理论力学 动力学 达朗贝尔原理
- 格式:pdf
- 大小:9.46 MB
- 文档页数:110
理论力学达朗贝尔原理达朗贝尔原理(d'Alembert's principle)是理论力学中的一个重要原理,它为研究物体在平衡或运动状态下受力情况提供了重要的理论基础。
达朗贝尔原理的提出,极大地推动了理论力学的发展,对于解决复杂的力学问题具有重要意义。
达朗贝尔原理的核心思想是,在运动坐标系中,对于一个质点系的平衡或运动状态,可以把系统的动力学问题转化为静力学问题来处理。
这就是说,对于一个质点系,可以找到一个虚拟的平衡系统,使得外力在这个虚拟系统中所做的功等于零。
通过这个虚拟系统的构建,我们可以简化动力学问题的求解过程,使得复杂的运动问题变得更加清晰和直观。
达朗贝尔原理的应用范围非常广泛,不仅可以用于刚体的运动问题,还可以用于弹性体、流体等物体的运动问题。
在工程实践中,达朗贝尔原理被广泛应用于各种机械系统的设计与分析中,例如汽车、飞机、船舶等。
通过运用达朗贝尔原理,工程师可以更加准确地分析系统的受力情况,从而设计出更加安全可靠的机械系统。
除此之外,达朗贝尔原理还在理论物理学中有着重要的应用。
在量子力学和相对论物理中,达朗贝尔原理也被广泛地运用于分析粒子的运动规律和相互作用。
通过引入虚拟位移和虚拟功的概念,达朗贝尔原理为理论物理学提供了一种全新的研究方法,为科学家们深入探索微观世界提供了重要的理论工具。
总的来说,达朗贝尔原理作为理论力学中的重要原理,为研究物体的运动和受力问题提供了重要的理论基础。
它的提出和应用,极大地推动了理论力学和工程实践的发展,为科学家们和工程师们提供了重要的研究方法和设计工具。
在今后的研究和实践中,我们应该深入理解达朗贝尔原理的原理和应用,不断拓展其在理论力学和工程领域的应用范围,为人类的科学技术进步做出新的贡献。
基础部分——动力学第12 章达朗贝尔原理惯性力Jean le Rond d’Alembert (1717-1783)达朗贝尔达朗贝尔原理达朗贝尔原理具体内容:a F F m −=−='惯性力定义:质点惯性力aF m −=I 一、惯性力的概念aF m −='2222d d d d z ty m t[注意]不是真实力直角坐标自然坐标aF m −=I−a m 质点的达朗贝尔原理二、质点的达朗贝尔原理合力:NF I FI N =++F F F 注意:◆◆优点:◆可以将动力学问题从形式上转化为静力学动静法◆给动力学问题提供了一种统一的解题格式。
如何测定车辆的加速度?虚加惯性力解:达朗贝尔原理[例12-1]IF 摆式加速计的原理⇒⇒构成形式上的平衡力系质点系的达朗贝尔原理内力外力表明:惯性力系外力平面任意力系实际应用时,同静力学问题一样,选取研究对象;刚体惯性力系的简化简化方法一、质点系惯性力系的主矢与主矩无关有关二、刚体惯性力系的简化◆质心C结论:1IF2IF3IF IRFCm aF−=IR⇒交点O简化tI iF nI iF αα特殊情形:●●αOz O J M −=I 作用在O 点C m a F −=IR t I iFn I iFn IRFt IRF OM I αt I iFn I iFα[思考]求:向交点O 简化的主矢?主矩?)(41t IR↑=L m F αOCαωL /4)(412n IR →=L m F ωα2I 487mL M O=(逆)①2IR ωme F =②αCz O J M −=I (与α反向)③0, 0I IR ==O M F (惯性力主矢、主矩均为零)IRF OM I α(作用于质心C )C m a F −=IR αCz C J M −=I 质心C IRF CM I α特殊情形:●●⇒[思考]εmr F =t IRrR r mF −=22n IRωε2I 21mr M C=求:惯性力系向质心C 简化的主矢?主矩?达朗贝尔原理上节课内容回顾(质点惯性力)或:质心C Cm a F −=IRαOz O J M −=I Cm a F −=IR 交点O t I iFn I iFn IRFt IRF OM I ααOz O J M −=I C m a F −=IR 交点O t I iFn I iFn IRFt IRF OM I αCm a F −=IR αCz C J M −=I质心C IRF CM I α质心C[思考]求:向交点O 简化的主矢?主矩?)(41t IR↑=L m F αOCαωL /4)(412n IR →=L m F ωα2I 487mL M O =问:若向质心C 简化,则主矢?e =−∑Cx xma F 平面运动微分方程0)( e=−∑αCz C J MF 0e =−∑Cy yma F IRF CM I α⇒⇒[例12-2]解:惯性力系αt RI Fn IRFn AFt A FAM I αtRI Fn IR F nA F t AF AM I α惯性力系)解题步骤及要点:注意:F IR = ma C M I O = J Oz αα思考:AC CθASO[例12-3]先解:惯性力系m gF IR M I C F sF NαR a C =CθASOm gF IRF OxF OyM I C再惯性力系M O[例12-4]解:惯性力系 1I F OM I 2I F α)(=∑F OMα11r a =2211 α22r a =1I F OM I 2I F α[思考题] A BCD E )(118↓=g a A mgF 113T =111≥f主动力系惯性力系RFIRF OMIRF IRF OM I tI iFn I iF∑∑==ii iyzi i i zx z y m J x z m J RF IRF OM I tI iFn I iFRF IRF OM Ill F M l F M y x y x /)]()[( 2I I 2R ⋅−+⋅−ll F M l F M x y x y /)]()[(2I I 2R ⋅++⋅+−ll F M l F M y x y x /)]()[(1I I 1R ⋅++⋅+−ll F M l F M x y x y /)]()[( 1I I 1R ⋅−+⋅−xF R −约束力静动主动力惯性力动约束力I x 02=ωJ 质心过)04222≠+=−ωααωωα惯性主轴z 轴为中心惯性主轴静平衡过质心⇒动平衡中心惯性主轴⇒[例12-5]静平衡动平衡爆破时烟囱怎样倒塌θOAωα解:m g)cos 1(3θ−lg F OxF OyMI On RI F t IRF 受力分析[例12-6])]([)(sin ⋅−−+−+⋅x x l l x x l mg ααθ1()(sin mgl −θB注意:求内力(矩)时惯性力的处理!xθxAB()ml x lα−m l lαBM BxF x mg lByF12-5-1 关于惯性力系的简化OA ωαMI OnR I FtIRFOAωαMI CnRIFtRIFC 思考思考12-5-2 刚体平面运动时有关动力学量的计算mv+C12-5-3 本章知识结构框图达朗贝尔原理惯性力系的简化质点系达朗贝尔原理定轴转动的约束力一般质点系刚体静、动约束力静、动平衡课后学习建议:◆。
第16章达朗伯( D′Alembert)原理※引言※几个工程实际问题※质点的惯性力与动静法※质点系的达朗伯原理※刚体惯性力系的简化※动绕定轴转动刚体的轴承动反力※结论与讨论引言♉引进惯性力的概念,将动力学系统的二阶运动量表示为惯性力,进而应用静力学方法研究动力学问题——达朗伯原理(动静法)。
♉达朗伯原理为解决非自由质点系的动力学问题提供了有别于动力学普遍定理的另外一类方法。
♉达朗伯原理一方面广泛应用于刚体动力学求解动约束力;另一方面又普遍应用于弹性杆件求解动应力。
几个工程实际问题爆破时烟囱怎样倒塌几个工程实际问题几个工程实际问题sF I F NFm axzyO mAF N ——约束力;F ——主动力;§16-1 惯性力·质点的达朗伯原理根据牛顿定律m a =F + F NF + F N -m a =0F I =-m a F + F N +F I =0——质点的惯性力。
非自由质点的达朗伯原理作用在质点上的主动力和约束力与假想施加在质点上的惯性力,形式上组成平衡力系。
F I =-m aF + F N +F I =0应用达朗伯原理求解非自由质点动约束力的方法动静法1、分析质点所受的主动力和约束力;2、分析质点的运动,确定加速度;3、在质点上施加与加速度方向相反的惯性力。
非自由质点达朗贝尔原理的投影形式00N N =++=++=++I I y y y x x x F F F F F F F F FωBACll l lααO 1x 1y 1例题16-1离心调速器已知:m 1-球A 、B 的质量;m 2-重锤C 的质量;l -杆件的长度;ω-O 1 y 1轴的旋转角速度。
求:ω-α的关系。
解:1、分析受力:以球B (或A )和重锤C 为研究对象,分析所受的主动力和约束力BF F T2CF T3F T1′2、分析运动:施加惯性力。
球绕O 1y 1轴作等速圆周运动,惯性力方向与法向加速度方向相反,其值为F I =m 1l ω2sin αF IBF F T2CF T3F T1′F I3、应用动静法:)cos (00)sin (sin 0T2T111T2T1211=-+=∑=+-=∑αααωF F g m F F F l m F y x 对于重锤CT1T12T1T3T1cos 2F F gm F F F ===''',,α对于球Bg l m m m 2121cos ωα+=例题16-2y振动筛平衡位置Oy=a sin t求:颗粒脱离台面的最小振动频率平衡位置Oy yma m g F NF I解:通过分析受力、分析运动并施加惯性力,确定颗粒脱离台面的位置和条件。
主讲教师薛孔宪纪冬梅§15-1 惯性力的概念§15-2 达朗贝尔原理§15-3 惯性力系的简化§15-4 定轴转动刚体的动约束力·静平衡与动平衡的概念前面介绍的动力学普遍定理,为解决质点系动力学问题提供了一种普遍的方法。
达朗伯原理为解决非自由质点系动力学问题提供了另一种普遍的方法。
这种方法的特点是:用静力学研究平衡问题的方法来研究动力学的不平衡问题,因此这种方法又叫动静法。
由于静力学研究平衡问题的方法比较简单,也容易掌握,达朗贝尔原理一方面广泛应用于刚体动力学求解动约束力;另一方面又普遍应用于弹性杆件求解动应力。
根据动力学基本方程有N ma F F =+r r r 将上式改写成()0N F F ma ++−=r r r 令I F ma =−r r 于是,假想是一个力,称之为质点的惯性力。
的大小等于质点的质量与其加速度大小的乘积,方向与其加速度的方向相反。
I F I F 则有0N I F F F ++=r r r 即:在质点运动的任一瞬时,作用于质点上的主动力、约束反力和假想加在质点上的惯性力构成形式上的平衡力系。
这就是质点的达朗贝尔原理。
设质量为的质点M ,沿图示轨迹运动,在某瞬时作用于质点M 上的主动力为,约束反力为,其加速度为。
m F N F a惯性力对于质点本身,惯性力是假想的。
但确有大小等于ma的力-ma存在,它作用在使质点运动状态发生改变的物体上。
例如,人推车前进,这个力向后作用在人手上。
正是通过这个力,我们感到了物体运动的惯性,称这个力为惯性力。
应用达朗贝尔原理求解非自由质点动约束力的方法1、分析质点所受的主动力和约束力;2、分析质点的运动,确定加速度;3、在质点上施加与加速度方向相反的惯性力。
质点的达朗贝尔原理0N I F F F ++=r rI N I N I N ==++==++==++∑∑∑iz z z z iy y y y ix x x x F F F F F F F F F F F F例15-1 球磨机的滚筒以匀角速度绕水平轴O 转动,内装钢球和需要粉碎的物料,钢球被筒壁带到一定高度脱离筒壁,然后沿抛物线轨迹自由落下,从而击碎物料,如图。