聚合物加工流变学
- 格式:pdf
- 大小:3.35 MB
- 文档页数:35
聚合物流变学研究意义聚合物流变学是研究聚合物在外力作用下的流变特性的学科。
聚合物是一类大分子化合物,具有高分子量、高分子链的柔韧性和长期的耐久性等特点。
聚合物在外力作用下会产生不同的变形和流动行为,而聚合物流变学正是研究这些变形和流动行为的学科。
聚合物流变学的研究意义主要体现在以下几个方面:1. 工程应用:聚合物流变学的研究可以为聚合物工程应用提供重要的理论基础。
比如,聚合物在塑料加工中的流动行为和变形特性对于塑料工程的设计和制造至关重要。
另外,在航空、汽车、电子等领域,聚合物的流变特性也对产品的性能和可靠性有着重要的影响。
2. 医学应用:聚合物在生物医学领域中有着广泛的应用,比如注射用聚合物、生物材料、组织工程等。
聚合物流变学的研究可以为这些应用提供重要的理论支持和技术指导。
3. 环境保护:聚合物在环境领域中也有着重要的应用,比如塑料袋、塑料瓶等。
聚合物流变学的研究可以为这些应用提供技术支持,使其更加环保和可持续。
聚合物流变学的研究主要涉及到以下几个方面:1. 本构关系:聚合物的流变特性与其分子结构有关,通过研究聚合物的分子结构和流变行为,可以建立聚合物的本构模型,从而预测其力学性能。
2. 流变行为:聚合物的流变行为包括弹性、塑性、粘弹性等,通过研究聚合物的流变行为,可以了解其在复杂工况下的行为规律,从而为工程应用提供理论指导。
3. 流变测试:聚合物的流变测试是研究聚合物流变行为的重要手段,包括剪切测试、拉伸测试、压缩测试等。
通过流变测试,可以获得聚合物的粘度、弹性模量、屈服点等流变参数,为聚合物工程应用提供重要的数据支持。
聚合物流变学的研究对于聚合物工程应用、生物医学、环境保护等领域都具有重要的意义。
在未来,随着聚合物材料的广泛应用,聚合物流变学的研究也将变得越来越重要。
聚合物加工流变学基础-回复聚合物加工流变学基础是研究聚合物材料在加工过程中的流变特性的学科。
聚合物加工流变学研究了聚合物材料在加工过程中的力学行为,包括材料的粘度和流变应力等关键参数。
本文将一步一步介绍聚合物加工流变学的基础知识。
第一步:了解流变学基本概念流变学是研究物质在外力作用下的变形和流动行为的学科。
在流变学中,我们关注的是物质对外力的响应及其与应变速率的关系。
第二步:理解聚合物的基本特性聚合物是由大量重复单元构成的高分子化合物。
它们具有灵活性、可塑性和可拉伸性等特性。
聚合物的流变特性主要由分子结构、分子量和分子排列等因素决定。
第三步:聚合物加工过程中的变形行为在聚合物加工过程中,聚合物材料经历了多种变形行为。
这包括弹性变形、塑性变形和黏弹性变形。
弹性变形是指材料在施加外力后会发生可逆的变形,一旦外力消失,材料会恢复到原始形状。
塑性变形是指材料在外力作用下会发生不可逆的变形,即使外力消失,材料也无法完全恢复到原始形状。
黏弹性变形则是介于弹性变形和塑性变形之间的一种特性,即材料在外力作用下会有一部分可恢复的变形,但也会有一部分不可恢复的变形。
第四步:流变特性的测量方法为了研究聚合物材料的流变特性,科学家们发展了多种测量方法。
其中最常用的方法是旋转流变仪和剪切流变仪。
旋转流变仪通过旋转圆盘或圆柱体来施加剪切力,测量材料对剪切力的响应。
这种方法可以获取材料的剪切粘度和剪切应力等指标。
剪切流变仪则是通过在平行平板之间施加剪切力来测量材料的流变特性。
这种方法可以获取材料的剪切应变和剪切应力等参数。
第五步:聚合物的流变特性与应用研究聚合物材料的流变特性可以为聚合物加工过程的优化提供指导。
通过调节加工条件和材料组成,可以改变聚合物的流变特性,以满足不同的需求。
聚合物加工流变学的应用非常广泛。
在塑料加工、橡胶制品生产、粘合剂制造等领域中,流变学原理的应用可以改善产品的质量和生产效率。
此外,流变学还可用于药物传递系统、生物医学工程等领域的研究。
聚合物材料加工流变学复习资料2010-06-02 21 :00:59 阅读165 评论0 字号:中流变学:是研究材料流动及变形规律的科学。
熔融指数:热塑性塑料在一左温度和压力下,熔体在十分钟内通过标准毛细管的重量值。
表观剪切黏度:聚合物流变曲线上某一点的剪切应力与剪切速率之比牛顿流体:指在受力后极易变形,且切应力与变形速率成正比的低粘性流体。
可回复形变:在一左时间内维持该形变保持恒左,而后撤去外力,使形变自然恢复,发现只有一部分形变得到恢复,另一部分则作为永久变形保留下来,其中可恢复形变量Sr表征流体在形变过程中储存弹性能的大小。
第2光滑挤出区:剪切速率持续升高,当达到第二临界剪切速率后,流变曲线跌落,然后再继续发展,挤出物表面可能又变得光滑,这一区域称为第二光滑挤出区。
冷冻皮层:实际上熔体进入冷模后,贴近模壁的熔体很快凝固,速度锐减,形成冷冻皮层,使熔体流道宽度Z下降。
法向应力效应:聚合物材料在口模流动中,由于自身的黏弹特性,大分子链的剪切或拉伸取向导致其力学性能的齐向异性,产生法向应力效应。
松弛时间:弹性形变在外力除去后松驰的快慢,可用松驰时间表征,T二q/G, T越大,松驰时间越长。
德博拉数Deborah数一一时间尺度:松弛时间与实验观察时间之比。
《1时做黏性流体,》1时做弹性固体。
入口校正:由于实际切应力的减小与毛细管有效长度的延长是等价的,所以可将假想的一段管长eR加到实际的毛细管长度L上,用L+eR作为毛细管的总长度,其中e为入口修正系数,R 为毛细管的半径。
用作为均匀的压力梯度,来补偿入口管压力的较大下降残余应力。
残余应力:构件在制造过程中,将受到来自各种工艺等因素的作用与影响:当这些因素消失之后,若构件所受到的上述作用于影响不能随之而完全消失,仍有部分作用与影响残留在构件内,则这种残留的作用与影响称为残余应力。
韦森堡效应爬杆现象包轴现象:与牛顿型流体不同,盛在容器中的高分子液体,当插入英中的圆棒旋转时,没有因惯性作用而甩向容器壁附近,反而环绕在旋转棒附近,岀现沿棒向上爬的“爬杆”现象,这种现象称Weissenberg效应,又称包轴现象。
《聚合物加工流变学基础》课程教学大纲FoundationofPoIymerRheo1ogy一、课程基本信息学分:2.0学时:32考核方式:各教学环节占总分的比例:作业及平时测验:30%,期末考试:70%中文简介:聚合物加工流变学基础是高分子材料与工程专业成型加工方向的一门专业基础课程。
该课程介绍了聚合物流变学的基本概念、聚合物溶液和熔体的基本流变特性及主要影响、以及聚合物流变性能的测试等。
高分子材料的加工成型几乎都是在流动状态下进行的。
通过该课程的学习,学生应掌握聚合物的流变性质,为改进聚合物加工工艺条件、制品性能以及加工机械的设计提供理论上的指导。
二、教学目的与要求1.使学生对高分子材料加工过程的基本原理,主要包括高分子材料在成型加工过程中的基本流变学原理和传热学原理有比较全面的认识。
结合高分子物理学、材料加工工艺学、加工机械及模具设计,理解高分子材料的流变性质与材料的结构、性能、制品配方、加工工艺条件、加工机械及模具的设计和应用之间的关系。
2.掌握高分子材料的基本流变学性质;了解研究高分子材料流变性质的基本数学、力学方法;掌握测量、研究高分子材料流变性质的基本实验方法和手段。
为进一步学习《聚合反应工程》、、《高分子材料成型加工工艺学》、《高分子材料成型加工机械》、《模具设计》等课程打下基础。
3.讨论典型高分子材料成型加工过程的流变学原理,讨论多相聚合物体系(复合材料)的流变性质,为分析和改进生产工艺、指导配方设计、开发和应用高分子材料提供一定的理论基础。
三、教学方法和手段授课方式为课堂讲授为主,辅以实验教学,且与学生自学相结合,通过习题使学生加深对教学内容的理解,通过思考题鼓励学生思考问题和参阅文献。
教学方法上,通过讲授高分子流变的特点和原理,同时将课程学习与高分子的热点研究相结合。
课程教学中引入多媒体教学,采用新颖、多样的教学方式,引导学生,激发学生的学习兴趣与求知的欲望。
五、推荐教材和教学参考资源推荐教材:1.史铁钧,吴德峰.高分子流变学基础.北京:化学工业出版社,2009.06教学参考资源:2.吴其晔.《高分子材料流变学》(第一版).北京:高等教育出版社,2002.103.顾国芳,浦鸿汀.《聚合物流变学基础》(第一版).上海:同济大学出版社,2000.014.王玉忠,郑长义.《高聚物流变学导论》(第一版).成都:四川大学出版社,1993.07O5.周彦豪.《聚合物加工流变学基础》(第一版).西安:西安交通大学出版社,1988.03o六、其他说明该教学大纲依据教育部工科学校教学基本要求,借鉴国内同类专业办学经验,并结合我校的特色,在本专业教师的共同商讨下编写而成。