结构力学(第二章)-静定刚架
- 格式:ppt
- 大小:1.53 MB
- 文档页数:38
长沙理工结构力学期末考试题库和答案第二章静定梁与钢架结构力学超静定第二章静定梁及静定刚架一、判断题1.静定结构在荷载作用下产生的内力与杆件弹性常数、截面尺寸无关。
( O )2.计算位移时,对称的静定结构是指杆件几何尺寸、约束、刚度均对称的结构。
( O ) 3.静定结构在支座移动、变温及荷载分别作用下,均产生位移和内力。
( X )4.几何不变体系一定是静定结构。
( X )25.图示结构 MK = ql/2(内侧受拉)。
( X )q6.图示结构中 AB 杆弯矩为零。
( X ) q7.图示结构中 |MAC|=|MBD|。
( O )|8.图示结构中 |MAC|=|MBD。
( O )l9.图示结构 M 图的形状是正确的。
( X ) M 图 10.图示结构|MC|=0 。
( O)11.图示结构中 A、B 支座反力均为零。
d二、选择题12.静定结构有变温时:( C )A. 无变形,无位移,无内力;B. 有变形,有位移,有内力;C. 有变形,有位移,无内力;D. 无变形,有位移,无内力。
13.静定结构在支座移动时:( D )A. 无变形,无位移,无内力;B. 有变形,有位移,有内力;C. 有变形,有位移,无内力; D 无变形,有位移,无内力。
O )(14.静定结构的内力计算与( A )A. EI 无关;B. EI 相对值有关;C. EI 绝对值有关;D. E 无关, I 有关。
15.图示结构MA 、MC (设下面受拉为正)为:( C )A.MA =0 ,MC=Pa/2 ;B.MA =2Pa ,MC=2Pa ;C.MA =Pa ,MC=Pa ;D.MA =-Pa,MC=Pa 。
16.图示结构 MA、 MB (设以内侧受拉为正)为:( DA. MA=-Pa , MB =Pa;B. MA=0 , MB =-Pa ;C. MA=Pa ,MB =Pa ;D.MA=0 , MB =Pa 。
17.图示结构 B 点杆端弯矩(设内侧受拉为正)为:( C )A.MBA = Pa, MBC = -Pa ;B.MBA = MBC = 2Pa;C. MBA = MBC = Pa ;D.MBA = MBC = 0 。
第二章静定梁与静定刚架§2-1 单跨静定梁一、概述1、单跨静定梁的结构形式:水平梁、斜梁及曲梁简支梁、悬臂梁及伸臂梁。
2、3个内力分量的规定:图示(注:1、附加增量;2、成对出现:作用力与反作用力;3、正负号统一)轴力N(截面上应力沿杆轴切线方向的合力):拉力+,压力-剪力Q(截面上应力沿杆轴法线方向的合力):以绕截面邻近小段隔离体顺时针旋转为+,反之为-弯矩M(截面上应力对截面形心的力矩):弯矩使杆件下部受拉时为正,上侧受拉时为负3、截面法、分离体、平衡方程:求指定截面的内力的基本方法。
图示将指定截面假想截开,切开后截面的内力暴露为外力,取任一局部作为隔离体,作隔离体受力图(荷载、反力、内力组成平面一般力系或平面汇交力系),由隔离体的平衡条件可以确定所求截面的三个内力。
平面一般力系平衡方程的三种形式。
注意:平衡方程的正负和内力的正负是完全不同性质的两套符号系统。
受力平衡条件:平面一般力系,平衡方程不同形式(正负号:同方向同符号)轴力=截面一边的所有外力沿杆轴切线方向的投影代数和;剪力=截面一边的所有外力沿杆轴法线方向的投影代数和;弯矩=截面一边的所有外力对截面形心的力矩代数和。
画隔离体受力图时,注意:(1)隔离体与其周围约束要全部截断,而以相应的约束力代替;(2)约束力要符合约束的性质。
截断链杆以轴力代替,截断受弯构件时以轴力、剪力及弯矩代替,去掉支座时要以相应的支座反力代替。
(3)隔离体是应用平衡条件进行分析的对象。
在受力图中只画隔离体本身所受到的力,不画隔离体施给周围的力;(4)不要遗漏力。
包括荷载及截断约束处的约束力;(5)未知力一般假设为正号方向,已知力按实际方向画。
(6)“三清”:截面左右分清、外力清楚、正负号清楚4、内力图:图示1)定义:表示结构上各截面的内力随横截面位置变化规律的图形。
内力方程式:内力与x(表示横截面位置的变量)之间的函数表达式。
2)几点注意(1)弯矩图画在受拉边、不标明正负,轴力图剪力图画在任一边,标明正负。
第一章机动分析一、判断题1.( X ) 2.( X ) 3.( X ) 4.( O )二、选择题5.(B) 6.(D) 7.(C) 8.(A) 9.(A) 10.(A) 11.(C) 12.(B) 13.(A)三、填空题14.几何瞬变15. 或不定值16.两刚片用不完全相交及平行的三根链杆连接而的体系。
17.几何不变且无多余约束。
四、分析与计算题18.几何不变且无多余约束。
19.瞬变。
20.几何不变无多余约束。
21.几何不变无多余约束。
22.瞬变。
23.几何不变无多余约束。
24.可变。
25.几何不变无多余约束。
26.几何不变无多余约束。
27.几何不变,有两个多余约束。
28.几何不变无多余约束。
29.几何不变无多余约束。
30.几何不变无多余约束。
1第二章静定梁与静定刚架一、判断题1.(O)2.(O)3.(X)4.(X)5.(X)6.( X ) 7.( O ) 8.( O ) 9.( X ) 10.( O ) 11.( O )二、选择题12.(C)13.(D)14.(A)15.( C )16.( D )17.( C ) 18.( C )19.(C)20.(B)21.(C )三、填空题22.不变,零23.无关24.位移,变形,内力25.在任意荷载作用下,所有反力和内力都可由静力平衡条件求得确定的、有限的、唯一的解答。
26.0 ,027.20kN·m ,下28.75kN·m ,右29.2Pa,右30.0.5pa ,上31.Pa, 左四、分析与计算题32.33.20.5q lq l28M图PaPaPaPaPaPaPaM图2334. 35.图(k N m 1616M RA ql H 0M B B ql 0.5( )图M Bql 0.522______A36. 37.1050203050().图 M kN m DC BE Aql20.5ql 2ql20.5图M DC B A38. 39.图M m CA B().图 M kN m 2020AB 5DC40. 41.BCD40120图 M ()kN .m A 408040图M PlPl2Pl ABC D442. 43.().图 M kN m 4441535 图M ql 28ql 223ABDC44. 45.()图 M kN .m AB 151515151515C DE F 1515Pa 2/3图Pa 2/3Pa 2/3Pa 2/3M AB46. 47.Pa 2/3Pa /34AB图MPaPa0.5P a0.5P a图M48. 49.PaPaPaPa图M图M550. 51.ql20.5ql20.5ql20.5ql20.5图M图M mmm m52. 53.P aPa0.5P a0.5P a0.5M 图m0.5m54. 55.mmmmqPM 图56. 57.4040404020kN1k N 1k N3k N1k N Q 图 (3.5)N 图 (3.5)658.PPPQ 图N 图59.qaqa qa /2qaqa qa/2qa /232Q 图 N 图60. 61.PPa 图M ACDB图M qa 22qa 2262.ABC ED F Pa Pa 13237第三章 静 定 拱一、判断题1.(X ) 2.(O )3. ( O )二、选择题4.(C )5.(B ) 6.(D ) 7.(B ) 8.( B ) 9.( D )三、填空题10. 0 , 011. 7.5kN ·m , 下四、分析与计算题12. 00K K K M Q N qr ===-13. 20(13)5(31)5(31)K K K M kN m Q kNN kN =-⋅=-=-+14. 100105K K K M kN m Q N kN =-⋅==-8第四章 静定桁架一、判断题1.(O ) 2.(O ) 3.(X ) 4.(X ) 5.(X ) 6.(X )二、选择题7. ( D ) 8.( D ) 9.( D ) 10.(D ) 11.(D )三、填空题12. 0 , 013. BC , FG , ED , DB , DF 14. 1.414P , -2P 15. 0.5P ( 拉 ) 16. P四、分析与计算题17. 18.图M 2Pa2Pa 2Pa Pa6Pa 6ABC D E FG图M 2qa 22qa 22qa 22qa 2qa219.9ABDC806020M ()kN .m 图20. 14/3N P = 21. N 10= N P 22=22. N 1=PN P 22=-23. N 125kN =-N 2=44kNN 310kN =24. N 10= N P 2233=/ 25. N 10= N P 2= N P 322=/ 26. N P 12= N P 22=-27. N P 115=-. N P 2=28. N P 106=. N P 2=29. 1222N P N P =-=30. 1234101052102N N N N =-==-=-kN , kN , kN , kN 31. N P 1=-32.(kN)(kN)(kN)30280/3350/31404050140/3140/320M 图图图Q N 203033.10444().4图 M kN m 链 杆 轴 力, N = -2 kN34.Q 图(kN)1515().图 M kN m 555512.55157.512.52N 图(kN)1535.1502.5272.5452.52150100250250N 图 (kN)903015028026010100Q 图(kN )图 M (kN .m )11第五章 图 乘 法一、判断题1.( X ) 2.( X ) 3.( X ) 4.( X ) 5.( O )二、选择题6.( C ) 7.( C ) 8.( C ) 9.( C ) 10.( B ) 11.( A ) 12.( A ) 13.( C )三、填空题14.(////)ac ad bd bc l 3636+++⋅ 15.()ql EI 424/ ()→ 16.733ql EI /()17.5482Pa EI /() (逆 时 针) 18.4Pa/EA (↓) 19.qa EI qa EA 330625/./+四、分析与计算题20. ()()()C EI Pl h Plh EI ϕ=-⋅⋅⋅=-113322//// ()21. ()AVPl EIh l ∆=+22916// (↓)1222. ()AV Pl EI ∆=↓29243/ 23. ()BH EI ∆=-←11340/ 24. A φ=00016.rad ()25. ()CH Pl EI ∆=-←19483/() 26. ()DH ∆=→00084.m27. K D =4860/EI ()28. AB Pl EI ϕ=492/ ()29. AB Pl EI H ∆=35813/() ()30. BVE I 2M l2=∆(31. ()ϕD MlEI =632.ϕB = 15.625( )EI33. ∆AH = - 5 P a 3 / E I ( ← )34. ∆BH = - 8Pa 3/ E I ( ← ) 35. ϕD EI =835/ () 36.ϕD = /2()52P l E I37.3ϕC 左 =13 /162ql EI ()38. ()∆EV ql EI =-↑74324/()39. ϕAB EA =2414. ( )1340. ()∆CV Pa EA =↓2414.41. ϕC Pa EI P EA =+532752/./() 42. ∆AV EI EA =+3101875(↓)43. ()ϕC EI EI EI =++=301333408333..() 44. ∆C D H cm =0795.()45. ∆∆CH R =-⋅=∑--⋅=()1∆∆ (→)46. ()ϕB R l l =-⋅=--=∑∆∆∆0505././ ()14第六章 力 法一、判断题1.(X) 2.(X) 3.(X) 4.(X) 5.(X) 6.(X) 7.(X)二、选择题8.(B) 9.(D) 10.(A) 11.(C) 12.(C)三、填空题13.6次14. (2+1.414)Pl/EA 15. -256/EI , 0 16.l EA l EI //()+13123 17.l EA h EI //()+233 18.0 , 0 , 0四、分析与计算题20. δ1145=./EI ; ∆1405P EI =-/ 21. 111234/765/P E I E I δ=∆=- 22.152 /2Pl图M PPlPl /2Pl 基 本 体 系PX 123.X 1X 1基 本 体 系 8322432248图M ()kN .m ()分 2()分 324.X 1413431基本体系图 M ()kN .m kN .m4kN .m25.X 1X 14522.5X 2X 2基 本 体 系 图M ()kN .m ()分 2()分 326.16基本体系31.42222.89X 1图 M ()kN .m27.qa /2qa 2/242 /122 /242 /242 /242基本体系qa qa qa qa qa a /21X 图 M ()kN .m /122qa28.X 1X 2=0ql 2/4ql 2/2基本体系 M 图 X 1ql 2/2ql 2/4(2分 )(3分 )29.175050图 M ()kN .m30.q1EI =基 本 体 系X 432720图 M ()kN .m 504231.X 2X 1基 本 体 系图 M ()kN .m 17. 8231. 6826. 6432. 33.M 图1.77P1.77P3PPP3P1.23P 1.23P4.234.23-12.796-12.8-13.870.5340.5346.1337.20.534a-a a -bb c N (k N )a b c =-=-=0755********...34.120.4375 1.417N P N P =-=35.1810kNX 1基本体系( 2分 )3030M 图·()kN m ( 3分)36.X1图M X 2q基 本 体 系8.71 6.773.8716.52 1.87qqqqq37.EI/l X=X =1M 1图图M N 图 1lα1分 )(2分 )(7.521138.l图M X 11=()34EI l θ基 本 体 系39.1922.2X=图M R=kN .m-3.7kN X=1-1(2分 )(4分 )基 本 体 系40.()()()()()()()334164 24hA h EI Ph h EI h Ph h PhEI ∆=⋅⋅-⋅⋅⋅=第七章 位 移 法一、判断题:1.(X ) 2.(X ) 3.(O ) 4.(O ) 5.(O ) 6.(X )7.(O ) 8.(X ) 9.(X )二、选择题10.(B )三、填空题11. 0 12. 4 13. 273EI l / 14. 0 15. -6l 016. -Pl17. r 22 = 4.5 R P 1 = -8 18. r 11 = 13 R P 1 = 020四、分析与计算题19. r EI l 1110=/ R ql P 12316=-/ 20. r 22 = 3EI R P 2 = 021.ql /8ql 2/8M Z 12图22.Z 1101010101010(kN m).M 图23.Z 117.417.47.74(kN m).M 图24.Z 1M Pl/4Pl/4Pl/4Pl/4图25.21Z 1hhhha aM a= Pl/h= Pl/图12432717226.Z 12- Pl+ ql 192962Pl+ql Pl-ql 2192Pl/M 35315图827.P /23 图P /23P /23P /23M28.Z 1/9/9/9/9/9245图Pl Pl Pl Pl M Pl29.2210kN Z 1Z 2基 本 体 系20/320/320/310/3图 (kN m).M30.Z 110kN/m10.665.3320.1314.2111.25 5.33基 本 体 系图 (kN m)M .Z 231.Z 1基 本 体 系=10kN/m 80kNZ 248.648.68037.0362.8125.78图 M ()kN .m q32.Z 1基 本 体 系图(kN m)4kN/mZ 225/1450/775/14M .33.23140/13160/1310kN10kN/m320/1320Z 1Z 2基 本 体 系 M 图 (kN ·m ) 34.7101010M 图 ( 2332ql /) 35.Z 2图 (kN m).=10kN/m5.42.961.481.4811.8311.83简 化 图q M Z 136.2kN/mZ 1Z 2基 本 体 系图 ( N m).1.470.421.262.740.21M 4k37.24P /2P/2Z 1Z 2基 本 体 系5 /185 /18/6/62 /92 /9/18/18M 图Pl Pl PlPlPlPl Pl Pl简 化38.EI 1= 图=11/4 3 /420/320/37.540/3M EI3 3 /8EI3 /8EIZ ∞EI39.图M40.Z 1图 (kN m)1cm193.5918211.5.M第八章力矩分配法一、判断题1.( X ) 2.( O ) 3.( X ) 4.( X )二、选择题5.( B ) 6.( B ) 7.( C ) 8.( C ) 9.( D ) 10.( D )三、填空题11.012.0 , M AB2, MAB13.M/2 下14.8 kN·m15.1/3 ,1/3 ,1/316.0 ,1 ,0.2252617.i EI l =,()μBA i i i =+=34337,μBC =47,μBD =0四、分析与计算题18. μAD =19 , μAC =49 , μAB =49, μBA = 1 , μBE = 0M BE F = -160 kN ·m19. μμAB AC ==3812/,/, μμAD AE ==180/,M k N m M AB AC FF .,,=⋅=750 M M kN m AD AE FF ,==⋅02020. μμμμAD AC FD FG ====05. μμμDA DE DF ===13/,M kN m DF F,=-⋅375 MkN mFDF=-⋅37521. 14.7BC M kN m =-⋅ 22. 40AC M kN m =-⋅ 23. 0.3EB M kN m =⋅ 24. 2BA M kN m =⋅ 25.27MF2 分 ( )M 图 kN m .( )3 分( )2 分( )5 分( )1/21/2-1BA BCCB CD DC0.50.51/32/3-40-2013.3326.67-13.3313.33-6.67-6.67-3.331.111.112.22-1.11-0.56-0.56-7.217.2125.56-25.56-34.4434.44A B CD25.567.217.213.626.BDAC10.8430.8347.0830.83202023.5523.5510.845.425.42对 称 结 构 , 对 称 荷 载 , 取 一 半 结 构 计 算M 图 kN m .( )27.28M 图 kN m .( )CABDEBA BE EB μMFDA AD AC AB 11.54-1.62 -2.43 2.5 分 ( )2.5 分( )7 分( )6/133/134/1345-12012034.6217.3123.08-26.31-52.62-78.9212.14 6.078.14.0546.7668.38-115.1381.35-81.3581.3546.7668.38115.1323.3840.680.40.628.μM F5.126.6901234521 23-9090454.238.594.3 4.849.68-2.6-5.21-3.93-1.970.86 1.75+1.975.09-5.0926.5690-90( 2.5 分 )( 2.5 分 )( 7 分 )0.330.670.570.4310-12.83-25.65-19.35-9.68图 M ()kN .m -26.564345343229.7.4CB M kN m =-⋅30.29对 称 性 取 半 结 构1.891.055.712.86307.8722.138.66A D EFB CAD AB BA BC BEBF 301.5-7.5-22.5-11.251.492.983.980.99 1.79-0.37-1.12-0.560.170.230.060.1-7.87-22.13-8.66 5.71 1.051.89μ 3 分 ( )3 分( )8 分 ( )0.250.750.30610.4082 0.102 0.1837M 图 (kN.m)31. 16.85CB M kN m =⋅ 32.kN m .( )M 图 2.231.934.167.895AD μμAB i AD AB S AB i EI l=i/=i AC i ==6i ,,,,AC μ= 0.257,= 0.446 ,= - 7.5kN m .,DA M = - 3.75kN m .,= 4i 32i =0.297M AD FF,AC S =⨯3,AD S =6i ,1.123033.CD B A EF 56.8518.960图 M ()kN .m 对 称 性 取 半 刚 架 ,u MFCA AC AB BA BF BE EB 0.50.50.40.30.3-4040-60-604866-618189-1.8-3.6-2.7-2.72.70.90.918.9-18.953.43.3-56.7-63.3( 4 分 )( 3 分 ) ( 3 分 )(8 分 )53.7 3.1563.1518.934. 3.31DC M kN m =⋅31第九章 影响线及其应用一、判断题1. ( X ) 2.( O ) 3.( X ) 4.( X ) 5.( O ) 6.( X ) 7.( X )二、选择题8.( C ) 9.( B ) 10.( C ) 11.(C ) 12.(C ) 13.(D ) 14.(A )三、填空题15. 结 构 在 恒 载 及 活 载 作 用 下 , 各 截 面 内 力 最 大 最 小 值变 化 范 围 图 。
1 结构力学多媒体课件1、刚架由梁和柱组成的结构,其结点全部或部分是刚结点。
2、刚架的形式2)简支刚架1)悬臂刚架2、刚架的形式3)三铰刚架4)主从刚架3、刚架的特点1)杆数少,净空大,便于使用3、刚架的特点2)刚结点的特点①变形:刚结点处的各杆端不能发生相对移动和相对转动,因而受力变形后,各杆杆端转动了同一角度,即各杆之间的夹角保持不变。
②受力:刚结点可承受和传递弯矩保持角度不变3、刚架的特点3)横梁和竖柱连成整体,使整体刚度增大,弯矩的峰值减少二、刚架中各杆的杆端内力1、支座反力的计算⑴求反力时要先根据支座的性质正确定出反力未知量个数,不能多、不能少。
⑵假定反力方向,由平衡方程确定其数值。
⑶应尽量利用一个平衡方程求一个未知力。
⑷求出反力后要有没有用过的平衡方程校核。
l /2l /2l /2l /2CBAPF AY =0.5PF BY =0.5PF AX=0.75P F BX =0.25P2m 2m 4mCBA4m2kN/mGFEDF AX =1KNF CX =1KNF CY =3KNF BY =7KN2、杆端内力的计算⑴方法:截面法⑵内力符号结点处有不同的杆端截面。
各截面上的内力用该杆两端字母作为下标来表示,并把该端字母列在前面。
——AB杆A端的轴力。
FN AB——AB杆A端的剪力。
FQ AB——AB杆A端的弯矩。
MAB2、杆端内力的计算⑶内力的正负规定轴力FN:以拉力为正,压力为负。
剪力FQ:以绕隔离体顺时针转为正,反之为负。
弯矩M:不规定正负,但弯矩图画在受拉侧。
F N FNF Q F QM AB M BAF NF NF QF Q MBAM AB 竖杆剪力图和轴力图可画在任一侧,但必须标出正负;弯矩图画在受拉一侧,可不标正负。
2、杆端内力的计算 ⑷正确选取脱离体⑸注意结点平衡∑F X =0 ∑F Y =0 ∑M D =0一般先求出支座反力及铰结点处的内约束力,然后将刚架拆成杆件,逐杆绘制其内力图,将各杆的内力图合在一起就是刚架的内力图。
第一章平面体系的几何组成分析一判断题1. 几何瞬变体系产生的运动非常微小并很快就转变成几何不变体系,因而可以用作工程结构。
(×)2. 两刚片或三刚片组成几何不变体系的规则中,不仅指明了必需的约束数目,而且指明了这些约束必需满足的条件。
(√)3。
计算自由度W小于等于零是体系几何不变的充要条件.(×)4. 三个刚片由三个铰相联的体系一定是静定结构.(×)5。
有多余约束的体系一定是超静定结构。
(×)6。
平面几何不变体系的三个基本组成规则是可以相互沟通的.(√)7。
三刚片由三个单铰或任意六根链杆两两相联,体系必为几何不变。
(×)8. 两刚片用汇交于一点的三根链杆相联,可组成几何不变体系.(×)9。
若体系计算自由度W〈0,则它一定是几何可变体系。
(×)10。
有多余约束的体系一定是几何不变体系.(×)11。
几何不变体系的计算自由度一定等于零.(×)12。
几何瞬变体系的计算自由度一定等于零。
(×)13. 图中链杆1和2的交点O可视为虚铰。
(×)题13图二选择题1. 图示体系为:(A)A.几何不变无多余约束 B.几何不变有多余约束 C.几何常变 D.几何瞬变题1图题2图2。
图示体系为:(B)A.几何不变无多余约束 B.几何不变有多余约束 C.几何常变 D.几何瞬变3. 图示体系是(B)A.无多余联系的几何不变体系 B.有多余联系的几何不变体系C.几何可变体系 D.瞬变体系题3图4。
图示体系的几何组成为(B)A.几何不变无多余约束 B.几何不变有多余约束 C.瞬变体系 D.可变体系题4图5. 图示平面体系的几何组成为(C)A。
几何不变无多余约束 B。
几何不变有多余约束 C.瞬变体系 D.几何可变体系题5图6. 图示体系为(A)A。
几何不变,无多余约束 B.几何不变,有多余约束 C。
几何常变 D。
几何瞬变题6图题7图7. 图示体系为(D)A。
结构力学自测题(第二单元) 静定梁、刚架内力计算姓名 学号 成绩 一、 是非题(将判断结果填入括弧以O 表示正确 ,以 X 表示错误,12分)1、在静定刚架中 ,只要已知杆件两端弯矩和该杆所受外力 , 则该杆内力分布就可完全确定 。
( )2、图示结构B 支座反力等于 P /2 ()↑。
( )3、图示结构的支座反力是正确的 。
( )4、图示结构 ||M C =0 。
( )aa5、图示两相同的对称三铰刚架,承受的荷载不同 , 但二者的支座反力是相同的。
( )6、图示结构M 图的形状是正确的 。
( )M 图二、选择题(将选中答案的字母填入括弧内,12分 )1、对图示的AB 段 , 采用叠加法作弯矩图是 :( ) A. 可以 ;B. 在一定条件下可以 ;C. 不可以 ;D. 在一定条件下不可以 。
2、图示两结构及其受载状态 ,它们的内力符合 。
( ) A. 弯矩相同 , 剪力不同 ; B. 弯矩相同 , 轴力不同 ; C. 弯矩不同 , 剪力相同 ; D. 弯矩不同 ,轴力不同 。
PPll l3、 图示结构K (设下面受拉为正) 为 : ( )A. qa 2 ;B -qa 22 ;C. 3qa2 ;D. 2qa 2。
2 a4、图示结构M DC (设下侧受拉为正)为 : ( )A. - Pa ;B. Pa ;C. -Pa ;D.Pa 2。
aa三、填充题 ( 将答案写在空格内,16分)1、在图示结构中, 无论跨度,高度如何变化,M CB 永远等 于 M BC 的倍 , 使刚架 侧受拉 。
2、图示结构支座 A 转动 ϕ角 ,M AB = ___, R C = __ 。
BCaaA ϕ2a23、对图示结构作内力分析时 , 应先计算_________部分 , 再 计算______部 分 。
4、.图示结构DB 杆的剪力Q DB = _______ 。
5、图示梁支座B 处左侧截面的剪力Q B 左=_ __ 。