优化设计-最优化基础理论+对分法
- 格式:pdf
- 大小:1.23 MB
- 文档页数:18
最优化理论与算法
最优化理论与算法是一门使用数学和统计分析工具来解决问题的学科。
它用于寻求系统最佳运行状态,并帮助系统达到最优性能。
它研究的
主要问题包括目标函数最大化或最小化,最优化问题的非线性性质,
以及对某些未知变量的极大或极小。
最优化理论和算法的种类繁多。
其中包括最小化法,最大化法,拉格
朗日乘数法,拟牛顿法,模拟退火法,遗传算法,蚁群算法,鲁棒优
化等等。
它们在很多领域中都有应用,如机器学习,金融保险,供应
链管理,交通路线规划,排队分析,测量定位等等。
例如,在机器学
习领域,拉格朗日乘数法和拟牛顿法用于求解最优超参数。
此外,在
金融保险领域,最优化理论和算法常常用于分析风险和收益、以及给
定投资者希望达到的目标所必需要承担的风险等。
最优化大在一些方法上求解适当的最佳参数,从而开发高性能算法。
它可以用来解决各种最优化问题,如局部最优化问题,全局最优化问题,非线性最优化问题,多目标最优化问题等。
最优化算法也可以用
来实施和评估各种经济模型,如产品管理、能源管理和风险管理。
总的来说,最优化理论和算法在许多重要领域都有着广泛的应用。
它
可以用来解决各种最优化问题,并为解决实际问题提供有效解决方案。
最优化方法-习题解答张彦斌计算机学院2014年10月20日Contents1第一章最优化理论基础-P13习题1(1)、2(3)(4)、3、412第二章线搜索算法-P27习题2、4、643第三章最速下降法和牛顿法P41习题1,2,374第四章共轭梯度法P51习题1,3,6(1)105第五章拟牛顿法P73-2126第六章信赖域方法P86-8147第七章非线性最小二乘问题P98-1,2,6188第八章最优性条件P112-1,2,5,6239第九章罚函数法P132,1-(1)、2-(1)、3-(3),62610第十一章二次规划习题11P178-1(1),5291第一章最优化理论基础-P13习题1(1)、2(3)(4)、3、4 1.验证下列各集合是凸集:(1)S={(x1,x2)|2x1+x2≥1,x1−2x2≥1};需要验证:根据凸集的定义,对任意的x(x1,x2),y(y1,y2)∈S及任意的实数λ∈[0,1],都有λx+(1−λ)y∈S.即,(λx1+(1−λ)y1,λx2+(1−λ)y2)∈S证:由x(x1,x2),y(y1,y2)∈S得到,{2x1+x2≥1,x1−2x2≥12y1+y2≥1,y1−2y2≥1(1)1把(1)中的两个式子对应的左右两部分分别乘以λ和1−λ,然后再相加,即得λ(2x1+x2)+(1−λ)(2y1+y2)≥1,λ(x1−2x2)+(1−λ)(y1−2y2)≥1(2)合并同类项,2(λx1+(1−λ)y1)+(λx2+(1−λ)y2)≥1,(λx1+(1−λ)y1)−2(λx2+(1−λ)y2)≥1(3)证毕.2.判断下列函数为凸(凹)函数或严格凸(凹)函数:(3)f(x)=x21−2x1x2+x22+2x1+3x2首先二阶导数连续可微,根据定理1.5,f在凸集上是(I)凸函数的充分必要条件是∇2f(x)对一切x为半正定;(II)严格凸函数的充分条件是∇2f(x)对一切x为正定。
最优化基础理论与⽅法⽬录1.最优化的概念与分类 (2)2. 最优化问题的求解⽅法 (3)2.1线性规划求解 (3)2.1.1线性规划模型 (3)2.1.2线性规划求解⽅法 (3)2.1.3 线性规划算法未来研究⽅向 (3)2.2⾮线性规划求解 (4)2.2.1⼀维搜索 (4)2.2.2⽆约束法 (4)2.2.3约束法 (4)2.2.4凸规划 (5)2.2.5⼆次规划 (5)2.2.6⾮线性规划算法未来研究⽅向 (5)2.3组合规划求解⽅法 (5)2.3.1 整数规划 (5)2.3.2 ⽹络流规划 (7)2.4多⽬标规划求解⽅法 (7)2.4.1 基于⼀个单⽬标问题的⽅法 (7)2.4.2 基于多个单⽬标问题的⽅法 (8)2.4.3多⽬标规划未来的研究⽅向 (8)2.5动态规划算法 (8)2.5.1 逆推解法 (8)2.5.2 顺推解法 (9)2.5.3 动态规划算法的优点及研究⽅向 (9)2.6 全局优化算法 (9)2.6.1 外逼近与割平⾯算法 (9)2.6.2 凹性割⽅法 (9)2.6.3 分⽀定界法 (9)2.6.4 全局优化的研究⽅向 (9)2.7随机规划 (9)2.7.1 期望值算法 (10)2.7.2 机会约束算法 (10)2.7.3 相关机会规划算法 (10)2.7.4 智能优化 (10)2.8 最优化软件介绍 (11)3 最优化算法在电⼒系统中的应⽤及发展趋势 (12)3.1 电⼒系统的安全经济调度问题 (12)3.1.1电⼒系统的安全经济调度问题的介绍 (12)3.1.2电⼒系统的安全经济调度问题优化算法的发展趋势 (12)2. 最优化问题的求解⽅法最优化⽅法是近⼏⼗年形成的,它主要运⽤数学⽅法研究各种优化问题的优化途径及⽅案,为决策者提供科学决策的依据。
最优化⽅法的主要研究对象是各种有组织系统的管理问题及其⽣产经营活动。
最优化⽅法的⽬的在于针对所研究的系统,求得⼀个合理运⽤⼈⼒、物⼒和财⼒的最佳⽅案,发挥和提⾼系统的效能及效益,最终达到系统的最优⽬标。
“最优化设计”是在现代计算机广泛应用的基础上发展起来的一项新技术,是根据最优化原理和方法,综合各方面的因索,以人机配合方式或用“自动探索”的方式,在计算机上进行的半自动或自动设计,以选出在现有工程条件下的最好设计方案的一种现代设计方法[1]。
实践证明,最优化设计是保证产品具有优良的性能,减轻自重或体积,降低工程造价的一种有效设计方法。
同时也可使设计者从大量繁琐和重复的计算工作中解脱出来,使之有更多的精力从事创造性的设计,并大大提高设计效率。
最优化设计方法己陆续应用到建筑结构、化工、冶金、铁路、航空、造船,机床、汽车、自动控制系统、电力系统以及电机、电器等工程设计领域,并取得了显著效果。
设计上的“最优值”是指在一定条件(各种设计因素)影响下所能得到的最佳设计值。
最优值是一个相对的概念。
它不同于数学上的极值,但有很多情况下可以用最大值或最小值来表示。
概括起来,最优化设计工作包括以下两部分内容[1]1)将设计问题的物理模型转变为数学模型。
建立数学模型时要选取设计变量,列出目标函数,给出约束条件。
目标函数是设计问题所要求的最优指标与设计变量之间的函数关系式;2)采用适当的最优化方法,求解数学模型。
可归结为在给定的条件(例如约束条件)下求目标函数的极值或最优值问题。
本章将根据前几章所提供的理论基础,以理论排量50/q ml r =、压力16MPa 、转速为1500r/min 时单位体积排量最大为目标,建立多齿轮泵优化设计的数学模型,并用C 语言编制优化设计的计算程序。
5.1 数学模型[1][11]任何一个最优化问题均可归结为如下的描述,即:在满足给定的约束条件(可行域D 内)下,选取适当的设计变量X ,使其目标函数()f X 达到最优值其数学表达式(数学模型)为:设计变量:12[...]T n X x x x = n X D E ∈⊂在满足约束条件:()0v h X = (1,2,...,v p =)()0u g X ≤ (1,2,...,u m =)的条件下,求目标函数11()()qj j f X f X ω==⋅∑的最优值。
最优化理论与方法
一、优化理论
1、数学优化理论
数学优化理论是指从数学角度研究如何求解优化问题的理论,也就是
说如何找到满足约束条件的最优值,以最大化或最小化目标函数的值。
它
是数学分析和应用数学解决实际问题的理论基础。
数学优化理论主要研究
的内容包括求解约束条件的最优值的方法和算法、算法的优劣比较和选择、特殊问题的特性、最优控制理论、非约束优化问题、多目标优化问题等。
2、随机优化理论
随机优化理论是指通过有限的或无限的随机试验来求解模糊优化函数
的数学模型。
它研究的是过程中探索函数的估值,以及试验的技术问题,
例如:优化的路径,调整规则,控制收敛精度,弱迭代全局,复杂度分析
等等。
使用随机优化的方法可以实现对函数局部和全局极值的多次和对比,而且复杂度比较低,不易受到初始解的影响,因而被广泛应用于进行复杂
优化问题的求解。
3、迭代优化理论
迭代优化理论是基于迭代法来解决优化问题的理论。
结构优化设计的理论与实践第一章:绪论结构优化设计是指在保证结构强度、刚度、稳定性等基本要求的前提下,通过计算机模拟分析,对结构进行合理的形状、尺寸和材料参数的选择,使得结构在满足功能要求的前提下,重量尽量轻、构造紧凑、材料利用率高的设计方法。
结构优化设计是现代工程高效设计的重要手段之一,已经被广泛应用于轮船、飞机、汽车、建筑等领域,成效显著。
本文将从理论和实践两个方面探究结构优化设计的基本理论、方法以及应用案例,旨在深入探究结构优化设计的发展现状以及未来趋势。
第二章:结构优化设计的理论基础结构优化设计理论的基础是传统结构设计理论及其求解方法,结构优化设计则采用了现代优化理论和计算力学方法。
1. 优化理论优化设计理论主要包括多目标优化方法、动态规划方法、遗传算法等多种优化算法。
多目标优化方法是指将多个不同的、相互矛盾的目标函数进行优化,通过确定各个目标函数相对权重,找到一个尽量平衡的解决方案。
动态规划方法是一种基于DP算法的最优化方法,主要通过对整个问题空间的搜索,找到使得目标函数最优的解。
遗传算法则是通过模拟生物进化过程,产生新的个体解,并运用自然选择等筛选机制,得到最优解的一种计算机模拟方法。
2. 计算力学方法计算力学方法是将材料力学知识融入结构设计中的一种方法,主要包括有限元法、有限差分法、模态分析等方法。
其中有限元法是应用最为广泛的一种计算力学方法,主要利用网格模型对结构进行建模,采用数值求解方法计算出结构各点的应力、位移等物理量,通过分析这些物理量的变化情况,评价结构的稳定性、强度等。
第三章:结构优化设计的实践应用1. 航空航天领域航空航天领域是结构优化设计应用的典型案例之一,航空航天器的质量和性能直接关系到它的飞行能力。
现在,结构优化设计已经成为航空航天器设计的一个重要环节。
利用优化设计方法,可以有效地降低航空航天器的整体重量,提高空中性能。
2. 汽车领域汽车作为现代城市生活的必需品,其结构设计同样对其性能和安全性有着重要的影响。