第5章1 有旋流动
- 格式:pdf
- 大小:510.92 KB
- 文档页数:7
第五章不可压缩流体的二维流动引言:在前面几章主要讨论了理想流体和黏性流体一维流动,为解决工程实际中存在的一维流动问题打下了良好的基础。
本章讨论理想不可压流体的二维有势流动以及二维黏性流体绕物体流动的基本概念。
第一节有旋流动和无旋流动刚体的运动可分解为移动和转动两种运动形式,流体具有移动和转动两种运动形式。
另外,由于流体具有流动性,它还具有与刚体不同的另外一种运动形式,即变形运动(deformationmotion)。
本节只介绍流体旋转运动即有旋流动(rotation—alflow)和无旋流动(irrotational flow)。
一、有旋流动和无旋流动的定义流体的流动是有旋还是无旋,是由流体微团本身是否旋转来决定的。
流体在流动中,如果流场中有若干处流体微团具有绕通过其自身轴线的旋转运动,则称为有旋流动,如果在整个流场中各处的流体微团均不绕自身轴线的旋转运动,则称为无旋流动。
强调“判断流体流动是有旋流动还是无旋流动,仅仅由流体微团本身是否绕自身轴线的旋转运动来决定,而与流体微团的运动轨迹无关。
”举例虽然流体微团运动轨迹是圆形,但由于微团本身不旋转,故它是无旋流动;在图5—1(b)中,虽然流体微团运动轨迹是直线,但微团绕自身轴线旋转,故它是有旋流动。
在日常生活中也有类似的例子,例如儿童玩的活动转椅,当转轮绕水平轴旋转时,每个儿童坐的椅子都绕水平轴作圆周运动,但是每个儿童始终是头向上,脸朝着一个方向,即儿童对地来说没有旋转。
二、旋转角速度(rotationalangularvelocity)为了简化讨论,先分析流体微团的平面运动。
如图5—2所示有一矩形流体微团ABCD在XOY平面内,经丛时间后沿一条流线运动到另一位置,微团变形成A,B,C,D。
流体微团在Z周的旋转角速度定义为流体微团在XOY平面上的旋转角速度的平均值速度环量是一个标量,但具有正负号。
速度环量的正负号与速度方向和积分时所取的绕行方向有关。
第5章 粘性流体动力学基本方程组5.1 粘性流体动力学基本方程流体运动所遵循的规律是由物理学三大守恒定律规定的,即质量守恒定律,动量守恒定律和能量守恒定律。
这三大定律对流体运动的数学描述就是动力学基本方程组。
但这个方程组是不封闭的,要使其封闭还需加上辅助的物性关系等。
一般情况下,现在还求不出这个方程组的解析解,但研究这个方程组的性质却具有极其重要的意义,因为所有的流动现象都是由这个方程组所规定的。
粘性流动的一个基本特征是流动的有旋性。
因此研究涡的产生、输运和扩散就是很重要的了。
这些性质也都是由流体动力学基本方程组所规定的。
对流体运动的描述有两种方法,即拉格朗日法和欧拉法;对基本定理的数学表述也有两种方法,即积分形式和微分形式。
本章将采用欧拉法和微分形式来表述基本方程。
5.1.1 质量守恒定律——连续方程连续方程是质量守恒定律在运动流体中的数学表达式。
由于不涉及力的问题,因此粘性流体力学与非粘性流体方程完全相同,在非粘性流体中所做的推导和讨论在这里全部有效。
考察流体通过一微元体的界面所引起的微元体内质量的变化问题。
根据质量守恒定律,单位体积上通过微元体界面流出的质量流量即矢量ρu 的散度()ρ∇⋅u ,它应等于微元体内单位时间单位体积所减少的质量:()0tρρ∂+∇⋅=∂u (5.1.1) 展开后得:()()()0u v w t x y zρρρρ∂∂∂∂+++=∂∂∂∂ (5.1.2) 连续方程表示单位时间内流人流出微元体的质量必与密度变化相平衡。
对于定常流,此式可变为:()()()0u v w x y zρρρ∂∂∂++=∂∂∂ (5.1.3) ()0ρ∇⋅=u (5.1.4)对于不可压缩流,(5.1.2)式变为:()()()0u v w x y z∂∂∂++=∂∂∂ 即iiu x ∂= 0 (5.1.5) 由张量分析的知识可知,iiu x ∂是应变量张量的主对角线上三元素之和,恒为常数,表示微元体的体积变化率。
第五章 流体旋涡运动基础§5-1 旋涡运动的几个基本概念一、涡量场对有旋流动,0≠ω ,而),,,(t z y x f =ω,所以对有旋流动的流场中同时存在一个旋涡场,或称涡量场或角速度场。
k Ωj Ωi ΩΩz y x++= (1)zy w Ωx ∂∂-∂∂=υ xw z u Ωy ∂∂-∂∂=(2) yu x Ωz ∂∂-∂∂=υ 满足涡量连续性方程:0=∂∂+∂∂+∂∂zΩy Ωx Ωzy x (3) 二、涡线同速度场中引进流线、流管和流量的定义一样。
下面我们定义涡线、涡管、涡束以及旋涡强度(涡通量)。
涡线――涡线是旋涡场中的一条曲线,在某一瞬时,曲线上各点的切线方向与该点流体微团的角速度ω方向重合。
(Ω 方向的判别,根据右手螺旋法则)对非定常流动涡线的形状随时间而变,对定常流动,涡线形状不随时间而变。
与流线一样,涡线本身也不会相交。
取k z j y i x sd d d d ++=为涡线上一微元线段。
类似于流线微分方程,或由0d d d d ==⨯zyx ΩΩΩk j is Ωz y x可得到涡线微分方程为:),,,(d ),,,(d ),,,(d t z y x Ωzt z y x Ωy t z y x Ωx z y x == (4)三、涡管和涡束涡管-在涡量场中任取一不是涡线的封闭曲线,通过封闭曲线上每点的涡线,这些涡线形成一管状表面,称为涡管。
涡束-涡管中充满作旋转运动的流体,称为涡束。
四、涡通量涡通量-通过任一开口曲面的涡量的总和。
通过开口曲面A 涡通量为:A n ΩJ Ad ⎰⎰⋅=n为d A 的外法线单位向量 对于封闭曲面:A n ΩJ Ad ⎰⎰⋅=由于:0=∂∂+∂∂+∂∂zΩy Ωx Ωzy x 所以:0d =⋅=⎰⎰A n ΩJ A五、速度环量定义如下:在流场中任取一通曲线AB 。
AB 曲线上任一点的速度为V,在该点B 附近的曲线上任取一微元线段s d ,V 与sd 的夹角为α。
第五章理想不可压流体的二维无旋和有旋流动1.二维流动流函数定义、性质;2.二维流动流函数方程、定解条件、应用;3.复势、复速度求解无界二维流动、应用——定常圆柱绕流;4.奇点镜像法——平壁面和圆柱干扰下二维流动.流函数基本知识理想流体流动求解——叠加原理应用第五章理想不可压流体的二维无旋和有旋流动解不可压理想流体的平面和轴对称流动思路:运动学和动力学分解(位流理论)第四章确定不可压理想流体无旋流动时,直接利用连续方程()和无旋()条件求解速度场(拉普拉斯方程:),利用柯西——拉格朗日积分求压力场(将运动学问题和动力学问题分解)。
0=⋅∇V 0=⨯∇V 0=∆ϕ利用平面流动连续方程定义一个流函数,不可压平面无旋流动流函数和势函数均满足拉普拉斯方程(运动学方程),进而可以进行基本解叠加。
ψ不可压平面无旋流动流函数和势函数满足柯西---黎曼条件,因而可以利用复变函数工具。
均匀来流垂直于长柱体绕流,机翼中部流动近似为平面流动第五章理想不可压流体的二维无旋和有旋流动5.1 不可压平面流动和轴对称流动的流函数及性质5.1.1 平面流动和轴对称流动的定义平面流动:任一时刻,流场中各点的流动速度都平行于某一固定平面,且各物理量在此平面的垂直方向上没有变化。
若流动平行于xy平面,则平面流动速度及任一物理量B表示为:),,(,0),,,(),,,(t y x B B w t v x v v t y x u u ====轴对称流动:任一时刻,流场中各物理量在以某轴线为中心的同一圆周上没有变化。
若取z轴为对称轴,则各物理量满足:,0==∂∂εεV 第五章理想不可压流体的二维无旋和有旋流动5.1 不可压平面流动和轴对称流动的流函数及性质5.1.2 平面流动和轴对称流动的流函数流函数定义:对不可压流动,连续方程:,展开为:0=⋅∇V 0)(122311132321=∂∂+∂∂q V h h q V h h h h h 对定常可压缩流动,连续方程:,展开为:0)(=⋅∇V ρ0)(122311132321=∂∂+∂∂q V h h q V h h h h h ρρ定义流函数ψ流函数的概念是1781年Lagrange 首先引进的第五章理想不可压流体的二维无旋和有旋流动或者:通常把不可压平面流动的流函数称作拉格朗日流函数不可压平面流动(直角坐标中)的流函数(q 1=x, q 2=y, q 3=z )(h 1=h 2=h 3=1):不可压平面流动(极坐标)的流函数:(q 1=r,q 2=θ,q 3=z )23111322,V h h q V h h q -=∂∂=∂∂ψψ23111322,V h h q V h h q ρψρψ-=∂∂=∂∂v xu y -=∂∂=∂∂ψψ,(h 1=1,h 2=r ,h 3=1):θψθψV rrV r -=∂∂=∂∂,第五章理想不可压流体的二维无旋和有旋流动# 柱坐标z, r, ε不可压轴对称流动(柱坐标及球坐标中)的流函数:# 球坐标R,θ,ε23111322,V h h q V h h q -=∂∂=∂∂ψψ(h 1=1,h 2=1,h 3=r):(h 1=1,h 2=R,h 3=Rsinθ):r z rV z rV r-=∂∂=∂∂ψψ,θθψθθψV R RV R R sin ,sin 2-=∂∂=∂∂2 r第五章理想不可压流体的二维无旋和有旋流动)()(4)()(42122222=+---++++-∞r d x d x Qr d x d x Q r U ππr=0 满足流线方程,即ψ=0的流线通过x 轴,另解方程)2(,0)()()()(22222222∞==+--++++-U Qb rd x d x b rd x d x b r π求速度场:V复势:复速度:共轭复速度:复速度的模:共轭复速度的表示方法:(2)复速度:以平面无旋流场的速度分量组成的复数U=u+ivψφi z W +=)(V iv u xi x dz dW =-=∂∂+∂∂=ψφiv u dzdW+=V v u dzdW=+=22αi Ve iv u dzdW -=-=dzWd artg u v tg i V dz dW ==-=-1),sin (cos ααα复速度:ivu V +=,x qφ=∂若平面点源在(x 0, y 0)θππψ'=--=-2)(2001q x x y y tg q 20202)()(,In 2y y x x q-+-==σσπφ)(2),(20202y y q v x x qu -=-=πσπσ)(22)(2)(0z z In qz In q i In q z W -='='+=ππθσπm(3)平面偶极子两无限长直线点源相距δl ,线源强度分别为q (位于z=-δl )和-q (位于z=0),当δl →0时,称这一对直线点源为平面偶极子。