重庆巴蜀中学高一下学期期末数学(文) 含答案
- 格式:doc
- 大小:322.06 KB
- 文档页数:6
2015-2016学年重庆市巴蜀中学高一(下)期末数学试卷一、选择题(共12×5=60分)1.直线的倾斜角为()A. B. C.D.2.圆x2+y2+2x+y=0的半径是()A.B. C.D.3.直线l1:mx﹣y=0与直线l2:x﹣my+4=0互相平行,则实数m的值为()A.1 B.﹣1 C.0 D.±14.函数y=(x>0)的最大值为()A.2 B. C. D.5.已知非零向量满足(+)⊥(﹣),且||=||,则向量与的夹角为()A. B. C. D.6.已知,则z=x﹣2y的取值范围是()A.[﹣8,12]B.[﹣4,12]C.[﹣4,4]D.[﹣8,4]7.△ABC中,角A、B、C所对的边分别是a、b、c,且c2﹣b2=ab,C=,则的值为()A.B.1 C.2 D.38.已知x1>x2>x3,若不等式恒成立,则实数m的最大值为()A.9 B.7 C.3+2D.1+9.递增的等差数列{a n}满足:a1+a2+a3=12,a1a2a3=63,S n是数列{a n}的前n项和,则使S n >2018的最小整数n的值为()A.80 B.84 C.87 D.8910.已知椭圆=1(a>b>0)的左顶点、上顶点、右焦点分别为A、B、F,且∠ABF=90°,则的值为()A.B.C.D.11.已知数列{a n}满足:a1=1,a n+1﹣a n=2n(n∈N*),数列b n=),T n=b1+b2+…+b n,则T10的值为()A.B.C.D.12.已知直线l与椭圆=1(a>b>0)相切于直角坐标系的第一象限的点P(x0,y0),且直线l与x、y轴分别相交于点A、B,当△AOB(O为坐标原点)的面积最小时,∠F1PF2=60°(F1、F2是椭圆的两个焦点),若此时∠F1PF2的内角平分线长度为a,则实数m的值是()A.B.C.D.二、填空题(共20分)13.已知x>y>0,则与中较大者是.14.△ABC中,角A、B、C所对的边分别为a、b、c,B=,sinA:sinC=4:3,且△ABC的面积为,则c= .15.等边△ABC的边长为2,且,则= .16.已知圆C的圆心在直线x+y﹣2=0上,圆C经过点(2,﹣2)且被x轴截得的弦长为2,则圆C的标准方程为.三、解答题(共70分)17.已知椭圆=1的左、右焦点分别为F1、F2,点P在该椭圆上.(1)求实数m的取值范围;(2)若m=5,且|PF1|=3,求点P到x轴的距离.18.△ABC中,角A、B、C所对的边分别为a、b、c,角A为锐角,且.(1)求角C的大小;(2)求sinA+sinB的取值范围.19.已知圆的方程为x2+y2﹣2x﹣2my+2m2﹣4m+1=0(m∈R).(1)当该圆的半径最长时,求m的值;(2)在满足(1)的条件下,若该圆的圆周上到直线l:2kx﹣2y+4+﹣3k=0的距离等于1的点有且只有3个,求实数k的值.20.已知S n是数列{a n}的前n项和,且a1=2,a n+1=3S n﹣2(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=),求证,b1b2+b2b3+…+b n b n+1<3(n∈N*).21.已知椭圆C: =1(a>b>0)的离心率为,且点(2,)在C上.(1)求C的方程;(2)过点P(2,1)的直线l与椭圆C交于A,B两点,且AB的中点恰为P,求直线l的方程.22.已知椭圆C: =1(a>b>0)的两焦点F1、F2与短轴两端点构成四边形为正方形,又点M是C上任意一点,且△MF1F2的周长为2+2.(1)求椭圆C的方程;(2)若过点M(2,0)的直线与椭圆C相交于两点A、B,设P为椭圆E上一点,且满足(O为坐标原点),当|AB|<时,求实数t的取值范围.2015-2016学年重庆市巴蜀中学高一(下)期末数学试卷参考答案与试题解析一、选择题(共12×5=60分)1.直线的倾斜角为()A. B. C.D.【考点】直线的倾斜角.【分析】求出直线的斜率,从而求出直线的倾斜角即可.【解答】解:直线,即x+y=3,故直线的斜率是k=﹣,故倾斜角是:,故选:D.2.圆x2+y2+2x+y=0的半径是()A.B. C.D.【考点】圆的一般方程.【分析】化圆的方程为标准方程,即可求出半径.【解答】解:把圆x2+y2+2x+y=0化标准方程为:,则圆x2+y2+2x+y=0的半径是:.故选:B.3.直线l1:mx﹣y=0与直线l2:x﹣my+4=0互相平行,则实数m的值为()A.1 B.﹣1 C.0 D.±1【考点】直线的一般式方程与直线的平行关系.【分析】由直线与直线平行的性质得m≠0,且,由此能求出m的值.【解答】解:∵直线l1:mx﹣y=0与直线l2:x﹣my+4=0互相平行,∴m≠0,且,解得m=±1.故选:D.4.函数y=(x>0)的最大值为()A.2 B. C. D.【考点】函数的最值及其几何意义.【分析】将函数y化为6﹣(x+),由基本不等式a+b≥2(a,b>0,a=b取得等号),计算即可得到所求最大值.【解答】解:∵x>0,∴y====6﹣(x+)≤6﹣2=6﹣4=2,当且仅当x=即x=2时,取得最大值2.故选:A.5.已知非零向量满足(+)⊥(﹣),且||=||,则向量与的夹角为()A. B. C. D.【考点】平面向量数量积的运算.【分析】根据向量垂直的等价条件建立方程关系,结合数量积的应用进行求解即可.【解答】解:∵(+)⊥(﹣),且||=||,∴(+)•(﹣)=0,即2﹣2﹣•=0,即22﹣2﹣×|||cos<,>=0,则﹣×cos<,>=0,则cos<,>=,则<,>=,故选:A6.已知,则z=x﹣2y的取值范围是()A.[﹣8,12]B.[﹣4,12]C.[﹣4,4]D.[﹣8,4]【考点】简单线性规划.【分析】画出不等式组表示的平面区域,利用目标函数的几何意义求其最值.【解答】解:不等式组表示的平面区域如图,当直线y=x﹣经过图中B时z最大,经过D 时z最小,又得到B(4,﹣4),由得到D(0,4),所以x﹣2y的最大值为4+2×4=12,最小值为0﹣2×4=﹣8;所以z=x﹣2y的取值范围是[﹣8,12];故选A.7.△ABC中,角A、B、C所对的边分别是a、b、c,且c2﹣b2=ab,C=,则的值为()A.B.1 C.2 D.3【考点】余弦定理;正弦定理.【分析】由于已知及余弦定理可解得a=2b,利用正弦定理即可得解.【解答】解:∵C=,∴由余弦定理可得:c2=a2+b2﹣2abcosC=a2+b2﹣ab,∵c2﹣b2=ab,∴a2+b2﹣ab=b2+ab,解得:a=2b,∴利用正弦定理可得:.故选:C.8.已知x1>x2>x3,若不等式恒成立,则实数m的最大值为()A.9 B.7 C.3+2D.1+【考点】数列与不等式的综合.【分析】通过变形可知问题转化为求+2•的最小值,进而利用基本不等式计算即得结论.【解答】解:∵x1>x2>x3,∴x1﹣x2>0,x2﹣x3>0,x1﹣x3>0,又∵,∴m≤(x1﹣x3)(+)=+2•=3++2•,∵+2•≥2=2,∴m≤3+2,故选:C.9.递增的等差数列{a n}满足:a1+a2+a3=12,a1a2a3=63,S n是数列{a n}的前n项和,则使S n >2018的最小整数n的值为()A.80 B.84 C.87 D.89【考点】等差数列的前n项和.【分析】由等差数列通项公式列出方程组,求出首项和公差,从而求出S n=,由此能求出使S n>2018的最小整数n的值.【解答】解:递增的等差数列{a n}满足:a1+a2+a3=12,a1a2a3=63,∴,解得,d=,=,∵S n>2018,∴>2018,∴n2+13n﹣8072>0,解得n>≈83.6,由n∈N*,∴使S n>2018的最小整数n的值为84.故选:B.10.已知椭圆=1(a>b>0)的左顶点、上顶点、右焦点分别为A、B、F,且∠ABF=90°,则的值为()A.B.C.D.【考点】椭圆的简单性质.【分析】利用椭圆的性质用a,b,c表示出△ABF的边长,利用勾股定理列方程得出a,b,c的关系.【解答】解:由椭圆的定义可知|AF|=a+c,|AB|=,|BF|=a,∵∠ABF=90°,∴|AB|2+|BF|2=|AF|2,即a2+b2+a2=a2+c2+2ac,∴a2+b2=c2+2ac.又b2=a2﹣c2,∴a2﹣c2﹣ac=0,即()2+﹣1=0,∴=,∴===.故选:D.11.已知数列{a n}满足:a1=1,a n+1﹣a n=2n(n∈N*),数列b n=),T n=b1+b2+…+b n,则T10的值为()A.B.C.D.【考点】数列的求和.【分析】利用累加法先求出数列{a n}的通项公式,利用数列的递推关系求出数列{b n}的通项公式,利用错位相减法进行求和即可.【解答】解:∵a1=1,a n+1﹣a n=2n(n∈N*),∴a2﹣a1=2,a3﹣a2=22,a4﹣a3=23,…a n﹣a n﹣1=2n﹣1,等式两边同时相加得:a n﹣a1=2+22+23+…2n﹣1,即a n=a1+2+22+23+…2n﹣1=1+2+22+23+…2n﹣1==2n﹣1,b n=)===,则T n=+++…+,①则T n=+++…++,②①﹣②得T n=+++…+﹣=﹣=1﹣()n﹣,则T n=2﹣﹣=2﹣.则T10=2﹣=2﹣=2﹣=.故选:B12.已知直线l与椭圆=1(a>b>0)相切于直角坐标系的第一象限的点P(x0,y0),且直线l与x、y轴分别相交于点A、B,当△AOB(O为坐标原点)的面积最小时,∠F1PF2=60°(F1、F2是椭圆的两个焦点),若此时∠F1PF2的内角平分线长度为a,则实数m的值是()A.B.C.D.【考点】椭圆的简单性质.【分析】由题意,切线方程为=1,利用基本不等式,结合△AOB(O为坐标原点)的面积最小,可得切点坐标,利用三角形的面积公式,建立方程,即可求出实数m的值.【解答】解:由题意,切线方程为=1,∵直线l与x、y轴分别相交于点A、B,∴A(,0),B(0,),∴S△AOB=,∵=1≥,∴≥,∴S△AOB≥ab,当且仅当==时,△AOB(O为坐标原点)的面积最小,设|PF1|=x,|PF2|=y,由余弦定理可得4c2=x2+y2﹣xy,∴xy=b2,∴==b2,∴=b2,∴x0==b,∴c=b,∴a= b∵∠F1PF2的内角平分线长度为a,∴×x×a×+×y×a×=b2,∴×(x+y)=b2,∴××2a=b2,∴m=.故选:A.二、填空题(共20分)13.已知x>y>0,则与中较大者是.【考点】不等式的证明.【分析】根据已知中x>y>0,利用作差法,可得与的大小关系,进而得到答案.【解答】解:∵x>y>0,∴x﹣y>0,y+1>0,﹣=>0,故与中较大者是,故答案为:14.△ABC中,角A、B、C所对的边分别为a、b、c,B=,sinA:sinC=4:3,且△ABC的面积为,则c= .【考点】正弦定理.【分析】由正弦定理和条件求出a:c的值,根据三角形的面积公式列出方程,联立方程后求出c的值.【解答】解:∵sinA:sinC=4:3,∴由正弦定理得,a:c=4:3,①∵B=,且△ABC的面积为,∴,解得ac=4,②由①②解得,c=,故答案为:.15.等边△ABC的边长为2,且,则= .【考点】平面向量数量积的运算.【分析】根据平面向量数量积的定义进行转化求解即可.【解答】解:∵,∴=, =,即D是BC的中点,则=(+)•(+)=(﹣+)•(+)= [﹣2+2+•﹣•]= [﹣4+×42+×2×2cos60°﹣2×2×cos60°]=(﹣4++﹣2)==,故答案为:16.已知圆C的圆心在直线x+y﹣2=0上,圆C经过点(2,﹣2)且被x轴截得的弦长为2,则圆C的标准方程为(x﹣3)2+(y+1)2=2或(x﹣5)2+(y+3)2=10 .【考点】圆的标准方程.【分析】由题意,设圆心坐标为(a,2﹣a),则r2=(a﹣2)2+(2﹣a+22)=12+(2﹣a)2,求出a,r,可得圆心与半径,即可求出圆C的标准方程.【解答】解:由题意,设圆心坐标为(a,2﹣a),则r2=(a﹣2)2+(2﹣a+22)=12+(2﹣a)2,∴a=3,r=或a=5,r=,∴圆C的标准方程为(x﹣3)2+(y+1)2=2或(x﹣5)2+(y+3)2=10.故答案为:(x﹣3)2+(y+1)2=2或(x﹣5)2+(y+3)2=10.三、解答题(共70分)17.已知椭圆=1的左、右焦点分别为F1、F2,点P在该椭圆上.(1)求实数m的取值范围;(2)若m=5,且|PF1|=3,求点P到x轴的距离.【考点】椭圆的简单性质.【分析】(1)由题意,,即可求实数m的取值范围;(2)求出|PF2|=1,|F1F2|=2,可得|PF1|2=|PF2|2+|F1F2|2,即可求点P到x轴的距离.【解答】解:(1)由题意,,∴3<m<9且m≠6;(2)m=5,椭圆方程为=1,∴a=2,b=,c=∵|PF1|=3,∴|PF2|=1,∵|F1F2|=2,∴|PF1|2=|PF2|2+|F1F2|2,∴P到x轴的距离为1.18.△ABC中,角A、B、C所对的边分别为a、b、c,角A为锐角,且.(1)求角C的大小;(2)求sinA+sinB的取值范围.【考点】正弦定理.【分析】(1)根据二倍角的正弦公式、商的关系化简后,再由余弦定理化简后求出C的值;(2)由(1)和内角和定理表示B,利用诱导公式、两角和的正弦公式化简后,由角A为锐角和正弦函数的性质,求出sinA+sinB的取值范围.【解答】解:(1)由题意得,,∴,得,∵角A为锐角,∴cosA=,由余弦定理得,,化简得c2=a2+b2,∴C=;(2)由(1)得,A+B=,则B=﹣A,∴sinA+sinB=sinA+sin(﹣A)=sinA+cosA=,由得,,∴,则,∴sinA+sinB的取值范围是(1,].19.已知圆的方程为x2+y2﹣2x﹣2my+2m2﹣4m+1=0(m∈R).(1)当该圆的半径最长时,求m的值;(2)在满足(1)的条件下,若该圆的圆周上到直线l:2kx﹣2y+4+﹣3k=0的距离等于1的点有且只有3个,求实数k的值.【考点】直线与圆的位置关系;圆的一般方程.【分析】(1)圆的方程x2+y2﹣2x﹣2my+2m2﹣4m+1=0化为(x﹣1)2+(y﹣m)2=﹣m2+4 m,当﹣m2+4m>0时表示圆,半径最大时,﹣m2+4m取得最大值,求出对应m的值;(2)圆周上到直线l的距离等于1的点有且只有3个时,圆心到直线l的距离d=r﹣1,列出方程求出k的值.【解答】解:(1)圆的方程x2+y2﹣2x﹣2my+2m2﹣4m+1=0可化为:(x﹣1)2+(y﹣m)2=﹣m2+4m,它表示圆时,应有﹣m2+4m>0,解得0<m<4;当半径最大时,应有﹣m2+4m最大,此时m=2,圆的方程为 x2+y2﹣2x﹣4y+1=0;(2)圆的方程x2+y2﹣2x﹣4y+1=0,化为(x﹣1)2+(y﹣2)2=4;该圆的圆周上到直线l:2kx﹣2y+4+﹣3k=0的距离等于1的点有且只有3个,则圆心(1,2)到直线l的距离d等于半径r﹣1,即=1,化简得=4k2+4,解得k=﹣.20.已知S n是数列{a n}的前n项和,且a1=2,a n+1=3S n﹣2(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=),求证,b1b2+b2b3+…+b n b n+1<3(n∈N*).【考点】数列与不等式的综合;数列递推式.【分析】(1)当n≥2时通过a n+1=3S n﹣2与a n=3S n﹣1﹣2作差,进而整理即得结论;(2)通过(1)可知数列{b n}的通项公式,利用裂项相消法计算即得结论.【解答】(1)解:∵a n+1=3S n﹣2,∴当n≥2时,a n=3S n﹣1﹣2,两式相减得:a n+1﹣a n=3a n,即a n+1=4a n(n≥2),又∵a1=2,a2=3S1﹣2=4,∴数列{a n}的通项公式a n=;(2)证明:由(1)可知b n=,∵当n≥2时,b n b n+1==﹣,∴b1b2+b2b3+…+b n b n+1=2×1+(1﹣)+(﹣)+…+(﹣)=3﹣<3.21.已知椭圆C: =1(a>b>0)的离心率为,且点(2,)在C上.(1)求C的方程;(2)过点P(2,1)的直线l与椭圆C交于A,B两点,且AB的中点恰为P,求直线l的方程.【考点】椭圆的简单性质.【分析】(1)根据椭圆C: =1(a>b>0)的离心率为,且点(2,)在C上,建立方程,可a2=16,b2=8,即可求出C的方程;(2)设A(x1,y1),B(x2,y2),则x1+x2=4,y1+y2=2,利用点差法求出直线的向量,可求直线l的方程.【解答】解:(1)∵椭圆C: =1(a>b>0)的离心率为,且点(2,)在C上,∴=, =1∴a2=16,b2=8,∴C的方程为=1;(2)设A(x1,y1),B(x2,y2),则x1+x2=4,y1+y2=2;由(1)知,8x12+16y12=128,①8x22+16y22=128,②①﹣②得:8(x1+x2)(x1﹣x2)+16(y1+y2)(y2﹣y1)=0,∴32(x1﹣x2)+32(y2﹣y1)=0,由题意知,直线l的斜率存在,k=﹣1,∴直线l的方程为y﹣1=﹣(x﹣2),即x+y﹣3=0.22.已知椭圆C: =1(a>b>0)的两焦点F1、F2与短轴两端点构成四边形为正方形,又点M是C上任意一点,且△MF1F2的周长为2+2.(1)求椭圆C的方程;(2)若过点M(2,0)的直线与椭圆C相交于两点A、B,设P为椭圆E上一点,且满足(O为坐标原点),当|AB|<时,求实数t的取值范围.【考点】椭圆的简单性质.【分析】(1)运用椭圆的定义和范围,可得2a+2c=2+2,b=c,a2﹣b2=c2,解方程可得a ,b,即可得到椭圆方程;(2)由题意知直AB的斜率存在.AB:y=k(x﹣2),将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用弦长公式即可求得k值取值范围,再结合向量的坐标运算利用点P在椭圆上,建立k与t的关系式,利用函数的单调性求出实数t取值范围,从而解决问题.【解答】解:(1)△MF1F2的周长是2+2,即为|MF1|+|MF2|+|F1F2|=2a+2c=2+2,由椭圆C: =1(a>b>0)的两焦点F1、F2与短轴两端点构成四边形为正方形,即有b=c,a2﹣b2=c2,解得a=,b=1,则椭圆的方程为y2=1;(2)由题意知直AB的斜率存在.AB:y=k(x﹣2),设A(x1,y1),B(x2,y2),P(x,y)代入椭圆方程,得(1+2k2)x2﹣8k2x+8k2﹣2=0,△=64k4﹣4(2k2+1)(8k2﹣2)>0,k2<∴x1x2=,x1+x2=,∵|AB|<,∴|x1﹣x2|<,∴(1+k2)[()2﹣4×]<,∴(4k2﹣1)(14k2+13)>0,∴k2>,∴<k2<,∵满足,∴(x1+x2,y1+y2)=t(x,y),∴x==•,y=•(y1+y2)=,∵点P在椭圆上,∴(•)2+2()2=2∴16k2=t2(1+2k2)∴t2==8﹣,由于<k2<,∴﹣2<t<﹣或<t<2∴实数t取值范围为:﹣2<t<﹣或<t<2.2016年8月27日。
高2026届高一 (下) 期末考试数学试卷注意事项:1.答题前,考生务必将自己的姓名、准考证号、班级、学校在答题卡上填写清楚。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试卷上作答无效。
3.考试结束后,请将答题卡交回,试卷自行保存。
满分150分,考试用时120分钟。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设△ABC的内角A,B,C所对的边分别为aa,bb,cc, 若aa=√3,bb=1,AA=ππ3,则B= ( )A. ππ3 B、ππ2 C. ππ6 D. ππ42. 某校高一年级有四个班共有学生200人, 其中1班60人, 2班50人, 3班50人, 4班40人.该校要了解高一学生对食堂菜品的看法,准备从高一年级学生中随机抽取40人进行访谈,若采取按比例分配的分层抽样,且按班级来分层,则高一2班应抽取的人数是( )A. 12B. 10C. 8D. 203.已知平面四边形OABC用斜二测画法画出的直观图是边长为1的正方形OO′AA′BB′CC′,则原图形OABC中的AB= ( )A. √2BB.2√2C. 3D. 24.已知m,n,β是两个不重合的平面,则下列结论正确的是( )A. 若α∥β, m∥β, 则m∥αB. 若m⊥α, n⊥α, 则m∥nC. 若m∥α, m∥β, 则α∥βD. 若m⊥n, m⊂α, 则n⊥α5.甲、乙、丙3人独立参加一项挑战,已知甲、乙、丙能完成挑战的概率分别为13、13、14,则甲、乙、丙中有人完成挑战的概率为 ( )A. 15B. 13 c. 25 D. 236.平行六面体. AABBCCAA−AA₁BB₁CC₁AA₁中, 底面ABCD 为正方形, ∠AA1AAAA=∠AA1AABB=ππ3, AAAA₁=AABB=1,E为C₁D₁的中点,则异面直线BE和DC所成角的余弦值为 ( )A. 0 BB.√32C. 12AA.√347.甲在A处收到乙在航行中发出的求救信号后,立即测出乙在方位角(是从某点的正北方向线起,依顺时针方向到目标方向线之间的水平夹角) 为45°、距离A处为10n mile的 C处,并测得乙正沿方位角为105°的方向, 以6n mile/h的速度航行, 甲立即以14n mile/h的速度前去营救,甲最少需要 ( )小时才能靠近乙.A. 1B. 2C. 1.5D. 1.28.已知向量OOAA满足|OOAA在OOAA方向上的投影向量为OOAA12,则CCAA�����⃗⋅CCBB�����⃗的最小值为( )AA.−12BB.4−2√63CC.1−√72AA.5−2√74二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 设复数z的共轭复数为zz̅,ii为虚数单位, 若(zz+2)ii=1+ii, 则( )A. 复数z的虚部为-1B. |z|=2C. zz̅在复平面内对应的点在第一象限AA.zz⁸=1610.一个袋子中有大小相同,标号分别为1,2,3,4的4个小球.采用不放回方式从中任意摸球两次,一次摸一个小球.设事件A=“第一次摸出球的标号小于3”,事件B=“第二次摸出球的标号小于3”,事件C=“两次摸出球的标号都是偶数”,则 ( )A. P(A)=P(B) BB.PP(AABB)=16CC.PP(AA∪BB)=23AA.PP(AACC)=11211. 如图, 在棱长为2的正方体ABCD-A₁B₁C₁D₁(中,点M 分别为CC₁上的动点,O为正方体内一点,则以下命题正确的是 ( )A. B₁M+DM 取得最小值2 √5B.当M为中点时,平面BMD₁截正方体所得的截面为平行四边形C. 四面体ABMD的外接球的表面积为5π时, CM=1D. 若AO=CO, A₁O=2, 则点O的轨迹长为. √2ππ三、填空题:本题共3小题,每小题5分,共15分.12. 已知向量aa⃗=(1,1),bb�⃗=(mm,−)若aa⃗//�aa⃗+bb�⃗�,则m= .13.若圆锥的轴截面是边长为2的等边三角形,则圆锥的侧面积为 .14. 记△ABC的内角A, B, C所对的边分别为a, b, c, 已知aaaaii aa AA+ccaaii aa CC=aaccaaaaCC+ccccaaaaAA,若△ABC的面积, SS=ttbb²(tt>0),则tt的最大值为 .四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)为调查外地游客对洪崖洞景区的满意程度,某调查部门随机抽取了100位游客,现统计参与调查的游客年龄层次,将这100人按年龄(岁)(年龄最大不超过65岁,最小不低于15岁的整数) 分为5组, 依次为[15,25),[25,35),[35,45),[45,55),[55,65], 并得到频率分布直方图如下:(1)求实数aa的值;(2)估计这 100人年龄的样本平均数(同一组数据用该区间的中点值作代表);(3)估计这 100人年龄的第80百分位数.(结果保留一位有效数字,四舍五入)16.(本小题满分15分)如图,在直四棱柱. AABBCCAA−AA₁BB₁CC₁AA₁中, 四边形ABCD是一个菱形, ∠DAB=60°, ∠AAAABB=60°,点P为BC₁上的动点.(1) 证明: DP//平面AB₁D₁;(2)试确定点P的位置,使得. BBCC⊥AAPP.17.(本小题满分15分)在. △AABBCC中,角A,B,C所对的边分别为aa,bb,cc, aa=2,√3�cosAA sinAA+cosBB sinBB�=2cc bb.(1) 求A的大小;�����⃗=AABB�����⃗3+2AAAA�����⃗3,若A 为钝角,求△AABBAA面积的取值范围.(2) 已知AAAA18.(本小题满分17分)已知三棱台−AA₁BB₁CC₁中, △ABC为正三角形, AA1BB1=AAAA1=BBBB1=12AABB=1,点E为线段AB 的中点.(1) 证明: A₁E∥平面B₁BCC₁;(2) 延长AA₁, BB₁, CC₁交于点 P, 求三棱锥P-ABC的体积最大值;(3)若二面角AA−CCCC₁−BB的余弦值为13,求直线BB₁与平面. AACCCC₁AA₁所成线面角的余弦值.19.(本小题满分17分)球面三角学是研究球面三角形的边、角关系的一门学科.如图,球O 的半径为R.A、B、C为球面上三点,劣弧BC的弧长记为aa,设O。
重庆市巴蜀中学2017—2018学年度下学期期末考试高一数学文试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若向量,,满足,则实数( )A .B .C .D . 2.已知为等差数列中的前项和,,,则数列的公差( ) A . B . C . D . 3.中,分别是角所对应的边,,,,则( ) A . B . C . D .4.已知实数满足且,下列选项中不一定成立的是( ) A . B . C. D .5.已知函数()2ln f x x ax =+在处取得极值,则实数( ) A . B . C. D .6.下列说法正确的是( ) A .若与共线,则或者 B .若,则C.若中,点满足,则点为中点 D .若,为单位向量,则7.若是整数,则称点为整点,对于实数,约束条件2300x y x y +≤⎧⎪≥⎨⎪≥⎩所表示的平面区域内整点个数为( )个A .B . C. D .8.已知各项均为正的等比数列中,与的等比中项为,则的最小值是( ) A . B . C. D .9.若直线(,)平分圆222410x y x y ++-+=的周长,则的最小值为( ) A . B . C. D .10.在中,若2sin sin cos2AB C =,则是( ) A .等腰三角形 B .直角三角形 C.等边三角形 D .等腰直角三角形 11.数列中,,(),则13241012a a a a a a ++=L ( ) A . B . C. D .12.已知()21()f x a x x x=-+有且仅有两个零点,那么实数( ) A . B . C. D .第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若满足约束条件()103030x y f x x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则的最小值为 .14.圆222(r 0)x y r +=>与圆22(3)(y 4)1x -+-=相外切,则半径的值为 . 15.是正三角形,,点为的重心,点满足,则 .16.已知圆22:430M x y y +-+=,直线:0(0)l kx y k -=>,如果圆上总存在点,它关于直线的对称点在轴上,则的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知函数()[]2144,3,23f x x x x =-+∈- (1)求函数在处切线方程; (2)求函数的最大值和最小值.18. 已知中,分别是角所对应的边,若cos sin a b C c B =+,且的面积为2, (1)求角;(2)若,求的值.19. 已知以点为圆心的圆经过点和,线段的垂直平分线交圆于点和,且. (1)求直线的方程; (2)求圆的方程.20. 已知正项等比数列的前项和满足:213,()42n n S S n N *+=+∈ (1)求数列的首项和公比;(2)若21log ,()n n n b a a n N *+=+∈,求数列的前项和.21. 已知圆22:(4)(1)4C x y -+-=,直线:2(31)y 20l mx m -++= (1)若直线与圆相交于两点,弦长等于,求的值;(2)已知点,点为圆心,若在直线上存在定点(异于点),满足:对于圆上任一点,都有|PM ||PN |为一常数,试求所有满足条件的点的坐标及改常数. 22.已知函数()1xf x e ax =-+(1)若,求函数的单调性;(2)若存在,使恒有,求实数的取值范围.试卷答案一、选择题1-5:BBBCA 6-10: CCCAA 11、12:DD 二、填空题13. 14. 15.16.⎣三、解答题17.解:(1),斜率,切点. 所以切线为18. 解(1)由cos sin a b C c B =+及正弦定理得:sin sin cos sin sin A B C C B =+,即sin()sin cos sin sin B C B C C B +=+得sin cos sin sin C B C B =,又,所以,因为,所以. (2)由1s i n 22ABC S ac B ∆==,得,又22222cos (a c)217b a c ac B ac =+-=+-=-19.解:(1)直线的斜率4013(1)k -==--,中点坐标为,直线的方程为,即;(2)设圆心,则由点在直线上得:①, 又直径,所以,所以② 由①②解得:36a b =-⎧⎨=⎩或52a b =⎧⎨=-⎩所以圆心或圆的方程为22(3)(6)40x y ++-=或22(5)(2)40x y -++=.20.由题有314213421342S S S S ⎧=+⎪⎪⎨⎪=+⎪⎩,两式相减得:,则由题意,有又,可知12311342a a a a ++=+,有111113(1)2442a a ++=+,所以, 由(1),,所以,采用分组求和:12211()(1)111212()1222212nn n n n T n n ----⨯=⨯+=----. 21.解(1)或;(2)由题知,直线的方程为,假设存在定点满足题意, 则设,,|PM ||PN |λ= 得222|PM ||PN |(0)λλ=>,且22(4)4(1)x y -=-- 所以22222224(1)(5)4(1)()y y y y t λλλ--+-=--+- 整理得:222[(22)8]y (3)280t t λλ-+++-= 因为,上式对于任意恒成立, 所以且22(3)280t λ+-= 解得,所以,(舍去,与重合),, 综上可知,在直线上寻在定点,使得|PM ||PN |为常数. 22.(1)易得:,若当时有, 则在单调递减,在单调递增;(2)令()22()21xg x f x x e x ax =+-=+--,且,()2x g x e x a '=+-,,在单调递增, 若,即,,00()(0)g x g ''>>, 此时在单调递减,当,,不成立.若,即,在单调递增, 则,,所以在单调递增, 所以在单调递增 所以,成立,故.。
秘密☆启用前重庆市巴蜀中学校2023-2024学年高一下学期期末考试语文试题注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效。
3.考试结束后,请将答题卡交回,试卷自行保存。
满分150分,考试用时150分钟。
一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,共19分)阅读材料,完成各题。
材料一:①《中华人民共和国刑法》第二十条第一款规定,“为了使国家、公共利益、本人或者他人的人身、财产和其他权利免受正在进行的不法侵害,而采取的制止不法侵害的行为,对不法侵害人造成损害的,属于正当防卫”。
正当防卫是一种“特殊情形”,在民事纠纷、刑事犯罪案件中,可以免于承担不利责任。
正当防卫制度有其规范价值。
法律基于道德和正义的准则而建立,在现代社会,人权和公民的安全是法律保护的重要对象。
当公民的人身、财产等权益受到他人侵犯时,法律赋予公民正当防卫的权利,使公民能够在合法范围内保护自身安全和权益。
此外,社会秩序的维护需要法律的支持和保障,而正当防卫则是法律赋予公民维护社会秩序的一种方式。
但正当防卫具有一定限制和条件,需要在合法范围内行使,不能超过必要限度。
在处理正当防卫案件时,需要考虑不法侵害的性质、手段、强度、危害程度等,综合社会公众的一般认知作出判断。
②实践中正当防卫认定面临诸多困难。
司法工作人员需要根据法律规定的条件,包括防卫起因、防卫对象、防卫时间和防卫限度来认定。
首先,正当防卫的前提条件,是必须存在正在进行的不法侵害。
但司法实践中,许多不法侵害并非真正的不法侵害,而是由挑衅、误判、误解等行为引起,防卫人在进行自卫时往往难以判断对方行为是否构成不法侵害。
其次,正当防卫对象必须是不法侵害者。
但司法实践中,不法侵害者范围相对模糊,可能包括直接侵害者与间接侵害者。
高2025届高一(下)数学期末考试参考答案一、单选题12345678ADADBCCD1.【答案】A【详解】由题知,这个人体重减轻的概率为59100.故选:A 2.【答案】D【详解】在复平面内,复数85i z -=对应的点81(,)55-位于第四象限.故选:D3【答案】A【详解】在ABC 中,最大角为角C ,222222121317313289cos 022910180a b c C ab +-+--===>⨯⨯.所以角(0,)2C π∈,则三角形为锐角三角形,故选:A 4【答案】D【详解】【详解】因为甲,乙通过面试的概率都是45,且两人通过面试相互之间没有影响,所以他们只有一人通过面试的概率为4444811555525⎛⎫⎛⎫-⨯+⨯-= ⎪ ⎪⎝⎭⎝⎭,故选:D5.【答案】B【详解】由图象知,函数的最小正周期24433T πππ⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦,即2π14π2ω==,A =,由五点对应法则代入2π3⎛ ⎝12π23ϕ⎛⎫⨯+= ⎪⎝⎭,即12ππ2π,Z 232k k ϕ=⨯++∈,因为π||2ϕ<,解得π6ϕ=,所以()1π26f x x ⎛⎫=+ ⎪⎝⎭,则()1π226f x x θθ⎛⎫+=++ ⎪⎝⎭为偶函数,有π()262k k Z θππ+=+∈,22()3k k Z πθπ=+∈,当41,3k πθ=-=-,故选:B 6.【答案】C【详解】因为//,//a a b α,所以b 与平面α平行或直线b 在平面α内,A 错误,C 正确;对选项B ,当c αβÇ=,且////a c b ,此时也符合//,b a ββ⊄,所以B 错误,当b α⊂,此时不存在平面β与α,D 不正确.故选:C 7.【答案】C【详解】在三角形ABP 中,180ABP γβ∠=-+ ,180()180()(180)BPA ABP αβαβγβγα∠=---∠=----+=- ,正弦定理:sin sin AP ABABP APB=∠∠,所以sin sin()sin sin()AB ABP AB AP APB γβγα∠-==∠-,sin sin()sin 45sin 41sin 20041186.12sin()sin 30PQ AP AB αγβαγα-===⨯=≈-,故选C ,8.【答案】D【详解】由222||||||24a b a b a b -=+-⋅= ,所以25||22a b b ⋅=- ,又非零向量,a b 不共线,所以||,||,||a b a b -为三角形三边,所以||||||||||a b a b a b +>->- ,所以3||2||b b >> ,22||3b >> ,258||2(,8)29a b b ⋅=-∈- 选D二、多选题9101112ABABDABDBCD9.【答案】AB【详解】由图可知,[)40,500.05f =,[)50,6010f x =,[)60,700.2f =,[)70,800.3f =,[)80,900.25f =,[]90,1000.05f =,由频率之和为1可得100.15x =,故0.015x =;所以选项A 对;因为[]90,10050.05f N==,所以100N =,所以选项B 对;由[)[)[)40,5050,6060,700.4f f f ++=,所以中位数位于区间[)70,80,设中位数为a ,则(70)0.030.1a -⨯=,解得73.33a =,所以选项C 错;平均数为450.05550.15650.2750.3850.25950.0572⨯+⨯+⨯+⨯+⨯+⨯=,所以选项D 错;综上所述,AB 正确,而CD 错误;故选:AB 10.【答案】ABD【详解】依题意,113i z =-,则112z OZ ==,故A 正确;又113i z =+,()21223i z =-+,21223i z =--,21223i z =-+,即()2211z z =,故B 正确;对于选项C:2211||1||z z z z ==,故C 错误;由复数几何意义知D 选项对,故选:ABD.11.【答案】ABD【详解】由题意π43sin cos 2sin 63ααα⎛⎫+=+= ⎪⎝⎭,即π2sin 63α⎛⎫+= ⎪⎝⎭,又(0,)2πα∈,知2(,)663πππα+∈,当2(,)633πππα+∈时,π3sin (,1]62α⎛⎫+∈ ⎪⎝⎭,而π23sin 632α⎛⎫+=< ⎪⎝⎭,所以(0,)6πα∈所以7cos(2)6πα+,则2πcos 1sin 635(6παα⎛⎫+=-+= ⎪⎝⎭),则πππ45sin22sin cos 6669ααα⎛⎫⎛⎫⎛⎫+=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,22πππ1cos2cos sin 6669ααα⎛⎫⎛⎫⎛⎫+=+-+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以24102sin 2sin(2())[sin(2())cos(2())]126426618πππππαααα-⎛⎫+=+-=+-+= ⎪⎝⎭.故答案为ABD12.【答案】BCD【详解】对于A ,将正方体的下面和侧面展开可得如图图形,连接AP ,则491317AP =+=<,故A 错误;对于B ,当'1PC =,所以'BPB 中,''5,2PB BP BB ===,则'2sin 5PBB Ð=,设'BPB 外接圆半径为r ,则由正弦定理知:''52sin 2PB r PBB ==Ð,则54r =,又'AB BPB ^,设三棱锥B ABP '-的外接球半径为R ,则2222541()121616AB R r =+=+=,所以三棱锥B ABP '-的外接球表面积24144S R ππ==,故B 正确;对于C ,如图:因为DD '平面ABCD ,AC ⊂平面ABCD ,DD AC '⊥,又AC BD ⊥,DD BD D '= ,DD ',BD ⊂平面DD B ',所以AC ⊥平面DD B ',BD '⊂平面DD B '.所以AC BD '⊥',同理可得BD AB ''⊥,AC AC A ⋂'=,AC ,AB '⊂平面ACB '.所以BD '⊥平面ACB '.所以过点P 作//PG C D '交CD 交于G ,过G 作//GF AC 交AD 交于F ,由//AB C D '',可得//PG AB ',PG ⊄平面ACB ',AB '⊂平面ACB ',所以//PG 平面ACB ',同理可得//GF 平面ACB '.则平面//PGF 平面ACB '.设平面PEF 交平面ADD A ''于EF ,则M 的运动轨迹为线段EF ,由点P 在棱CC '上,且12PC '=,可得13,||22DG DF AF AE ====,所以33242EF A D ='=,故C 正确;对于D ,如图:延长DC ,D P '交于点H ,连接AH 交BC 于I ,连接PI ,所以平面AD P '被正方体ABCD A B C D -''''截得的截面为AIPD '.PCH D DH ~' ,所以34PH PC HC D H DD DH ''===.ICH ADH ~ ,所以34CI HC IH DA DH AH ===,所以34PH IH PI D H AH AD ='==',所以//PI AD ',且PI AD ≠',所以截面AIPD '为梯形,141742AI PD ==+=',所以截面AIPD '为等腰梯形.所以'117233733()22288AIPD S AD BP h '=⨯+=⨯⨯=,故D 正确.故选:BCD.三、填空题1314151642i-+382921213.【答案】42i-+【详解】由题知:(1,2),(3,4)OA OB ==- ,则(4,2)AB OB OA =-=-,对应复数为42i-+14.【答案】38【详解】由2(sin cos )12sin cos αααα+=+,则112sin 24β=-,所以3sin 28β=。
2019-2020学年重庆市巴蜀中学高一(下)期末数学试卷一、单选题(本大题共12小题,共60.0分)1.设实数x,y满足约束条件{x−y+1⩾0,y+1⩾0,x+y+1⩽0,,则z=2x−y的最大值为A. −3B. −2C. 1D. 22.直线c、d与异面直线a、b都相交,则c、d的位置关系是()A. 平行B. 相交C. 异面D. 相交于一点或异面3.已知等差数列{a n}的首项a1=−1,公差d=15,则{a n}的第一个正数项是()A. a4B. a5C. a6D. a74.若向量a⃗与b⃗ 不相等,则a⃗与b⃗ 一定()A. 有不相等的模B. 不共线C. 不可能都是零向量D. 不可能都是单位向量5.已知球的直径SC=4,A,B是该球球面上的两点,AB=,∠ASC=∠BSC=30°,则棱锥SABC的体积为()A. 3B. 2C.D. 16.已知等于()A. B. C. — D.7.若函数f(x)=sinωx(ω>0)在区间上单调递增,在区间上单调递减,则ω=()A. 3B. 2C.D.8.函数y=4x2+8x+136(x+1)(x>−1)的最小值是()A. 1B. 32C. 2D. 39. 设集合M ={正四棱柱},N ={长方体},P ={直四棱柱},Q ={正方体},则这四个集合之间的关系是( )A. P ⊆N ⊆M ⊆QB. Q ⊆M ⊆N ⊆PC. P ⊆M ⊆N ⊆QD. Q ⊆N ⊆M ⊆P10. 在各项均为正数的等比数列{a n }中,若a n a n+1=22n+1,则a 5=( )A. 4B. 8C. 16D. 3211. 在△ABC 中,AB =3,AC =2,∠BAC =60°,点P 是△ABC 内一点(含边界),若AP ⃗⃗⃗⃗⃗ =23AB ⃗⃗⃗⃗⃗ +λAC ⃗⃗⃗⃗⃗ ,则|AP⃗⃗⃗⃗⃗ |的最大值为( ) A. 2√73B. 83C. 2√193D. 2√13312. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若bcosA +acosB =c 2,且a =√3,b =√2,则cos B 等于( )A. 13B. 34C. √33D. √34二、单空题(本大题共4小题,共20.0分)13. 已知向量a ⃗ =(1,0),b ⃗ =(1,1),若(a ⃗ +k b ⃗ )⊥a ⃗ ,则实数k 的值是______14. 已知等比数列{a n }中,a 1+a 2=3,a 1a 2a 3=8,则{a n }的前n 项和S n = ______ . 15. 如图,正方体ABCD −A′B′C′D′中,AB =2,点E 、F 分别为A′D′、DC 的中点,则线段EF 的长度等于______.16. △ABC 中,若sin 2A −sin 2B +sin 2C =sinAsinC ,那么∠B = ______ . 三、解答题(本大题共6小题,共70.0分)17. 如图,在四棱锥P −ABCD 中,底面ABCD 为正方形,侧棱PD ⊥底面ABCD ,PD =DA ,E 、F分别为PA 、PC 的中点. (1)求证:EF//平面ABCD ; (2)求证:DE ⊥平面PAB .18.已知函数f(x)=2sinωxcos(ωx−π3)(ω>0)的最小正周期为π.(Ⅰ)求ω的值及函数f(x)的单调递增区间;(Ⅱ)当x∈[0,π2]时,求函数f(x)的值域.19.(本小题满分14分)设等差数列的前项和为,且,.(1)求数列的通项公式及其前项和;(2)求的值.20. 已知函数f(x)=sin(x+π6)+cosx.(1)求函数f(x)的单调增区间;(2)若α∈(0,π2),f(α+π6)=3√35,求tan2α的值.21. 四棱锥S−ABCD,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠DAB=135°,BC=2√2,SB=SC=AB=2,F为线段SB的中点.(Ⅰ)求证:SD//平面CFA;(Ⅱ)证明:SA⊥BC.22. 在数列{a n}中,a1=1,a n+1=()a n+.(1)设,求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n.【答案与解析】1.答案:C解析:本题主要考查利用线性规划求最值的应用.解:画出不等组表示的平面区域:当直线y=2x−z过点A(0,−1)时,z有最小值,最小值为z=1.故选C.2.答案:D解析:解:已知直线a与b是异面直线,设直线c与直线d分别与两条异面直线a与直线b相交于点A,B,C,D,当点B与点C重合时,两条直线c与d相交,当点B与点D不重合时,两条直线c与d异面.故选:D.直线c与直线d分别与两条异面直线a与直线b相交于点A,B,C,D,当点B与点C重合时,两条直线c与d相交,当点B与点D不重合时,两条直线c与d异面.本题考查两直线位置关系的判断,考查平面的基本性质及其推论等基础知识,考查运算求解能力,是基础题.3.答案:D解析:解:依题意知a n=−1+(n−1)⋅15=n5−65,令a n>0,求得n>6,∴数列中第7项为第一个正数项.故选:D.先根据等差数列的通项公式,求得a n,令a n>0求得n的范围,即可推断出第一个正数项.本题主要考查了等差数列的性质.考查了学生对等差数列通项公式的灵活应用.4.答案:C解析:本题考查向量相等的定义的应用,逐一特殊情况:零向量和单位向量,属于基础题.分别根据向量相等的定义或举特例逐一判断各个选项即可.解:A、若a⃗=−b⃗ 时,它们的方向相反但是模相等,满足向量a⃗与b⃗ 不相等,A不正确;B、若向量a⃗与b⃗ 方向相同、但模不相等,满足向量a⃗与b⃗ 不相等,B不正确;C、所有的零向量都是相等向量,所以向量a⃗与b⃗ 一定不都是零向量,C正确;D、单位向量的长度为1,但方向不一定相同,满足向量a⃗与b⃗ 不相等,D不正确,故选:C.5.答案:C解析:试题分析:取SC的中点D,则D为球心,则AD=BD=DS=2,∠ASC=∠BSC=∠SBD=300,过A做AE⊥SC与E,连接BE,则BE⊥SC.在ΔBDE中,DE=BDcos∠BED=1,BE=BDsin∠BED=,故三棱锥SABC的体积等于棱锥SABE和棱锥CABE的体积之和,即。
2019-2020学年重庆市巴蜀中学高一第二学期期末数学试卷一、选择题(共12小题).1.已知﹣2≤a≤4,1≤b≤3,则a﹣2b的取值范围是()A.[﹣4,﹣2]B.[﹣3,1]C.[﹣8,2]D.[﹣7,7]2.已知a∥α,b⊂α,则直线a与直线b的位置关系是()A.平行B.相交或异面C.异面D.平行或异面3.在等差数列{a n}中,若a2=3,a4=1,则a6=()A.﹣1B.C.5D.94.已知点A(3,2),B(5,1),则与反方向的单位向量为()A.(,﹣)B.(﹣,)C.(﹣,)D.(,﹣)5.侧棱长为a的正四棱锥,如果底面周长是4a,则这个棱锥的侧面积是()A.a2B.a2C.()a2D.5a26.若tanα=,则cos2α+2sin2α=()A.B.C.1D.7.要得到函数y=cos2x的图象,只需将函数y=cos(2x)的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位8.已知实数a>0,b>0,=,则a+2b的最小值为()A.2B.6C.3D.39.过正三棱柱底面一边和两底中心连线的中点作截面,则这个截面的形状是()A.等腰三角形B.直角三角形C.等腰梯形D.平行四边形10.已知数列{a n}的各项均为正数,a1=2,a n+1﹣a n=,若数列{}的前n项和为5,则n=()A.119B.121C.120D.122211.如图梯形ABCD,AB∥CD且AB=5,AD=2DC=4,E在线段BC上,=0,则的最小值为()A.B.C.15D.12.已知非等腰△ABC的内角A,B,C的对边分别是a,b,c,且=2c2,若c为最大边,则的取值范围是()A.(,)B.(,)C.(,]D.(,]二、填空题(本大题共4小题,每小题5分,共20分)13.已知||=2,||=4,⊥(﹣),则与的夹角的度数为.14.设等比数列{a n}满足a2=4,a3a4=128,则a6=.15.两个完全相同的长方体的长、宽、高分别为5cm,4cm,3cm,把它们重叠在一起组成一个新长方体,在这些新长方体中,最长的对角线的长度是.16.在△ABC中,内角A、B、C所对的边分别为a、b、c,若a=2,b=3,C=2A,则cos2C =.三、解答题(共70分,解答题应写出文字说明、证明过程或演算步骤)17.如图,在正方体ABCD﹣A1B1C1D1中,E、F分别为AB1、BD的中点.(1)求证:EF∥平面BCC1B1;(2)求直线EF与直线AA1所成的角.18.已知函数f(x)=sin(2x﹣)+2sin2x.(1)求f(x)的最小正周期;(2)当x∈[,]时,求f(x)的值域.19.已知数列{a n} 中.a1=2,且a n=2a n﹣1﹣n+2(n≥2,n∈N*).(Ⅰ)求a2,a3并证明{a n﹣n}是等比数列;(Ⅱ)设b n=,求数列{b n}的前n项和S n.20.在△ABC中,角A、B、C的对边分别为a,b,c,且(a﹣c cos B)=b sin C.(1)求角C;(2)若△ABC的面积S=,a+b=4,求sin A sin B及cos A cos B的值.21.已知长方体PQRS﹣ABCD,底面ABCD为正方形,过AB的平面与平面PCD的交线为EF,且满足S△PEF:S四边形CDEF=1:3(S△PEF表示△PEF的面积).(1)证明:PB∥平面ACE;(2)当PA=2AD=2时,求点F到平面ACE的距离.22.数列{a n}满足a1=0,a2=2,且对任意m,n∈N*都有a2m﹣1+a2n﹣1=2a m+n﹣1+2(m﹣n)2.(1)设b n=a2n+1﹣a2n﹣1(n∈N*),证明:{b n}是等差数列,并求{a n}的通项公式;(2)设数列{c n}满足c1=2,c n+1=a+1,记[x]表示不超过x的最大整数,求不等式[+…+]>a n﹣的解集.参考答案一、选择题(共12小题).1.已知﹣2≤a≤4,1≤b≤3,则a﹣2b的取值范围是()A.[﹣4,﹣2]B.[﹣3,1]C.[﹣8,2]D.[﹣7,7]解:∵1≤b≤3,∴﹣6≤﹣2b≤﹣2,又﹣2≤a≤4,∴﹣8≤a﹣2b≤2.故a﹣2b的取值范围是[﹣8,2].故选:C.2.已知a∥α,b⊂α,则直线a与直线b的位置关系是()A.平行B.相交或异面C.异面D.平行或异面【分析】由直线a∥平面α,直线b在平面α内,知a∥b,或a与b异面.解:∵直线a∥平面α,直线b在平面α内,∴a∥b,或a与b异面,故选:D.3.在等差数列{a n}中,若a2=3,a4=1,则a6=()A.﹣1B.C.5D.9【分析】根据等差中项的性质即可求出结论.解:因为等差数列{a n}中,2a4=a2+a6;∵a2=3,a4=1,则a6=2a4﹣a2=﹣1.故选:A.4.已知点A(3,2),B(5,1),则与反方向的单位向量为()A.(,﹣)B.(﹣,)C.(﹣,)D.(,﹣)【分析】根据单位向量的定义,运算求解即可.解:由题,=(2,﹣1),∴﹣=(﹣2,1),∴与反方向的单位向量为:(,),即(,).故选:B.5.侧棱长为a的正四棱锥,如果底面周长是4a,则这个棱锥的侧面积是()A.a2B.a2C.()a2D.5a2【分析】由正四棱锥的侧棱长和底面周长知,这个棱锥侧面积是四个边长为a的等边三角形的面积之和.解:由正四棱锥的侧棱长为a,底面周长为4a,所以这个棱锥侧面积是四个边长为a的等边三角形的面积之和,所以这个棱锥侧面积S=4×(×a2×sin60°)=a2.故选:A.6.若tanα=,则cos2α+2sin2α=()A.B.C.1D.【分析】将所求的关系式的分母“1”化为(cos2α+sin2α),再将“弦”化“切”即可得到答案.解:∵tanα=,∴cos2α+2sin2α====.故选:A.7.要得到函数y=cos2x的图象,只需将函数y=cos(2x)的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【分析】直接利用函数的图象的平移变换求出结果.解:要得到函数y=cos2x的图象,只需将函数y=cos(2x)的图象向左平移个单位即可,即y=cos[2(x+)﹣]=cos2x.故选:A.8.已知实数a>0,b>0,=,则a+2b的最小值为()A.2B.6C.3D.3【分析】先换元,令s=a+1,t=b+1,则=,a+2b=s+2t﹣3,再采用“乘1法”,求出s+2t的最小值即可得解.解:令s=a+1,t=b+1,则s>1,t>1,且=,∴a+2b=(s﹣1)+2(t﹣1)=s+2t﹣3,而s+2t=2(s+2t)•()=2(1+++2)≥2×(3+2)=2(3+),当且仅当=,即s=t时,等号成立.∴s+2t的最小值为2(3+),∴a+2b=s+2t﹣3≥2(3+)﹣3=3+4.故选:D.9.过正三棱柱底面一边和两底中心连线的中点作截面,则这个截面的形状是()A.等腰三角形B.直角三角形C.等腰梯形D.平行四边形【分析】直接利用正三棱柱的性质和勾股定理的应用求出四边形为等腰梯形.解:根据题意,如图所示由于G、H为AC和BC的中点,所以GH∥AB,且GH=AB=DE,由于该几何体为正三棱柱,所以,所以四边形GHED为等腰梯形.故选:C.10.已知数列{a n}的各项均为正数,a1=2,a n+1﹣a n=,若数列{}的前n项和为5,则n=()A.119B.121C.120D.1222【分析】由已知推导出a n=.,由此能求出n.解:∵数列{a n}的各项均为正数,a1=2,a n+1﹣a n=,∴=4,∴,∴,∵a1=2,∴=2,=2,=4=2,…由此猜想a n=.∵a1=2,a n+1﹣a n=,数列{}的前n项和为5,∴=,∴,解得n+1=121,∴n=120.故选:C.11.如图梯形ABCD,AB∥CD且AB=5,AD=2DC=4,E在线段BC上,=0,则的最小值为()A.B.C.15D.【分析】先利用=0求出∠A的值,然后建立直角坐标系,确定一些必要点的坐标,用平面向量数量积的坐标表示建立函数关系,求出的最小值.解:在梯形ABCD,AB∥CD,则向量与的夹角和向量与的夹角相等,不妨设为θ.由=0可知,,整理得16﹣20cosθ+8cosθ﹣10=0,解之得,∴θ=60°,即∠DAB=60°,过点D向AB作垂线垂足为O,建立如图所示直角坐标系,则A(﹣2,0),B(3,0),D(0,),C(2,),则,∴.所以).=13λ2﹣20λ+15,又知0≤λ≤1,当时,取得最小值.故选:B.12.已知非等腰△ABC的内角A,B,C的对边分别是a,b,c,且=2c2,若c为最大边,则的取值范围是()A.(,)B.(,)C.(,]D.(,]【分析】由=2c2,化简得到cos C的值,根据余弦定理和基本不等式求出即可.解:由=2c2,得=2c2,即a2+b2+=c2+c2,则a2+b2﹣c2=c2﹣,a2+b2﹣c2=,通分得=0,故(a2+b2﹣c2)2=a2b2,故()2=,因为C为最大角,所以cos C=﹣,由余弦定理c2=a2+b2+ab=(a+b)2﹣ab≥(a+b)2﹣()2=(a+b)2,当且仅当a=b时,取等号,故c≥(a+b),则≤,由a+b>c,得>1,所以的取值范围是(,],故选:A.二、填空题(本大题共4小题,每小题5分,共20分)13.已知||=2,||=4,⊥(﹣),则与的夹角的度数为60°.【分析】利用向量的数量积、夹角公式直接计算.解:因为||=2,||=4,⊥(﹣),则=4.于是cos==.∵向量夹角的范围为[0,π],∴与的夹角的度数为600.14.设等比数列{a n}满足a2=4,a3a4=128,则a6=64.【分析】设公比为q,由题意可得4q×4q2=128,解得q=2,则a6=a2q4,问题得以解决.解:设公比为q,∵a2=4,a3a4=128,∴4q×4q2=128,∴q3=8,∴q=2,∴a6=a2q4=4×24=64,故答案为:6415.两个完全相同的长方体的长、宽、高分别为5cm,4cm,3cm,把它们重叠在一起组成一个新长方体,在这些新长方体中,最长的对角线的长度是.【分析】分三种情形讨论:(1)重叠的是长、宽分别为5cm,4cm的面,(2)重叠的是长、高分别为5cm,3cm的面,(3)重叠的是宽、高分别为4cm,3cm的面.利用长方体的对角线公式即可求得.解:有以下三种情形:(1)重叠的是长、宽分别为5cm,4cm的面,则新长方体的对角线长为cm(2)重叠的是长、高分别为5cm,3cm的面,则新长方体的对角线长为cm(3)重叠的是宽、高分别为4cm,3cm的面,则新长方体的对角线长为cm故在这些新长方体中,最长的对角线的长度是cm.故答案为cm.16.在△ABC中,内角A、B、C所对的边分别为a、b、c,若a=2,b=3,C=2A,则cos2C =﹣.【分析】根据条件得到B=π﹣3A,由正弦定理得到==,解出sin A,利用二倍角公式即可求解cos2C.解:因为C=2A,所以B=π﹣A﹣C=π﹣3A,由正弦定理可得==,因为sin3A=sin(A+2A)=sin A cos2A+cos A sin2A=sin A(1﹣2sin2A)+2cos2A sin A=sin A(1﹣2sin2A)+2(1﹣sin2A)sin A=3sin A﹣4sin3A,则===,因为C=2A∈(0,π),所以A∈(0,)解得sin A=,故cos2A=1﹣2sin2A=1﹣2×()2=,则cos2C=cos4A=2cos22A﹣1=2×﹣1=﹣,故答案为:﹣.三、解答题(共70分,解答题应写出文字说明、证明过程或演算步骤)17.如图,在正方体ABCD﹣A1B1C1D1中,E、F分别为AB1、BD的中点.(1)求证:EF∥平面BCC1B1;(2)求直线EF与直线AA1所成的角.【分析】(1)连结AC,B1C,推导出EF∥B1C,由此能证明EF∥平面BCC1B1.(2)(1)由EF∥B1C,且AA1∥BB1,得到直线EF与直线AA1所成角为直线B1C与直线BB1所成角,由此能求出直线EF与直线AA1所成的角.解:(1)证明:连结AC,B1C,∵F是正方形ABCD对角线BC的中点,∴F是AC的中点,∵E是AB1的中点,∴EF∥B1C,又EF⊄平面BCC1B1,B1C⊂面BCC1B1,∴EF∥平面BCC1B1.(2)由(1)知EF∥B1C,且AA1∥BB1,∴直线EF与直线AA1所成角为直线B1C与直线BB1所成角,∵正方形BCC1B1中,∠BB1C=45°,∴直线EF与直线AA1所成的角为45°.18.已知函数f(x)=sin(2x﹣)+2sin2x.(1)求f(x)的最小正周期;(2)当x∈[,]时,求f(x)的值域.【分析】(1)直接利用三角函数关系式的变换,把函数的关系式变形成正弦型函数,进一步求出函数的最小正周期.(2)利用函数的关系式,进一步利用函数的定义域求出函数的值域.解:(1)函数f(x)=sin(2x﹣)+2sin2x.=,=,=.所以函数的最小正周期为.(2)由于x∈[,],所以,故,所以函数的值域为:[﹣.19.已知数列{a n} 中.a1=2,且a n=2a n﹣1﹣n+2(n≥2,n∈N*).(Ⅰ)求a2,a3并证明{a n﹣n}是等比数列;(Ⅱ)设b n=,求数列{b n}的前n项和S n.【分析】(Ⅰ)在已知的数列递推式中分别取n=2,3,结合已知的首项即可求得a2,a3的值,再把递推式两边同时减n即可证明{a n﹣n}是等比数列;(Ⅱ)由{a n﹣n}是等比数列求出数列{a n}的通项公式,代入b n=,分组后利用错位相减法求数列{b n}的前n项和S n.解:(Ⅰ)由a n=2a n﹣1﹣n+2(n≥2,n∈N*),且a1=2,得a2=2a1﹣2+2=4,a3=2a2﹣3+2=2×4﹣3+2=7.再由a n=2a n﹣1﹣n+2,得a n﹣n=2a n﹣1﹣2n+2,即a n﹣n=2[a n﹣1﹣(n﹣1)],∵(n≥2,n∈N*),∴{a n﹣n}是以2为公比的等比数列.(Ⅱ)由(Ⅰ)得,,即,∴,设,且其前n项和为T n,∴①②①﹣②得:=.∴,则.20.在△ABC中,角A、B、C的对边分别为a,b,c,且(a﹣c cos B)=b sin C.(1)求角C;(2)若△ABC的面积S=,a+b=4,求sin A sin B及cos A cos B的值.【分析】(1)利用正弦定理化边为角,化简后可求;(2)由sin C=,得ab=,又a+b=4,运用余弦定理可求c,由正弦定理可得===4,由此可得sin A sin B=;cos A cos B==,配方代入数值可求;解:(1)(a﹣c cos B)=b sin C,由正弦定理,得(sin A﹣sin C cos B)=sin B sin C,sin(B+C)﹣sin C cos B=sin B sin C,即sin B cos C=sin B sin C,∴tan C=,则C=60°;(2)sin C=ab sin60°=,∴ab=,又a+b=4,∴由余弦定理,得c2=a2+b2﹣2ab cos C=(a+b)2﹣3ab=12,∴c=2,由正弦定理,得===4,∴a=4sin A,b=4sin B,∴sin A sin B===;可判断A、B均为锐角,∴cos A cos B=====,故sin A sin B=,cos A cos B=.21.已知长方体PQRS﹣ABCD,底面ABCD为正方形,过AB的平面与平面PCD的交线为EF,且满足S△PEF:S四边形CDEF=1:3(S△PEF表示△PEF的面积).(1)证明:PB∥平面ACE;(2)当PA=2AD=2时,求点F到平面ACE的距离.【分析】(1)由四边形ABCD为正方形,得AB∥CD,则AB∥平面PCD,再由AB∥CD,得EF∥CD,推导出E,F分别为PC,PD的中点,连结BD交AC于G,连结EG,推导出EG∥PB,由此能证明PB∥平面ACE.(2)设点F到平面ACE的距离为h,由V F﹣ACE=V E﹣ACF,能求出点F到平面ACE的距离.解:(1)证明:由题知四边形ABCD为正方形,∴AB∥CD,又CD⊂平面PCD,AB⊄平面PCD,∴AB∥平面PCD,∵AB⊂平面ABFE,平面ABFE∩平面PCD=EF,∴EF∥AB,又AB∥CD,∴EF∥CD,∵S△PEF:S四边形CDEF=1:3,∴E,F分别为PC,PD的中点,连结BD,交AC于G,则G为BD中点,连结EG,在△PBD中,FG为中位线,∴EG∥PB,∵EG⊂平面ACE,PB⊄平面ACE,∴PB∥平面ACE.(2)∵PA=2,AD=AB=1,∴AC=,AE=PD=,∵CD=1,PD=,CP=,∴CD2+PD2=CP2,∴∠CDP=90°,在Rt△CDE中,CE==,在△ACE中,由余弦定理得cos∠AEC==,∴sin∠AEC=,∴S△AEC==,设点F到平面ACE的距离为h,则V F﹣ACE=,由长方体性质得D到平面PAC的距离为DG,则DG=,∵P为PD中点,∴E到平面ACF的距离为,∵F为PC中点,∴=,∴=,由V F﹣ACE=V E﹣ACF,解得h=,∴点F到平面ACE的距离为.22.数列{a n}满足a1=0,a2=2,且对任意m,n∈N*都有a2m﹣1+a2n﹣1=2a m+n﹣1+2(m﹣n)2.(1)设b n=a2n+1﹣a2n﹣1(n∈N*),证明:{b n}是等差数列,并求{a n}的通项公式;(2)设数列{c n}满足c1=2,c n+1=a+1,记[x]表示不超过x的最大整数,求不等式[+…+]>a n﹣的解集.【分析】(1)令m=2,n=1可得a3,取m=n+2,则有a2n+3+a2n﹣1=2a2n+1+8,即可证明b n}是首项为6公差为8的等差数列,又令m=1,即可求解{a n}的通项公式.(2)由c n+1=a+1,可得c n+1=c n2﹣c n+1⇒,累加即可得[+…+]=0,不等式[+…+]>a n﹣⇔n2﹣5n+1<0,即可求解不等式[+…+]>a n﹣.解:(1)令m=2,n=1可得a3=2a2﹣a1+2=6,取m=n+2,则有a2n+3+a2n﹣1=2a2n+1+8,于是(a2n+3﹣a2n+1)﹣(a2n+1﹣a2n﹣1)=8,∴{b n}是首项为6公差为8的等差数列,所以b n=6+8(n﹣2)=8n﹣2,则b1+b2+…+b n=a2n+1﹣a1,=4n2+2n,∴,又令m=1,,即可得{a n}的通项公式为;(2)由c n+1=a+1,可得c n+1=c n2﹣c n+1,可得c n+1﹣1=c n(c n﹣1)⇒⇒,∴+…+=,又,∴c2021≥c2020≥…≥c1=3>2,∴,∴[+…+]=0,不等式[+…+]>a n﹣⇔n2﹣5n+1<0,解得0,∴n=1,2,3,4,故不等式[+…+]>a n﹣的解集为{1,2,3,4}.。
2017-2018学年重庆市巴蜀中学高一(下)期末数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若向量=(2,k),=(﹣1,2),满足⊥,则实数k=()A.﹣1B.1C.4D.02.(5分)已知S n为等差数列{a n}中的前n项和,a3=3,S4=10,则数列{a n}的公差d=()A.B.1C.2D.33.(5分)△ABC中,a,b,c分别是角A,B,C所对应的边,B=60°,,A=30°,则a=()A.2B.4C.6D.4.(5分)已知a,b,c满足c<b<a且ac<0,则下列选项中一定成立的是()A.ab>ac B.c(b﹣a)<0C.cb2<ab2D.ac(a﹣c)>0 5.(5分)已知函数f(x)=2lnx+ax在x=1处取得极值,则实数a=()A.﹣2B.2C.0D.16.(5分)下列说法正确的是()A.若与共线,则=或者=﹣B.若•=•,则=C.若△ABC中,点P满足2=+,则点P为BC中点D.若,为单位向量,则=7.(5分)若a,b是整数,则称点(a,b)为整点,对于实数x,y,约束条件所表示的平面区域内整点个数为()个A.4B.5C.6D.78.(5分)已知各项均为正的等比数列{a n}中,a2与a8的等比中项为,则a42+a62的最小值是()A.1B.2C.4D.89.(5分)若直线ax﹣by+1=0(a>0,b>0)平分圆x2+y2+2x﹣4y+1=0的周长,则最小值为()A.B.C.D.10.(5分)在△ABC中,若sin B sin C=cos2,则△ABC是()A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形11.(5分)数列{a n}中,a1=2,a n=2a n+1(n∈N*),则a1a3+a2a4+…+a10a12=()A.(410﹣1)B.(411﹣1)C.(1﹣()11)D.(1﹣()10)12.(5分)已知f(x)=a(x2﹣x)+有且仅有两个零点,那么实数a=()A.B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)若x,y满足约束条件,则z=x﹣2y的最小值为.14.(5分)圆x2+y2=r2(r>0)与圆(x﹣3)2+(y﹣4)2=1相外切,则半径r的值为.15.(5分)△ABC是正三角形,AB=2,点G为△ABC的重心,点E满足,则=.16.(5分)已知⊙M:x2+y2﹣4y+3=0,直线l:kx﹣y=0(k>0),如果⊙M上总存在点A,它关于直线l的对称点在x轴上,则k的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知函数f(x)=x2﹣4x+4,x∈[﹣3,2].(1)求函数f(x)在x=0处切线方程;(2)求函数f(x)的最大值和最小值.18.(12分)已知△ABC中,a,b,c分别是角A,B,C所对应的边,若a=b cos C+c sin B,且△ABC的面积为2,(1)求角B;(2)若a+c=5,求b2的值.19.(12分)已知以点P为圆心的圆经过点A(﹣1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=4.(1)求直线CD的方程;(2)求圆P的方程.20.(12分)已知正项等比数列{a n}的前n项和S n满足:S n+2=S n+,(n∈N*)(1)求数列{a n}的首项a1和公比q;(2)若b n=a n+log2a n+1,(n∈N*),求数列{b n}的前f(x)项和T n.21.(12分)已知圆C:(x﹣4)2+(y﹣1)2=4,直线l:2mx﹣(3m+1)y+2=0.(1)若直线l与圆C相交于两点A,B,弦长AB等于2,求m的值;(2)已知点M(4,5),点C为圆心,若在直线MC上存在定点N(异于点M),满足:对于圆C上任一点P,都有为一常数,试求所有满足条件的点N的坐标及该常数.22.(12分)已知函数f(x)=e x﹣ax+1.(1)若a=1,求函数f(x)单调性;(2)若存在b>0,使得x∈(0,b)恒有f(x)≥2﹣x2,求实数a的取值范围.2017-2018学年重庆市巴蜀中学高一(下)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若向量=(2,k),=(﹣1,2),满足⊥,则实数k=()A.﹣1B.1C.4D.0【解答】解:∵向量=(2,k),=(﹣1,2),满足⊥,∴=﹣2+2k=0,解得实数k=1.故选:B.2.(5分)已知S n为等差数列{a n}中的前n项和,a3=3,S4=10,则数列{a n}的公差d=()A.B.1C.2D.3【解答】解:∵a3=3,S4=10,∴a1+2d=3,4a1+d=10,联立解得d=1.故选:B.3.(5分)△ABC中,a,b,c分别是角A,B,C所对应的边,B=60°,,A=30°,则a=()A.2B.4C.6D.【解答】解:∵B=60°,,A=30°,∴由正弦定理,可得:a===4.故选:B.4.(5分)已知a,b,c满足c<b<a且ac<0,则下列选项中一定成立的是()A.ab>ac B.c(b﹣a)<0C.cb2<ab2D.ac(a﹣c)>0【解答】解:∵a,b,c满足c<b<a且ac<0,∴c<0<a由此知A选项ab>ac正确,由于c(b﹣a)>0知B选项不正确,由于b2可能为0,故C选项不正确,由于ac<0,a﹣c>0,故ac(a﹣c)<0,所以D不正确故选:A.5.(5分)已知函数f(x)=2lnx+ax在x=1处取得极值,则实数a=()A.﹣2B.2C.0D.1【解答】解:f′(x)=+a,若f(x)在x=1处取极值,则f′(1)=2+a=0,解得:a=﹣2,故f(x)=2lnx﹣2x,f′(x)=﹣2,令f′(x)>0,解得:0<x<1,令f′(x)<0,解得:x>1,故f(x)在(0,1)递增,在(1,+∞)递减,x=1是极大值点,符合题意,故选:A.6.(5分)下列说法正确的是()A.若与共线,则=或者=﹣B.若•=•,则=C.若△ABC中,点P满足2=+,则点P为BC中点D.若,为单位向量,则=【解答】解:对于A,根据共线向量的定义显然不成立,对于B,令=,显然不成立,对于C,根据向量的运算性质,成立,对于D,根据单位向量的定义,显然不成立,故选:C.7.(5分)若a,b是整数,则称点(a,b)为整点,对于实数x,y,约束条件所表示的平面区域内整点个数为()个A.4B.5C.6D.7【解答】解:当x=0时,不等式组等价为,得0≤y≤,此时y=0,y=1,当x=1时,不等式组等价为,得0≤y≤1,此时y=0,y=1,当x=2时,不等式组等价为,得0≤y≤,此时y=0,当x=3时,不等式组等价为,得y=0,综上共有6个整数点,故选:C.8.(5分)已知各项均为正的等比数列{a n}中,a2与a8的等比中项为,则a42+a62的最小值是()A.1B.2C.4D.8【解答】解:等比数列{a n}中,a2与a8的等比中项为,∴a4a6=a2a8=2,则a42+a62≥2a4a6=4,当且仅当a4=a6=时取等号.故选:C.9.(5分)若直线ax﹣by+1=0(a>0,b>0)平分圆x2+y2+2x﹣4y+1=0的周长,则最小值为()A.B.C.D.【解答】解:圆x2+y2+2x﹣4y+1=0配方可得:(x+1)2+(y﹣2)2=4,可得圆心C(﹣1,2).∵直线ax﹣by+1=0(a>0,b>0)平分圆x2+y2+2x﹣4y+1=0的周长,∴﹣a﹣2b+1=0,即a+2b=1.∵a>0,b>0则=(a+2b)=3++≥3+2,当且仅当a=b=﹣1时取等号.∴最小值为3+2.故选:A.10.(5分)在△ABC中,若sin B sin C=cos2,则△ABC是()A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形【解答】解:由题意,即sin B sin C=1﹣cos C cos B,亦即cos(C﹣B)=1,∵C,B∈(0,π),∴C=B,故选:A.11.(5分)数列{a n}中,a1=2,a n=2a n+1(n∈N*),则a1a3+a2a4+…+a10a12=()A.(410﹣1)B.(411﹣1)C.(1﹣()11)D.(1﹣()10)【解答】解:由数列{a n}中,a1=2,a n=2a n+1(n∈N*),可得数列{a n}为等比数列,首项为2,公比为.∴a n==22﹣n,a n a n+2=22﹣n•22﹣(2+n)=.则a1a3+a2a4+…+a10a12===×.故选:D.12.(5分)已知f(x)=a(x2﹣x)+有且仅有两个零点,那么实数a=()A.B.C.D.【解答】解:f(x)=a(x2﹣x)+有且仅有两个零点,即方程a(x2﹣x)=﹣有且仅有两个实数根,也就是函数y=a(x2﹣x)与y=﹣的图象有两个交点,如图,当a=0时,不合题意;当a<0时,由函数y=a(x2﹣x)的图象过原点,不合题意;∴a>0,两函数y=a(x2﹣x)与y=﹣的图象在第二象限必有1个交点,则两函数y=a(x2﹣x)与y=﹣的图象在第四象限必相切.设切点为P(x0,y0),由y=a(x2﹣x),得y′=2ax﹣a,由y=﹣,得y.∴函数y=a(x2﹣x)在P点处的切线方程为y﹣=(2ax0﹣a)(x﹣x0),即;函数y=﹣在P点处的切线方程为,即y=,则,解得:.故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)若x,y满足约束条件,则z=x﹣2y的最小值为﹣5.【解答】解:由约束条件作出可行域如图,联立,解得B(3,4).化目标函数z=x﹣2y为y=x﹣z,由图可知,当直线y=x﹣z过B(3,4)时,直线在y轴上的截距最大,z有最小值为:3﹣2×4=﹣5.故答案为:﹣5.14.(5分)圆x2+y2=r2(r>0)与圆(x﹣3)2+(y﹣4)2=1相外切,则半径r的值为4.【解答】解:圆x2+y2=r2(r>0)的圆心坐标(0,0),半径为r;圆(x﹣3)2+(y﹣4)2=1的圆心坐标(3,4),半径为1,∵两圆外切,∴两圆圆心距等于两圆半径之和,∴=5=1+r,∴r=4,故答案为:4.15.(5分)△ABC是正三角形,AB=2,点G为△ABC的重心,点E满足,则=﹣.【解答】解:如图所示:,△ABC是正三角形,AB=2,点G为△ABC的重心,点E满足,则A(1,),E(,0),C(2,0),G(1,),则=(,﹣),=(﹣1,),故=﹣﹣1=﹣,故答案为:﹣.16.(5分)已知⊙M:x2+y2﹣4y+3=0,直线l:kx﹣y=0(k>0),如果⊙M上总存在点A,它关于直线l的对称点在x轴上,则k的取值范围是[].【解答】解:化圆M:x2+y2﹣4y+3=0为x2+(y﹣2)2=1,可知圆M的圆心坐标为(0,2),半径为1,设圆心M关于直线y=kx的对称点为M′(x′,y′),则,即.由|y′|=||≤1,解得:.∴k的取值范围是[].故答案为:[].三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知函数f(x)=x2﹣4x+4,x∈[﹣3,2].(1)求函数f(x)在x=0处切线方程;(2)求函数f(x)的最大值和最小值.【解答】解:(1)函数f(x)=x3﹣4x+4的导数为f′(x)=x2﹣4,斜率k=f′(0)=﹣4,切点(0,4),所以切线为y=﹣4x+4;(2)极大值极小值﹣所以函数最小值为﹣,最大值为.18.(12分)已知△ABC中,a,b,c分别是角A,B,C所对应的边,若a=b cos C+c sin B,且△ABC的面积为2,(1)求角B;(2)若a+c=5,求b2的值.【解答】解:(1)∵a=b cos C+c sin B,∴由正弦定理得:sin A=sin B cos C+sin C sin B,即sin(B+C)=sin B cos C+sin C sin B,∴得sin C cos B=sin C sin B,又∵sin C≠0,∴tan B=1,∵B∈(0,π),∴B=.(2)∵由S△ABC=ac sin B=2,得ac=4,∴b2=a2+c2﹣2ac cos B=(a+c)2﹣2ac﹣ac=17﹣8.19.(12分)已知以点P为圆心的圆经过点A(﹣1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=4.(1)求直线CD的方程;(2)求圆P的方程.【解答】解:(1)由题意知直线CD垂直平分线段AB,∵A(﹣1,0),B(3,4),∴AB的中点M(1,2),又,∴k CD=﹣1,∴直线CD的方程为:y﹣2=﹣1×(x﹣1),即x+y﹣3=0;(2)由题意知线段CD为圆的直径,∴2r=,得r=2.设圆P的方程为(x﹣a)2+(y﹣b)2=40,∵圆经过点A(﹣1,0)和B(3,4),∴,解得或.∴圆P的方程为(x+3)2+(y﹣6)2=40或(x﹣5)2+(y+2)2=40.20.(12分)已知正项等比数列{a n}的前n项和S n满足:S n+2=S n+,(n∈N*)(1)求数列{a n}的首项a1和公比q;(2)若b n=a n+log2a n+1,(n∈N*),求数列{b n}的前f(x)项和T n.【解答】解:(1)正项等比数列{a n}的前n项和S n满足:S n+2=S n+,(n∈N*),令n=1和2,得到:,两式相减得:,解得.由于q为正数,则q=.又,可知,解得:a1=1,(2)由(1)得:,所以b n=a n+log2a n+1=,利用分组求和得:,=.21.(12分)已知圆C:(x﹣4)2+(y﹣1)2=4,直线l:2mx﹣(3m+1)y+2=0.(1)若直线l与圆C相交于两点A,B,弦长AB等于2,求m的值;(2)已知点M(4,5),点C为圆心,若在直线MC上存在定点N(异于点M),满足:对于圆C上任一点P,都有为一常数,试求所有满足条件的点N的坐标及该常数.【解答】解:(1)圆心C(4,1)到直线l的距离d==.∵d2+=22,解得d=1.∴=1.平方化为:m(3m+1)=0,解得m=0或m=﹣.(2)由题知,直线MC的方程为:x=4,假设存在定点N(4,t)满足题意,设P(x,y),=λ,得|PM|2=λ2•|PN|2(λ>0),且(x﹣4)2=4﹣(y﹣1)2,∴4﹣(y﹣1)2+(y﹣5)2=4λ2﹣λ2(y﹣1)2+λ2(y﹣t)2,整理得:[(2﹣2t)λ2+8]y+(3+t2)λ2﹣28=0,由于上式对于任意y∈[﹣1,3]恒成立,∴(2﹣2t)λ2+8=0,且(3+t2)λ2﹣28=0,解得:t2﹣7t+10=0,∴t=2,或t=5(舍去,与M重合),λ2=4,λ>0,解得λ=2.综上可知,在直线MC上存在定点N(4,2),使得为常数2.22.(12分)已知函数f(x)=e x﹣ax+1.(1)若a=1,求函数f(x)单调性;(2)若存在b>0,使得x∈(0,b)恒有f(x)≥2﹣x2,求实数a的取值范围.【解答】解:(1)函数f(x)=e x﹣x+1的导数为f′(x)=e x﹣1,当x>0时,f′(x)>0,f(x)递增;当x<0时,f′(x)<0,f(x)递减,则f(x)在(﹣∞,0)递减,在(0,+∞)递增;(2)存在b>0,使得x∈(0,b)恒有f(x)≥2﹣x2,可得a≤在x∈(0,b)恒成立,由y=e x﹣x﹣1的导数为y′=e x﹣1,可得函数y在(﹣∞,0)递减,在(0,+∞)递增,即为e x﹣x﹣1≥0,即有e x﹣1≥x,则>=x+1>1,可得a≤1,即a的取值范围是(﹣∞,1].。
2017-2018学年重庆市巴蜀中学高一下学期期末考试数学文卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若向量(2,)a k =r ,(1,2)b =-r ,满足a b ⊥r r,则实数k =( )A .1-B .1C .4D .02.已知n S 为等差数列{}n a 中的前n 项和,33a =,410S =,则数列{}n a 的公差d =( ) A .12B .1C .2D .3 3.ABC V 中,,,a b c 分别是角,,A B C 所对应的边,60B =︒,b =30A =︒,则a =( )A..4 C .6 D .4.已知实数,,a b c 满足c b a <<且0ac <,下列选项中不一定成立的是( )A .ab ac >B .(b a)0c -> C.22cb ab < D .(a c)0ac -<5.已知函数()2ln f x x ax =+在1x =处取得极值,则实数a =( ) A .2- B .2 C.0 D .16.下列说法正确的是( )A .若a r 与b r 共线,则a b =r r 或者a b =-r rB .若a b a c ⋅=⋅r r r r ,则b c =r rC.若ABC V 中,点P 满足2AP AB AC =+u u u r u u u r u u u r,则点P 为BC 中点D .若1e u r ,2e u r 为单位向量,则12e e =u r u r7.若,a b 是整数,则称点(a,b)为整点,对于实数,x y ,约束条件2300x y x y +≤⎧⎪≥⎨⎪≥⎩所表示的平面区域内整点个数为( )个A .4B .5 C.6 D .78.已知各项均为正的等比数列{}n a 中,2a 与8a2246a a +的最小值是( )A .1B .2 C.4 D .89.若直线10ax by -+=(0a >,0b >)平分圆222410x y x y ++-+=的周长,则11a b+的最小值为( )A.3+.12D.3+ 10.在ABC V 中,若2sin sin cos2AB C =,则ABC V 是( ) A .等腰三角形 B .直角三角形 C.等边三角形 D .等腰直角三角形 11.数列{}n a 中,12a =,12n n a a +=(n N *∈),则13241012a a a a a a ++=L ( )A .104(41)3- B .114(41)3- C.11161(1())34- D .10161(1())34-12.已知()21()f x a x x x=-+有且仅有两个零点,那么实数a =( )A .427B .23 C.32 D .274第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若,x y 满足约束条件()103030x y f x x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,2z x y =-则的最小值为 .14.圆222(r 0)x y r +=>与圆22(3)(y 4)1x -+-=相外切,则半径r 的值为 .15.ABC ∆是正三角形,2AB =,点G 为ABC ∆的重心,点E 满足3BE EC =uu r uu u r,则CG AE ⋅=uu u r uu u r.16.已知圆22:430M x y y +-+=,直线:0(0)l kx y k -=>,如果圆M 上总存在点A ,它关于直线l 的对称点在x 轴上,则k 的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知函数()[]2144,3,23f x x x x =-+∈- (1)求函数()f x 在0x =处切线方程; (2)求函数()f x 的最大值和最小值.18. 已知ABC ∆中,,,a b c 分别是角,,A B C 所对应的边,若cos sin a b C c B =+,且ABC ∆的面积为2,(1)求角B ;(2)若+c 5a =,求2b 的值.19. 已知以点P 为圆心的圆经过点(1,0)A -和(3,4)B ,线段AB 的垂直平分线交圆P 于点C 和D ,且|CD|=.(1)求直线CD 的方程; (2)求圆P 的方程.20. 已知正项等比数列{}n a 的前n 项和n S 满足:213,()42n n S S n N *+=+∈ (1)求数列{}n a 的首项1a 和公比q ;(2)若21log ,()n n n b a a n N *+=+∈,求数列{}n b 的前()f x 项和n T . 21. 已知圆22:(4)(1)4C x y -+-=,直线:2(31)y 20l mx m -++=(1)若直线l 与圆C 相交于两点,A B ,弦长AB 等于m 的值;(2)已知点(4,5)M ,点C 为圆心,若在直线MC 上存在定点N (异于点M ),满足:对于圆C 上任一点P ,都有|PM ||PN |为一常数,试求所有满足条件的点N 的坐标及改常数. 22.已知函数()1xf x e ax =-+(1)若1a =,求函数()f x 的单调性;(2)若存在0b >,使(0,)x b ∈恒有()22f x x ≥-,求实数a 的取值范围.试卷答案一、选择题1-5:BBBCA 6-10: CCCAA 11、12:DD 二、填空题13.5- 14.4 15.32- 16.⎣ 三、解答题 17.解:(1)()24fx x '=-,斜率()04k f '==-,切点(0,4).所以切线为44y x =-+ (2)所以函数最小值为3-,最大值为318. 解(1)由cos sin a b C c B =+及正弦定理得:sin sin cos sin sin A B C C B =+,即sin()sin cos sin sin B C B C C B +=+得sin cos sin sin C B C B =,又s i n 0C ≠,所以tan 1B =,因为(0,)B π∈,所以4B π=.(2)由1sin 22ABC S ac B ∆==,得ac =,又22222cos (a c)217b a c ac B ac =+-=+-=-19.解:(1)直线AB 的斜率4013(1)k -==--,AB 中点坐标为(1,2),直线CD 的方程为2(x 1)y -=--,即30x y +-=;(2)设圆心(a,b)P ,则由点P 在直线CD 上得:30a b +-=①,又直径|CD|=,所以|PA |=22(1)40a b ++=②由①②解得:36a b =-⎧⎨=⎩或52a b =⎧⎨=-⎩所以圆心(3,6)P -或(5,2)P -圆的方程为22(3)(6)40x y ++-=或22(5)(2)40x y -++=.20.由题有314213421342S S S S ⎧=+⎪⎪⎨⎪=+⎪⎩,两式相减得:4214a a =,则214q =由题意0q >,有12q = 又311342S S =+,可知12311342a a a a ++=+,有111113(1)2442a a ++=+,所以11a =, 由(1)11()2n n a -=,21log n a n +=-,所以21()2n b n =-,采用分组求和:12211()(1)111212()1222212n n n n n T n n ----⨯=⨯+=----. 21.解(1)0m =或13m =-;(2)由题知,直线MC 的方程为4x =,假设存在定点(4,)N t 满足题意,则设,(,)P x y ,|PM ||PN |λ= 得222|PM ||PN |(0)λλ=>,且22(4)4(1)x y -=-- 所以22222224(1)(5)4(1)()y y y y t λλλ--+-=--+- 整理得:222[(22)8]y (3)280t t λλ-+++-= 因为,上式对于任意[]1,3y ∈-恒成立, 所以2(22)80t λ-+=且22(3)280t λ+-=解得27100t t -+=,所以2t =,5t =(舍去,与M 重合),24λ=,2λ=综上可知,在直线MC 上寻在定点(4,2)N ,使得|PM ||PN |为常数2.22.(1)易得:()1x fx e '=-,若当()f x '时有0x =,()f x 则()f x 在(,0)-∞单调递减,在(0,)+∞单调递增;(2)令()22()21xg x f x x e x ax =+-=+--,且()00g =,()2x g x e x a '=+-,()01g a '=-,()g x '在(0,)x b ∈单调递增,若()010g a '=-<,即1a >,0(0,)x b ∃∈,00()(0)g x g ''>>,此时()g x 在0(0,)x 单调递减,当0(0,)x x ∈,()(0)0g x g <=,不成立. 若()010g a '=-≥,即1a ≤,()g x '在(0,)x b ∈单调递增,则(0,)x ∈+∞,()(0)0g x g ''>≥,所以在()f x 单调递增, 所以()g x 在(0,)+∞单调递增所以()(0)0g x g >=,成立,故1a ≤.。