理论力学1质点动力学
- 格式:pptx
- 大小:955.52 KB
- 文档页数:19
学生整理,时间有限,水平有限,仅供参考,如有纰漏,请以老师、课本为主。
第一章质点力学(1)笛卡尔坐标系 位置:k z j y i x ++=r速度:k z j y i x dtr d ...v ++== 加速度:k z j y i x dtv d ......a ++== (2)极坐标系坐标:j i e r θθsin cos += j i e θθθcos sin +-= r e r =r 速度:r r .v = .v θθr =加速度:2...θr r a r -= .....2θθθr r a += (3)自然坐标系(0>θd ) 坐标:ds r d e t =θd e d e t n = θρd ds = 速度:t e v v = 加速度:n t e v e v ρ2.a +=(4)相对运动(5)牛顿运动定律 牛顿第一定律:惯性定律 牛顿第二定律:)(a m v m P dtP d dt v d m F ==== 牛顿第三定律:2112F F -= (6)功、能量vF dt rd F dt dW P rFd dA ⋅=⋅=== (7)(7)有心力第二章 质点动力学的基本定理知识点总结: 质点动力学的基本方程质点动力学可分为两类基本问题:. (1) .已知质点的运动,求作用于质点的力; (2) 己知作用于质点的力,求质点的运动。
动量定理 动量:符号动量定理微分形式动量守恒定律:如果作用在质点系上的外力主失恒等于零,质点系的动量保持不变。
即:质心运动定理:质点对点O 的动量矩是矢量mv r J i ⨯= 质点系对点0的动量矩是矢量i ni nii i i v m r J J ∑∑=⨯==1若z 轴通过点0,则质点系对于z 轴的动量矩为∑==ni z z z J M J ][若C 为质点系的质心,对任一点O 有 c c c J mv r J +⨯=02. 动量矩定理∑∑=⨯=⨯=nie i i n i i i i M F r v m r dt d dt dJ )()( 动量矩守恒:合外力矢量和为零,则动量矩为常矢量。
质点动力学知识点总结质点动力学是物理学中非常重要的一个分支,它研究的是质点在力的作用下的运动规律。
在质点动力学中,我们通常假设质点的大小可以忽略不计,只考虑它的位置和速度,这样我们就可以用简单的数学模型描述质点的运动。
在本文中,我们将系统地总结质点动力学的一些基本知识点,包括质点的运动方程、牛顿运动定律、动量和能量等。
希望本文可以帮助读者更好地理解质点动力学的基本概念和原理。
一、质点的运动方程质点的运动可以用位置矢量 r(t) 来描述,它随时间 t 的变化可以用速度矢量 v(t) 来表示。
根据牛顿第二定律 F=ma,质点的运动方程可以写成:m*a = F,其中 m 是质点的质量,a 是质点的加速度,F 是作用在质点上的力。
根据牛顿运动定律,我们可以利用力学原理得到质点在外力作用下的运动规律。
二、牛顿运动定律牛顿运动定律是质点动力学的基础,它包括三条定律:1. 第一定律:物体静止或匀速直线运动时,外力平衡。
这是牛顿运动定律中最基本的一条定律,也是质点动力学的基础。
2. 第二定律:力的大小与加速度成正比,方向与加速度的方向相同。
这条定律描述了质点在外力作用下的加速度与力的关系,是质点动力学的重要定律之一。
3. 第三定律:作用力与反作用力大小相等,方向相反,且作用在不同物体上。
这条定律描述了两个物体之间的相互作用,也是质点动力学中不可或缺的定律之一。
三、动量动量是质点运动的另一个重要物理量,它定义为质点的质量 m 乘以它的速度 v,即 p=m*v。
根据牛顿第二定律 F=dp/dt,我们可以推导出动量的变化率与外力的关系,从而得到动量守恒定律。
动量守恒定律是质点动力学中非常重要的一个定律,它描述了在没有外力作用下,质点的动量将保持不变。
根据动量守恒定律,我们可以在实际问题中很方便地利用动量守恒来解决问题。
四、能量能量是质点动力学中另一个重要的物理量,它定义为质点的动能和势能的总和。
动能是质点由于速度而具有的能量,它和质点的质量和速度有关;势能是质点由于位置而具有的能量,它和质点的位置和作用力有关。
第六章 质点动力学6-1 惯性参考系中的质点动力学一.惯性参考系1.一般工程问题:2.人造卫星、洲际导弹问题:3.天体运动问题:二.牛顿定律1.第一定律(惯性定律):2.第二定律(力与加速度之间的关系定律):3.第三定律(作用与反作用定律):三.质点的运动微分方程 将动力学基本方程)(F a m =表示为微分形式的方程,称为质点的运动微分方程。
1.矢量形式(自:会使用微分形式)) )( ( 22方程为质点矢径形式的运动式中t r r F dtr d m == 2.直角坐标形式) )()()( ( 222222运动方程为质点直角坐标形式的式中⎪⎩⎪⎨⎧===⎪⎪⎪⎩⎪⎪⎪⎨⎧===t z z t y y t x x Z dty d m Y dt y d m X dt x d m 3.自然形式b n F F v m F dt s d m ===0222ρτ ), ,,)((轴上的投影轴和轴自然轴系在分别为力运动方程。
为质点的弧坐标形式的式中b n F F F F t s s b n ττ= 四.质点动力学的两类基本问题1.已知质点的运动规律,求作用于质点上的力;----求微分问题。
2.已知质点上所受的力,求质点的运动规律。
----按质点运动的初始条件和力的函数关系对运动微分方程进行求解,从数学角度看,是解微分方程或求积分,并确定相应的积分常数的问题。
第一类问题解题步骤和要点:①正确选择研究对象(一般选择联系已知量和待求量的质点)。
②正确进行受力分析,画出受力图(应在一般位置上进行分析)。
③正确进行运动分析(分析质点运动的特征量)。
④选择并列出适当形式的质点运动微分方程(建立坐标系)。
⑤求解未知量。
2.第二类:已知作用在质点上的力,求质点的运动(积分问题)已知的作用力可能是常力, 也可能是变力。
变力可能是时间、位置、速度或者同时是上述几种变量的函数。
如力是常量或是时间及速度函数时,可直接分离变量积分dt dv 。
第8章质点动力学
[例8-1]桥式起重机跑车吊挂一质量为m的重物,沿水平横梁作
ν
匀速运动,速度为,重物中心至悬挂点距离为l。
突然刹车,
重物因惯性绕悬挂点O向前摆动,求钢丝绳的最大拉力。
解:1)以重物为研究对象2)受力分析mg
F T
a n a t 3)运动分析4)牛顿第二定律
ϕ
sin mg ma t −=ϕ
cos mg F ma T n −=∑=t
t F ma ∑=n
n F ma 5)补充方程
ϕsin mg dt
dv
m −=ϕcos 2
mg F l
v
m T −=
mg
F T
a n a t ϕsin mg dt
dv
m −=ϕcos 2
mg F l
v
m T −=0<dt
dv 重物减速
=ϕ0
max v v =max
T T , 0F F ==时ϕ)
1(20
max
T gl
v
mg F +=
a n
F N
a t
a n
ma
mg
F N
a t a n
mg
O
解释非惯性系一些物理现象
飞机急速爬高时
飞行员的黑晕现象
爬升时:a > 5g
惯性参考系——地球
非惯性参考系——飞机
动点——血流质点
牵连惯性力向下,从心脏流向头部的血流受阻,造成大脑缺血,形成黑晕现象。
飞行员的黑晕与红视现象
在北半球的弹道偏右;在南半球的弹道偏左
a
C
F
IC。
质点动力学知识点总结质点动力学是物理学中的一个重要分支,研究的是质点在外力作用下的运动规律。
在学习质点动力学的过程中,我们需要掌握一些基本的知识点,这些知识点对于理解质点的运动规律和解决相关问题非常重要。
本文将对质点动力学的一些重要知识点进行总结,希望能够帮助大家更好地理解和掌握这一部分内容。
1. 质点的运动方程。
质点的运动方程是描述质点在外力作用下的运动规律的基本方程。
根据牛顿第二定律,质点所受的合外力等于质点的质量乘以加速度,即。
\[ F = ma \]其中,F表示合外力,m表示质点的质量,a表示质点的加速度。
根据质点的运动状态不同,可以得到质点的运动方程,包括匀速直线运动、变速直线运动、曲线运动等。
2. 动量和动量定理。
质点的动量是描述质点运动状态的重要物理量,动量的大小等于质点的质量乘以速度,即。
\[ p = mv \]动量定理则描述了质点所受外力作用下动量的变化规律,即。
\[ F\Delta t = \Delta p \]其中,F表示外力,Δt表示时间间隔,Δp表示动量的变化量。
动量定理对于分析质点的碰撞、反冲等问题非常有用。
3. 动能和动能定理。
质点的动能是描述质点运动状态的另一个重要物理量,动能的大小等于质点的质量乘以速度的平方再乘以1/2,即。
\[ K = \frac{1}{2}mv^2 \]动能定理描述了质点所受外力作用下动能的变化规律,即。
\[ W = \Delta K \]其中,W表示外力所做的功,ΔK表示动能的变化量。
动能定理对于分析质点的机械能守恒等问题非常重要。
4. 势能和势能曲线。
质点的势能是描述质点在外力场中的势能状态的物理量,势能的大小与质点所处位置有关。
势能曲线描述了质点在外力场中势能随位置的变化规律,通过势能曲线可以分析质点的稳定平衡、振动、受力情况等问题。
5. 角动量和角动量定理。
质点的角动量是描述质点绕某一轴旋转运动状态的物理量,角动量的大小等于质点到轴的距离与质点的动量的乘积,即。