950.011200.01252200.5a ++⨯+⨯-=,解得224a =. 平均数1700.041900.192100.222300.252500.152700.12900.05x =⨯+⨯+⨯+⨯+⨯+⨯+⨯225.6=,所以月平均用电量的中位数为224,平均数为225.6. 【点睛】本题考查统计案例、分层抽样、根据频率分布直方图估计总体的数字特征,属于中档题.。
第二章 统计一、选择题1.某校有40个班,每班有50人,每班选派3人参加“学代会”,在这个问题中样本容量是( ).A .40B .50C .120D .1502.要从已编号(1-50)的50枚最新研制的某型号导弹中随机抽取5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5枚导弹的编号可能是( ). A .5,10,15,20,25 B .3,13,23,33,43 C .1,2,3,4,5 D .2,4,8,16,323.某单位有老年人27人,中年人54人,青年人81人,为了调查他们身体状况的某项指标,需从他们中抽取一个容量为36的样本,适合抽取样本的方法是( ). A .抽签法 B .系统抽样 C .随机数表法 D .分层抽样 4.为了解某年级女生的身高情况,从中抽出20名进行测量,结果如下:(单位:cm) 149 159 142 160 156 163 145 150 148 151 156 144 148 149 153 143 168 168 152 155在列样本频率分布表的过程中,如果设组距为4 cm ,那么组数为( ). A .4 B .5 C .6 D .75.右图是由容量为100的样本得到的频率分布直方图.其中前4组的频率成等比数列,后6组的频数成等差数列,设最大频率为a ,在到之间的数据个数为b ,则a ,b 的值分别为( ). A .,78 B .,83 C .,784 D .,836.在方差计算公式s2=101[(x1-20)2+(x2-20)2+…+(x10-20)2]中,数字10和20分别表示( ).A .数据的个数和方差B .平均数和数据的个数C .数据的个数和平均数D .数据组的方差和平均数7.某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下:行业名称 计算机 机械 营销 物流 贸易 应聘人数 215 830200 250154 67674 57065 280行业名称 计算机 营销 机械 建筑 化工 招聘人数124 620102 93589 11576 51670 436若用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况,则根据表中的数据,就业形势一定是( ).A .计算机行业好于化工行业B .建筑行业好于物流行业C .机械行业最紧张D .营销行业比贸易行业紧张 8.从鱼塘捕得同一时间放养的草鱼240尾,从中任选9尾,称得每尾鱼的质量分别是,,,,,,,,(单位:千克).依此估计这240尾鱼的总质量大约是( ).A.300克B.360千克C.36千克D.30千克9.为了考查两个变量x和y之间的线性关系,甲、乙两位同学各自独立作了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1,l2,已知两人得的试验数据中,变量x和y的数据的平均值都分别相等,且值分别为s与t,那么下列说法正确的是( ). A.直线l1和l2一定有公共点(s,t)B.直线l1和l2相交,但交点不一定是(s,t)C.必有直线l1∥l2D.直线l1和l2必定重合10.工人工资(元)依相应产值(千元)变化的回归方程为yˆ=50+80x,下列判断正确的是( ).A.产值为1 000元时,工资为130元B.产值提高1 000元时,工资提高80元C.产值提高1 000元时,工资提高130元D.当工资为250元时,产值为2 000元二、填空题:11.某工厂生产 A,B,C 三种不同型号的产品,产品数量之比依次为 2∶3∶5.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号的产品有16件,那么此样本的容量n =___________.12.若总体中含有1 650个个体,现在要采用系统抽样,从中抽取一个容量为35的样本,分段时应从总体中随机剔除________个个体,编号后应均分为_________段,每段有______个个体.13.管理人员从一池塘内捞出30条鱼,做上标记后放回池塘.10天后,又从池塘内捞出50条鱼,其中有标记的有2条.根据以上数据可以估计该池塘内共有_______条鱼.14.已知x,y之间的一组数据:xyy与x之间的线性回归方程yˆ=bx+a 必过定点_________.15.假设学生在初一和初二数学成绩是线性相关的.若10个学生初一数学分数(x)和初二x 74 71 72 68 76 73 67 70 65 74y 76 75 71 70 76 79 65 77 62 72初一和初二数学分数间的回归方程为___________.16.一家保险公司调查其总公司营业部的加班程度,收集了10周中每周加班工作时间y(小时)与签发新保单数目x的数据如下表,则用最小二乘法估计求出的线性回归方程是___________.x 825 215 1 070 550 480 920 1 350 325 670 1 215 y17.某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?18.某单位有118名员工,为了完成本月的生产任务,现要从中随机抽取16人加班.请用系统抽样法选出加班的人员.19.写出下列各题的抽样过程:(1)请从拥有500个分数的总体中用简单随机抽样方法抽取一个容量为30的样本.(2)某车间有189名职工,现在要按1∶21的比例选派质量检查员,采用系统抽样的方法进行.(3)一个电视台在因特网上就观众对某一节目喜爱的程度进行调查,被调查的总人数为12 000人,其中持各种态度的人数如下:很喜爱喜爱一般不喜爱2 435 4 5673 926 1 072打算从中抽取60人进行详细调查,如何抽取?20.有一种鱼的身体吸收水银,水银的含量超过 ppm(即百万分之一)时就会对人体产生危害.在30条鱼的样本中发现的水银含量是:(1)用前两位数作为茎,做出样本数据的茎叶图;(2)描述一下水银含量的分布特点;(3)从实际情况看,许多鱼的水银含量超标在于有些鱼在出售之前没有被检查过.那么,这种鱼的水银含量的平均水平都比 ppm大吗?(4)求出上述样本数据的均值和标准差;(5)有多少条鱼的水银含量在均值减加两倍标准差的范围内?第二章 统计 参考答案 一、选择题 1.C解析:样本容量等于40×3=120. 2.B解析:根据系统抽样的规则,1到10一段,11到20一段,如此类推,每段10个号码,那么每一段上都应该有号码. 3.D解析:总体是由差异明显的几部分组成的. 4.D解析:由于组距为4 cm ,故可分组为142~146,146~150,150~154,154~158,158~162,162~166,166~170. 5.A解析:由题意共有100个人.前4组频率成等比数列,由图知:第一组频率为;第二组频率为;所以a =.前3组有100×++=13人,后6组共87人,6组人数成等差数列,所以首项为27,s6=87,得d =-5,s4=78,即b =78. 6.C解析:对照公式s2=∑=ni i x -x n121)(即可知道.7.B解析:从表中可以看出,计算机行业应聘人数与招聘人数都比较多,但录用率约占58%.化工行业招聘名额70 436虽少,但应聘它的人数少于应聘贸易行业的人数(65 280),录用率大于58%,故A 不正确.对于建筑行业,应聘人数少于招聘人数,显然好于物流行业.机械行业录用率约46%,但物流、贸易招聘人数未知,无法比较得出机械行业最紧张.营销行业招聘人数与应聘人数的比约为1∶,但贸易行业招聘数不详,无法比较. 8.B 解析:从草鱼240尾,中任选9尾,这9尾鱼具有代表性,由此可由样本估计总体的情况.9尾鱼中每尾鱼的平均质量为x =91++++++++=(千克), 240×=360(千克). 9.A解析:线性回归直线方程为y ˆ=a +bx ,而a =x b y -,即a =t -bs ,t =a +bs .∴(s ,t)在回归直线上,即直线l1和l2必有公共点(s ,t). 10.B解析:回归直线斜率为80,所以x 每增加1,y ˆ增加80,即劳动生产率提高1千元时,工资提高80元. 二、填空题: 11.答案:80.解析:n =216×(2+3+5)=80. 12.答案:5;35;47.解析:1 650除以35商 47余5, ∴ 剔除5个个体.分为35段,每段47个个体. 13.答案:750.解析:30×250=750 (条). 14.答案: 5, 5).解析:必过四组数据的平均数, 即 5, 5). 15.答案:y ˆ=-.解析:代入求a ,b 值的公式,解得 y ˆ=-. 16.答案:y ˆ= 1+ 585x . 解析:∑∑===-==10121018602971)(762101i ii ix x ,xx ,6534))((85.2101=--=∑=i iiy y x x ,y .三、解答题:17.[解析] 简单随机抽样一般采用两种方法:抽签法和随机数表法.解法1:(抽签法)将100件轴编号为1,2,…,100,并做好大小、形状相同的号签,分别写上这100个数,将这些号签放在一起,进行均匀搅拌,接着连续抽取10个号签,然后测量这10个号签对应的轴的直径. 解法2:(随机数表法)将100件轴编号为00,01,…,99,在随机数表中选定一个起始位置,如取第21行第1个数开始,选取10个随机数为68,34,30,13,70,55,74,77,40,44,这10个号即所要抽取的样本号. 18.解析:(1)对这118名员工进行编号;(2)计算间隔k =16118=,由于k 不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样.例如我们随机剔除了3,46,59,57,112,93这6名员工,然后再对剩余的112位员工进行编号,计算间隔k =7;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.19.解析:(1)①将总体的500个分数从001开始编号,一直到500号; ②从随机数表第1页第1行第2至第4列的347号开始使用该表; ③抄录入样号码如下:347 437 386 469 011 410 145 073 245 276 329 050 176 099 061030 227 482 378 096 164 001 068 047 025 212 016 105 443 212 ④按以上编号从总体中将相应的分数提取出来组成样本,抽样完毕. (2)采取系统抽样.189÷21=9,所以将189人分成9组,每组21人,在每一组中随机抽取1人,这9人组成样本.(3)采取分层抽样.总人数为12 000人,12 000÷60=200, 2004352=12…35(人),2005674=22…167(人),2009263=19…126(人),2000721=5…72(人).所以从很喜爱的人中剔除35人,再抽取12人;从喜爱的人中剔除167人,再抽取22人;从一般喜爱的人中剔除126人,再抽取19人;从不喜爱的人中剔除72人,再抽取5人. 20.解析: (1)茎叶图为:茎 叶 7 4 9 4 1 2 124 1588 228 4 0069 17 04 8 28 5(2)汞含量分布偏向于大于 ppm的方向,即多数鱼的汞含量分布在大于 ppm的区域.(3)不一定.因为我们不知道各批鱼的汞含量分布是否都和这批鱼相同.即使各批鱼的汞含量分布相同,上面的数据只能为这个分布作出估计,不能保证平均汞含量大于 ppm.(4)样本平均数x≈,样本标准差s≈.(5)有28条鱼的汞含量在平均数与两倍标准差的和(差)的范围内.。
高一数学必修三统计习题
一选择题
1. 在统计中,样本的方差用来反映总体的()
A.平均状态
B. 分布规律
C. 离散状态
D. 最大值和最小值
2. 已知一组数据1、2、y的平均数为4,那么()
A.y=7
B.y=8
C.y=9
D.y=10
3. 甲、乙、丙、丁四人的数学测验成绩分别为90分、90分、x分、80分,若这组数据的众数与平均数恰好相等,则这组数据的中位数是()
A.100分
B.95分
C.90分
D.85分
4. 某校1000名学生中,O型血有400人,A型血有250人,B型血有250人,AB型血有100人,为了研究血型与色弱的关系,要从中抽取一个容量为40的样本,按照分层抽样的方法抽取样本,则O型血、A型血、B型血、AB型血的人要分别抽的人数为()
A.16、10、10、4
B.14、10、10、6
C.13、12、12、3
D.15、8、8、9
5. 为了了解广州地区初三学生升学考试数学成绩的情况,从中抽取50本密封试卷,每本30份试卷,这个问题中的样本容量是()
A.30
B.50
C.1500
D.150
6. 某单位有技工18人、技术员12人、工程师6人,需要从这些人中抽取一个容量为n 的样本.如果采用系统抽样和分层抽样方法抽取,都不用剔除个体;如果容量增加一个,则在采用系统抽样时,需要在总体中剔除1个个体,则样本容量n为()
A.4
B.5
C.6
D.无法确定
7. 在频率分布直方图中,每个小长方形的面积表示()
频率
A.组数
B.频数
C.频率
D.
组距
8. 在某餐厅内抽取100人,其中有30人在15岁以下,35人在16至25岁,25人在26至45岁,10人在46岁以上,则数0.35是16到25岁人员占总体分布的()
A.概率
B.频率
C.累计频率
D.频数
9. 某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况的某项
1 / 3
指标,需从他们中间抽取一个容量为36的样本,适合的抽取样本的方法是()A.简单的随机抽样 B.系统抽样
C.先从老年人中排除一人,再用分层抽样
D.分层抽样
10. 一个容量为20的样本数据,分组后组距与频数如下:[10,20]2个,[20,30]3个,[30,40]4个,[40,50]5个,[50,60]4个,[60,70]2个,则样本在区间(-∞,50)上的频率为()A.5% B.25% C.50% D.70%
二填空题
11.某校高一、高二、高三三个年级的学生数分别为1500人、1200人和1000人.现采用按年级分层抽样法了解学生的视力状况,已知在高一年级抽查了75人,则这次调查三个年级共抽查了人.
12.有6个数4,x,-1,y,z,6,它们的平均数为5,则x,y,z三个数的平均数为.
15.有一个简单的随机样本10,12,9,14,13,则样本平均数x=,样本标准差s=.
13.线性回归方程y=bx+a过定点.
14.一个容量为n的样本分成若干组,已知某组的频数和频率分别为30和0.25,则n=_-______.
15.某种彩票编号为0000~9999,中奖规则规定末三位号码是123的为二等奖,则中二等奖的号码为____________________________________ ;若将中二等奖的号码看作一个样本,则这里采用的抽样方法是
三解答题
16.甲、乙两人参加某体育项目训练,近期的五次测试成绩得分情况如下图所示.分别求出两人得分的平均数与方差;根据图和上面算得的结果,对两人的训练成绩作出评价.
2 / 3
3 /
3 得分111110第一次第二次第三次第四次第五次
次数。