线性网络的讲义几个定理
- 格式:ppt
- 大小:1.69 MB
- 文档页数:37
只有一个独立源的线性电路,响应与激励成正比,称齐次定理。
例:电路如图示,设i 2为响应,()()()232122232123//// //ab sR R u i i R R R R u R R R R ===+二、叠加性(叠加定理) 有多个独立源的线性网络,响应为每一激励单独作用时所产生的响应之代数和。
例:设i 2为响应,依节点分析法有:21211212⎠⎝i 2=另一方面,依叠加定理:设电压源单独作用于电路,电流源视为开路,电路转换为:2112R R u i s+=−s i R R R i 21122+=−依叠加定理,当两个独立源同时作用于电路时,有:12212212121s s R i i i u i R R R R −−=+=+++与节点电位分析法求得的结论一致。
注:在使用叠加定理时,应注意以下几点:1) 线性电容()视为端电压随时间变化的理想电压源;c q u ∝线性电感(L i ψ∝)视为端电流随时间变化的理想电流源。
2)当某一激励源单独作用时,其它激励源视为零值(电压源视为短路;电流源视为开路)。
3)受控源不能视为激励。
4)叠加定理不适合功率计算(非线性 22Ri RuP ==∵)。
5)多个激励时,只有当所有激励都扩大k 倍时,响应才扩大k 倍。
例3-17用叠加定理求图中电压U 1及电流源的功率解:设电压源单独作用,电流源视为开路,电路为右图所示:依分压公式有: V U 102510//201010//2011=×+=−设电流源单独作用,电压源视为短路,电路为下图所示:()V U 65.110//10//2021=×=−设电压源和电流源同时作用:V U U U 1661021111=+=+=−−电流源的端电压:V U U 91625251=−=−=电流源吸收的功率(注意:电流源为关联参考方向):9 1.513.5P U I W =×=×=例3-18用叠加定理求I x解:设电压源单独作用(受控源不能单独作用),电路如右图所示:()AI I I X X X 2010212 111=∴=−++−−−设电流源单独作用,电路为右图示:用节点分析法,有:⎪⎩⎪⎨⎧−=+=⎟⎠⎞⎜⎝⎛+−−补充212311212121X X I U I U解得:A I X 6.02−=−()A I I I X X X 4.16.0221=−+=+=−−例3-19设,利用响应与激励成比例的性质求:V U S 4−=?=IIA I 1=V U S 36=,由图可推得:解:设依齐次定理:S S S U I U I k kU I 361361=⇒==⇒=依题意: ()A I V U S 9143614−=−=⇒−=作业:3-14,3-17。
第三章线性网络的一般分析方法和网络定理线性网络的一般分析方法和网络定理是线性系统理论的基础,对于理解和分析线性网络的性质和行为具有重要意义。
本章将介绍线性系统的一般分析方法和一些常见的网络定理。
线性网络一般分析方法包括模型描述、稳态分析和频域分析等。
模型描述是指将线性系统用数学方程建模,常见的描述方法包括微分方程、差分方程和传递函数等。
稳态分析是指研究系统在长时间作用下的稳定行为,包括零输入响应和零状态响应。
频域分析是指将系统的输入和输出用频域表达,通过频率响应函数分析系统的频率特性。
线性系统的性质和行为可以利用一些重要的网络定理进行分析和描述。
常见的网络定理包括叠加原理、超级位置原理、频域定理和稳定性条件等。
叠加原理是线性系统最基本的性质之一,它表示系统输出可以分解为各个输入分量响应的叠加。
具体地说,如果一个线性系统对于输入信号x1(t)的响应为y1(t),对于输入信号x2(t)的响应为y2(t),那么对于输入信号x(t)=x1(t)+x2(t),系统的响应为y(t)=y1(t)+y2(t)。
超级位置原理是叠加原理的一种推广,它描述了线性系统对于输入信号的定比例缩放响应的性质。
具体地说,如果一个线性系统对于输入信号x(t)的响应为y(t),那么对于输入信号kx(t)(k为常数),系统的响应为ky(t)。
频域定理是指在频域上分析线性系统的性质和行为,常见的频域定理包括傅里叶变换、拉普拉斯变换和z变换等。
通过频域分析,可以得到系统的频率响应函数,从而研究系统的频率特性。
稳定性条件是指线性系统的稳定性的必要和充分条件。
对于连续时间系统,稳定性条件是系统的所有特征根(极点)的实部都小于零;对于离散时间系统,稳定性条件是系统的所有特征根(极点)的模都小于1除了以上介绍的常见网络定理外,还有一些其他重要的网络定理,如包络定理、发散定理、主值定理等,它们在具体的分析和设计问题中具有重要的应用。
总之,线性网络的一般分析方法和网络定理是理解和分析线性系统行为和性质的基础。