2018年高考数学—不等式专题
- 格式:doc
- 大小:142.00 KB
- 文档页数:4
2018年北京市高考数学理14专题十四不等式选讲第一篇:2018年北京市高考数学理 14专题十四不等式选讲第十四篇:不等式选讲解答题1.【2018全国一卷23】已知f(x)=|x+1|-|ax-1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.2.【2018全国二卷23】设函数f(x)=5-|x+a|-|x-2|.(1)当a=1时,求不等式f(x)≥0的解集;(2)若f(x)≤1,求a 的取值范围.3.【2018全国三卷23】设函数f(x)=2x+1+x-1.(1)画出y=f(x)的图像;+∞),f(x)≤ax+b,求a+b的最小值.(2)当x∈[0,4.【2018江苏卷21D】若x,y,z为实数,且x+2y+2z=6,求x2+y2+z2的最小值.参考答案解答题⎧-2,x≤-1,⎪ 1.解:(1)当a=1时,f(x)=|x+1|-|x-1|,即f(x)=⎨2x,-1<x<1,⎪2,x≥1.⎩故不等式f(x)>1的解集为{x|x>}.(2)当x∈(0,1)时|x+1|-|ax-1|>x成立等价于当x∈(0,1)时|ax-1|<1成立.若a≤0,则当x∈(0,1)时|ax-1|≥1;若a>0,|ax-1|<1的解集为0<x<综上,a的取值范围为(0,2].1222,所以≥1,故0<a≤2.aa⎧2x+4,x≤-1,⎪2.解:(1)当a=1时,f(x)=⎨2,-1<x≤2,⎪-2x+6,x>2.⎩可得f(x)≥0的解集为{x|-2≤x≤3}.(2)f(x)≤1等价于|x+a|+|x-2|≥4.而|x+a|+|x-2|≥|a+2|,且当x=2时等号成立.故f(x)≤1等价于|a+2|≥4.由|a+2|≥4可得a≤-6或a≥2,所以a的取值范围是(-∞,-6][2,+∞).1⎧-3x,x<-,⎪2⎪1⎪3.解:(1)f(x)=⎨x+2,-≤x<1,y=f(x)的图像如图所示.2⎪⎪3x,x≥1.⎪⎩(2)由(1)知,y=f(x)的图像与y轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当a≥3且b≥2时,f(x)≤ax+b 在[0,+∞)成立,因此a+b的最小值为5.4.证明:由柯西不等式,得(x2+y2+z2)(12+22+22)≥(x+2y+2z)2.因为x+2y+2z=6,所以x2+y2+z2≥4,当且仅当xyz244==时,不等式取等号,此时x=,y=,z=,122333所以x2+y2+z2的最小值为4.第二篇:专题:不等式选讲专题:不等式选讲1、已知函数f(x)=log2(|x-1|+|x-5|-a).(Ⅰ)当a=5时,求函数f(x)的定义域;(Ⅱ)当函数f(x)的定义域为R时,求实数a的取值范围。
2018高考真题分类汇编:不等式1.【2018高考真题重庆理2】不等式0121≤+-x x 的解集为 A.⎥⎦⎤ ⎝⎛-1,21 B.⎥⎦⎤⎢⎣⎡-1,21 C.[)+∞⋃⎪⎭⎫ ⎝⎛-∞-,121. D.[)+∞⋃⎥⎦⎤ ⎝⎛-∞-,121, 对【答案】A2.【2018高考真题浙江理9】设a 大于0,b 大于0.A.若2a+2a=2b+3b ,则a >b B.若2a+2a=2b+3b ,则a >b C.若2a-2a=2b-3b ,则a >b D.若2a-2a=a b-3b ,则a <b 【答案】A3.【2018高考真题四川理9】某公司生产甲、乙两种桶装产品。
已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克。
每桶甲产品的利润是300元,每桶乙产品的利润是400元。
公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克。
通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )A 、1800元B 、2400元C 、2800元D 、3100元【答案】C.4.【2018高考真题山东理5】已知变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y =-的取值范围是(A )3[,6]2- (B )3[,1]2-- (C )[1,6]- (D )3[6,]2-【答案】A5.【2018高考真题辽宁理8】设变量x ,y 满足,15020010⎪⎩⎪⎨⎧≤≤≤+≤≤-y y x y x 则y x 32+的最大值为(A) 20 (B) 35 (C) 45 (D) 55 【答案】D【解析】画出可行域,根据图形可知当x=5,y=15时2x +3y 最大,最大值为55,故选D【点评】本题主要考查简单线性规划问题,难度适中。
该类题通常可以先作图,找到最优解求出最值,也可以直接求出可行域的顶点坐标,代入目标函数进行验证确定出最值。
第六章不等式1.(2018年安徽卷)设,a R ∈b ,已知命题:p a b =;命题222:22a b a bq ++⎛⎫≤⎪⎝⎭,则p 是q 成立的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件1.解:命题:p a b =是命题222:22a b a bq ++⎛⎫≤⎪⎝⎭等号成立的条件,故选B 。
2.(2018年陕西卷)已知不等式1()()9ax y x y++≥对任意正实数,x y 恒成立,则正实数a 的最小值为 (B ) (A)8 (B)6 (C )4 (D )23.( 2018年重庆卷)若a ,b ,c >0且a (a +b +c )+bc =4-23,则2a +b +c 的最小值为 ( D ) (A )3-1 (B) 3+1 (C) 23+2 (D) 23-24. ( 2018年重庆卷)设a >0,n ≠1,函数f (x )=a lg (x 2-2n +1) 有最大值.则不等式log n (x 2-5x +7) >0的解集为_(2,3)__.5. (2018年上海春卷)不等式0121>+-x x 的解集是 ⎪⎭⎫ ⎝⎛-21,1 .6. (2018年上海春卷)同学们都知道,在一次考试后,如果按顺序去掉一些高分,那么班级的平均分将降低;反之,如果按顺序去掉一些低分,那么班级的平均分将提高. 这两个事实可以用数学语言描述为:若有限数列n a a a ,,,21 满足n a a a ≤≤≤ 21,则 (结论用数学式子表示).)1(2121n m na a a m a a a nm <≤+++≤+++ 和)1(2121n m na a a m n a a a nn m m <≤+++≥-+++++7. (2018年上海春卷)若b a c b a >∈,R 、、,则下列不等式成立的是( C )(A )ba 11<. (B )22b a >. (C )1122+>+c b c a .(D )||||c b c a >. 8.(2018年天津卷)某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 20 吨.9.(2018年江苏卷)不等式3)61(log 2≤++xx 的解集为 ▲ 9.解:211log (6)3068x x x x++≤⇔<++≤ ()2220168101816033x x x x x x x x x ><++≤⇒-≤⇒=<≤++<⇒--<<-+当x 0时,当x 0时,综上:{}331x x x --<<-+= 点评:本题主要考查对数不等式的解法10.(2018年江苏卷)设a 、b 、c 是互不相等的正数,则下列等式中不恒成立....的是 (A )||||||c b c a b a -+-≤- (B )aa a a 1122+≥+ (C )21||≥-+-ba b a (D )a a a a -+≤+-+213 10.解:因为()()||||||a b a c b c a c b c -=---≤-+-,所以(A )恒成立; 在(B )两侧同时乘以2,a 得()()()()()()2434332*********a a a a a a a a a a a a +≥+⇐-+-≥⇐---≥⇐-++≥所以(B )恒成立;(C )中,当a>b 时,恒成立,a<b 时,不成立; (D≤恒成立,故选(C ) 点评:本题主要考查不等式的相关知识11.(2018年江西卷)若a >0,b >0,则不等式-b <1x<a 等价于( D ) A .1b -<x <0或0<x <1a B.-1a <x <1b C.x <-1a 或x >1b D.x <1b -或x >1a11.解:故选D12.(2018年江西卷)若不等式x 2+ax +1≥0对于一切x ∈(0,12)成立,则a 的取值范围是( C ) A .0 B. –2 C.-52D.-3 12.解:设f (x )=x 2+ax +1,则对称轴为x =a 2- 若a 2-≥12,即a ≤-1时,则f (x )在〔0,12〕上是减函数,应有f (12)≥0⇒ 11bxb 001x xb a 11ax x a 00x x 1x 0x x bx 1011bx x x 1ax 01b a x x 0a ⎧⎧⎪⎪⎪⎪⇔⇔⎨⎨⎪⎪⎪⎪⎩⎩⎧⎪⎧⎪⇔⇔⇒⎨⎨⎩⎪⎪⎩++---或-(+)-或(-)或-52≤x ≤-1 若a 2-≤0,即a ≥0时,则f (x )在〔0,12〕上是增函数,应有f (0)=1>0恒成立,故a ≥0若0≤a 2-≤12,即-1≤a ≤0,则应有f (a 2-)=222a a a 110424≥-+=-恒成立,故-1≤a ≤0 综上,有-52≤a 故选C 13.(2018年北京卷)在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠,1221|()()|||f x f x x x -<-恒成立”的只有 (A)(A )1()f x x=(B )()||f x x =(C )()2x f x =(D )2()f x x =14.(2018年北京卷)下图为某三岔路口交通环岛的简化模型,在某高峰时段,单位时间进出路口,,A B C 的机动车辆数如图所示,图中123,,x x x 分别表示该时段单位时间通过路段,,AB BC CA 的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则20,30;35,30;55,50 ( C )(A )123x x x >> (B )132x x x >> (C )231x x x >> (D )321x x x >>15.(2018年上海卷)三个同学对问题“关于x 的不等式2x +25+|3x -52x |≥ax 在[1,12]上恒成立,求实数a 的取值范围”提出各自的解题思路. 甲说:“只须不等式左边的最小值不小于右边的最大值”. 乙说:“把不等式变形为左边含变量x 的函数,右边仅含常数,求函数的最值”. 丙说:“把不等式两边看成关于x 的函数,作出函数图像”. 参考上述解题思路,你认为他们所讨论的问题的正确结论,即a 的取值范围是 a ≤10 . 16.(2018年上海卷)若关于x 的不等式x k )1(2+≤4k +4的解集是M ,则对任意实常数k ,总有[答]( A )(A )2∈M ,0∈M ; (B )2∉M ,0∉M ; (C )2∈M ,0∉M ; (D )2∉M ,0∈M .17. ( 2018年浙江卷)“a >b >c ”是“ab <222b a +”的 (A )(A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不允分也不必要条件18.( 2018年浙江卷)对a,b ∈R,记max|a,b |=⎩⎨⎧≥ba b ba a <,,函数f (x )=max||x+1|,|x-2||(x ∈R)的最小值是 3/2 .19. (2018年山东卷)设f (x )= 1232,2,log (1),2,x e x x x -⎧<⎪⎨-≥⎪⎩ 则不等式f (x )>2的解集为 (C) (A)(1,2)⋃(3,+∞) (B)(10,+∞) (C)(1,2)⋃ (10 ,+∞) (D)(1,2)20.( 2018年浙江卷)设f(x)=3ax 0.2=++++c b a c bx b若,f(0)>0,f(1)>0,求证:(Ⅰ)a >0且-2<ba<-1; (Ⅱ)方程f(x)=0在(0,1)内有两个实根. 16.略。
第三节不等式选讲(选修4-5)考纲解读1.了解绝对值的几何意义,会利用绝对值的定义解不等式,利用绝对值不等式证明不等式和求最值.2.了解柯西不等式与其几何意义,会用它来证明不等式和求最位.3.了解基本不等式,会用它来证明不等式和求最值.4.会用综合法、分析法、反证法与数学归纳法证明不等式.命题趋势探究本节内容为新课标新增内容,是高考选考内容.题型以含绝对值的不等式的解法和证明为重要考点,不等式的应用为次重要考点,不等式证明放在一般位置,难度为中档.知识点精讲一、不等式的性质1.同向合成(1);(2);(3).(合成后为必要条件)2.同解变形(1);(2);(3).(变形后为充要条件)3.作差比较法二、含绝对值的不等式(1);(2)(3)零点分段讨论三、基本不等式(1)(当且仅当等号成立条件为)(2)(当且仅当等号成立条件为);(当且仅当时等号成立)(3)柯西不等式(当且仅当时取等号)①几何意义:②推广:.当且仅当向量与向量共线时等号成立.四、不等式的证明(1)作差比较法、作商比较法.(2)综合法——由因到果.(3)分析法——执果索因.(4)数学归纳法.(5)构造辅助函数利用单调性证明不等式.(6)反证法.(7)放缩法.题型归纳即思路提示题型201 含绝对值的不等式一、解含绝对值的不等式思路提示对于含绝对值的不等式问题,首先要考虑的是根据绝对值的意义去掉绝对值.常用的去绝对值方法是零点分段法.特别用于多个绝对值的和或差不等式问题.若单个绝对值的不等式常用以下结论:;;.有时去绝对值也可根据来去绝对值.例16.14 在实数范围内,不等式的解集为 .解析由于,即,即,所以,所以.所以不等式的解集为.变式1 不等式的解集是()A. B. C. D.变式2 已知函数.(1)证明:;(2)求不等式的解集.二、含绝对值不等式恒成立,求参数问题例16.15 (2012辽宁理24)已知,不等式的解集为.(1)求的值;(2)若恒成立,求的取值范围.解析(1)由得,又的解集为,所以当时,不合题意.当时,得.(2)记,则,所以,因此,即的取值范围是.变式1 (2012新课标理24)已知函数.(1)当时,求不等式的解集;(2)若的解集包含,求的取值范围.变式 2 (2013重庆理16) 若关于实数的不等式无解,则实数的取值范围是 .变式 3 (2013全国新课标I理24) 已知函数,.(1)当时,求不等式的解集;(2)设,且当时,,求的取值范围.三、含绝对值(方程)不等式有解,求参数问题例16.16 若关于的不等式存在实数解,则实数的取值范围是 .解析不等式有解,则,故实数的取值范围是.变式1 (2012陕西理15)若存在实数使成立,则实数的取值范围是 .变式2 已知,关于的方程有实根,求的取值范围.四、已知含绝对值不等式的解集,求参数的值或范围例16.17 (2013福建理23)设不等式的解集为,且 .(1)求的值;(2)求函数的最小值.分析先根据不等式的情况求出字母取值,在利用不等式求解最值.解析(1)因为且,所以,且,解得.又,所以.(2)因为,当且仅当,即时取等号,所以的最小值为.变式1 设函数,其中.(1) 当时,求不等式的解集;(2)若不等式的解集为,求的值.变式2 (2013辽宁理24) 已知函数,其中.(1) 当时,求不等式的解集;(2) 已知关于的不等式的解集为,求的值.变式 3 (2012山东理13) 若不等式的解集为,则实数= .题型202 不等式的证明一、比较法(差值法和比值法)思路提示将待比较的两个代数式通过作差或作商,与与进行比较,得到大小关系.例16.18 已知均为正实数,且,求证:.分析比较与的大小可通过作差法.解析.因为,,所以,,.故.所以.评注作差比较的基本步骤为:(1)作差.(2)变形.(3)判断符号.变式 1 已知,且,. 求证:.二、利用函数的单调性证明思路提示使用对象:在某区间成立的函数不等式、数值不等式的证明通常是通过辅助函数完成的.解题程序:(1)移项(有时需要作简单的恒等变形),使不等式一端为,另一端为所作辅助函数.(2)求并验证在指定区间上的单调性.(3)求出区间端点的函数值(或极限值),其中至少有一个为或已知符号,作比较即得所证.例16.19 已知,求证:.分析属于在某区间上成立的不等式,通过移项使得一端为,另一端为所作的辅助函数,利用函数的单调性证明.解析原不等式等价于.令,.令,则,故在上是减函数,所以当时,,故. 故,所以在上是增函数.又,所以当时,成立.于是成立.变式1 证明:当时,.三、综合法与分析法思路提示字母分别表示一组不等式,其中为已知不等式,为待证不等式.若有,综合法是由前进式地推导,分析法是由倒退式地分析到.用分析法时,必须步步可逆.1.综合法(由因到果)例16.20 证明:.分析观察到与是负数,被开方数分别为,显然满足,这样可以考虑将分子有理化.解析,,,故,即.评注类似的问题可以总结为d的形式或者更广泛的形式.变式1 设,求证:.2.分析法(由果索因)例16.21 设,求证:.分析利用分析法将证明的不等式进行恒等变形,从而探寻证明的突破口.解析要证明,只要证,即证.因为,所以.故原不等式成立.评注在证明不等式时,经常用分析法探寻证明思路,再用综合法表述证明过程,有些不等式的证明需要一边分析,一边综合,在使用分析法证明时,要注意分析过程步步可逆.变式1 若,且,求证:.四、反证法思路提示从否定结论出发,经过逻辑推理导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的.它的依据是原命题与逆否命题同真假.例16.22 已知为不小于的正数,求证:不可能同时大于.分析假设三式都大于,经过推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论的正确性.解析假设三式都大于,即,有①同理②③三式相加得,矛盾,故原命题成立.评注对于从正面证明不易着手,但从反面证明相对简单的命题,利用反证法解题会很方便.这也体现了数学中“正难则反”的思想.变式1 已知,,求证:.五、放缩法思路提示预证,可通过适当放大或缩小,借助一个或多个中间量,使得或,再利用传递性,达到证明目的,常见的放缩途径有“添舍”放缩、“分母”放缩和“单调”放缩.例16.23 已知正数满足,求证:.分析采用“添项”放缩法解析①同理②③①+②+③得.评注放缩法的主要依据是不等式的传递性,通常,若所证不等式两边形式差异较大,则应考虑用放缩法.本题也可用柯西不等式证明:,所以.变式1 证明:.例16.24 求证:.分析采用“分母”放缩法证明.解析由题意,,则,.所以原不等式成立.例16.25 设,且满足,问取何值时,以为边可构成三角形,并判断该三角形的形状.解析由幂函数性质可知,,要构成三角形,只需,故,即证明,只需证明,即. ①由,且,由指数函数单调递减可知,要使得式①成立,只需.因此可知,要成立.只需成立.当时,,三角形为直角三角形;当时,即,此时三角形为钝角三角形;当时,即,此时三角形为锐角三角形.六、三角换元法思路提示若,等为已知条件,求证不等式时,利用三角换元法较容易,但是务必注意换元前后参数的范围变化.例16.26 设实数满足,,求证:.分析由,联想到三角换元.解析令,,.当,即时,取得最大值,证毕.评注三角换元在不等式证明以与求函数的最值、解析几何中参数的范围与最值方面有着极大的作用,常常可化难为易.变式1 设,,求证:.七、构造法思路提示一般说来,用构造法证明不等式,常见的构造方法如下:(1)构造辅助函数.(2)构造辅助数列.(3)构造几何图形.例16.27 设,,若,求证:.分析构造一次函数证明.解析即.若视为未知数,并用代替,即证明时,.即证.设,即证时,.而是关于的一次函数,且,,因此当时,成立,从而原不等式成立.评注本题也可利用如下解法:,,即证,,即证,即,由,得,故成立.例16.28 已知为三角形的三边长,求证:.分析不等式左右两边的个式子具有相同的结构形式,故考虑构造函数.解析,,说明函数在上单调递增,又为三角形的三边长,故,则.变式1 证明:.变式2 已知且,,求证:.例16.29 证明:当且时,有.分析本题通过构造辅助数列证明.解析构造数列,因为,所以数列为单调递减数列.所以,即.评注本题将看作参数构造辅助数列,判断数列的单调性从而证明结论.例16.30 设,求证:.分析根据已知式的形式特征联想勾股定理,构造几何图形证明.解析如图16-34所示,构造正方形,设,则,则.变式 1 设,求证:.八、利用柯西不等式证明不等式思路提示柯西不等式不仅具有优美的代数表现形式与向量表现形式,而且有明显的几何意义,它与基本不等式具有密切的关系,其作用类似于基本不等式可用来求最大(小)值或证明不等式,不过它的特点更明显应用更直接.1.二维形式的柯西不等式设,.等号成立图.证明设,由,得,又,即,,故等号成立即.2.一般形式的柯西不等式设与为任意实数,则,当且仅当(规定时,)时等号成立.证法一:当全为时,命题显然成立.否则,考查关于的二次函数,显然恒成立.注意到,而恒成立,且,故的判别式不大于零,即,整理后得.证法二:向量的内积证法.令,,为与的夹角.因为,且,所以,即,等号成立或平行.柯西不等式提示了任意两组实数积之和的平方与平方和之间的关系,应用它可以简单地证明许多复杂的不等式,下面举例说明.例16.31 已知函数,且的解集为.①求的值;②若,且,求证:.解析①因为,等价于.由有解,得,且其解集为.又的解集为,故.②由①知,又,由柯西不等式得.变式 1 已知,,求证:.变式2 已知,.求证:.例16.32 设实数满足,求证:.解析由柯西不等式,.所以,所以.评注有些证明不等式的题,表面上看与柯西不等式无关,然而通过对原不等式作适当的变形改造后却可以应用柯西不等式加以解决,当然具体如何变形改造是关键,也是难点,这往往需要经过观察、直觉、猜测、推理等.变式1 已知,且,求证:.变式 2 已知正实数满足,求证:.最有效训练题61(限时45分钟)1.不等式的解集是()A. B. C. D.2.设,则()A. 都不大于B. 都不小于C. 至少有一个不大于D. 至少有一个不小于3.若,,则的大小关系是()A. B. C. D. 由的取值决定4.用数学归纳法证明某不等式,左边,“从到”应将左边加上()A. B. C. D.5. 的最大值为()A. B. C. D.6.若正数满足,则①的取值范围是;②的取值范围是 .7.在实数范围内,不等式的解集为 .8.若存在实数使成立,则实数的取值范围是 .9.已知,.求证:.10.已知函数.(1) 当时,求不等式的解集;(2)若的解集包含,求的取值范围.11. 已知函数,且的解集为.①求的值;②若,且,求证:.12.已知函数.设数列满足,,数列满足,.(1)用数学归纳法证明:;(2)证明:.。
E 单元不等式E1 不等式的概念与性质 E2 绝对值不等式的解法 E3 一元二次不等式的解法 E4 简单的一元高次不等式的解法E5 简单的线性规划问题14.E5【2018·全国卷Ⅰ】 若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,,,则32z x y =+的最大值为 . 14.【答案】6【解析】不等式组表示的平面区域如图中阴影部分所示,当直线y=-32x+z2经过点A (2,0)时,z 最大,所以z max =3×2+2×0=6.14.E5【2018·全国卷Ⅱ】若x ,y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,,则z=x+y 的最大值为 . 14.【答案】9【解析】作出不等式组表示的可行域如图中阴影部分所示.当直线y x z =-+过点A (5,4)时,直线的纵截距z 最大,所以max 549z =+=.15.E5【2018·全国卷Ⅲ】 若变量x ,y 满足约束条件23024020x y x y x ++≥⎧⎪-+≥⎨⎪-≤⎩,,,则13z x y =+的最大值是 .15.3 【解析】 作出不等式组表示的可行域如图中阴影部分所示,由图易知目标函数在点A (2,3)处取得最大值,最大值为2+13×3=3.12.E5【2018·浙江卷】 若x ,y 满足约束条件0262x y x y x y -≥⎧⎪+≤⎨⎪+≥⎩,,,则z=x+3y 的最小值是 ,最大值是 . 12.【答案】2-;8【解析】 作出如图中阴影部分所示的可行域,易知A (2,2),B (4,-2),C (1,1),目标函数表示斜率为-13的一组平行直线.由图可知,当直线x+3y-z=0经过点A 时,z 取得最大值,最大值为2+3×2=8;当直线x+3y-z=0经过点B 时,z 取得最小值,最小值为()4322+⨯-=-.13.E5【2018·北京卷】 若x ,y 满足x+1≤y ≤2x ,则2y-x 的最小值是 .13.3 【解析】 x ,y 满足的可行域如图中阴影部分所示,联立{y =x +1,y =2x ,得交点坐标为(1,2),由图可知,当目标函数z=2y-x 过点(1,2)时,z 有最小值,z min =2×2-1=3.E6 2a b+≤13.E6【2018·天津卷】已知,a b ∈R ,且360a b -+=,则123ab+的最小值为 . 【解题提示】运用基本不等式求解. 【答案】14【解析】由已知得36a b -=-,由基本不等式得1122284a b +≥==(当且仅当a=-3b=-3时取等号).E7 不等式的证明方法E8 不等式的综合应用 E9 单元综合8.E9【2018·北京卷】 设集合A={(x ,y )|x-y ≥1,ax+y>4,x-ay ≤2},则( ) A.对任意实数a ,(2,1)∈A B.对任意实数a ,(2,1)∉A C.当且仅当a<0时,(2,1)∉A D.当且仅当a ≤32时,(2,1)∉A8.D 【解析】当a=0时,A 为空集,排除A ;当a=2时,(2,1)∈A ,排除B ;当a=32时,作出可行域如图中阴影部分所示,由x y 13x y 42-=⎧⎪⎨+=⎪⎩,,得P (2,1),又∵ax+y>4,取不到边界值,∴(2,1)∉A.故选D.1.【2018·北京通州区期末】 已知a ,b ∈R ,a>b>0,则下列不等式一定成立的是( ) A . 1a >1b B . tan a>tan b C . |log 2a|>|log 2b| D . a ·2-b >b ·2-a1.D 【解析】 对于A ,a>b>0,则1a <1b ,故不成立;对于B ,不妨设a=3π4>b=π4>0,则tan 3π4=-1,tan π4=1,故不成立;对于C ,不妨设a=2,b=14,则|log 2a |=1,|log 2b |=2,故不成立.故选D . 2.【2018·唐山五校联考】 已知不等式x 2-bx-a ≥0的解集是{x|x ≤2或x ≥3},则不等式ax 2-bx-1>0的解集是( ) A .{x|2<x<3} B .{x |-12<x <-13} C .{x |13<x <12} D .{x |x <13或x <12}2.B 【解析】 ∵不等式x 2-bx-a ≥0的解集是{x|x ≤2或x ≥3},∴x 2-bx-a=0的解是x 1=2和x 2=3,∴{2+3=b ,2×3=-a ,解得{a =-6,b =5,则不等式ax 2-bx-1>0即为-6x 2-5x-1>0,解得{x |-12<x <-13}. 3.【2018·遵义联考】 已知O 是坐标原点,点A (-1,1),若点M (x ,y )为平面区域{x +y ≥2,x ≤1,y ≤2上的一个动点,则OA ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ 的取值范围是 . 3.【0,2】【解析】设z=OA⃗⃗⃗ ·OM ⃗⃗⃗⃗ =-x+y.在直角坐标系内作出可行域如图所示.由图可知,当直线z=-x+y 经过可行域内点C (0,2)时,z 有最大值,即(OA ⃗⃗⃗ ·OM ⃗⃗⃗⃗ )max =-0+2=2;当直线z=-x+y 经过可行域内点A (1,1)时,z 有最小值,即(OA ⃗⃗⃗ ·OM ⃗⃗⃗⃗ )min =-1+1=0.所以OA ⃗⃗⃗ ·OM ⃗⃗⃗⃗ 的取值范围为【0,2】.4. 【2018·衡水一中月考】 若x ,y 都是正数,且x+y=3,则4x+1+1y+1的最小值为 .4.95 【解析】 设m=x+1,n=y+1.∵x+y=3,∴{x =m -1,y =n -1,则m+n=5,∴4x+1+1y+1=4m +1n =(4m +1n )(m 5+n5)=45+4n 5m +m5n +15≥1+2√4n 5m·m 5n =95,当且仅当m=103,n=53,即x=73,y=23时取等号.。
专题4数列与不等式(2018全国1卷)4. 设为等差数列的前项和,若,,则A. B. C. D.【答案】B详解:设该等差数列的公差为,根据题中的条件可得,整理解得,所以,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差的值,之后利用等差数列的通项公式得到与的关系,从而求得结果.(2018北京卷)4. “十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A. B.C. D.【答案】D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解. 详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列. 等比数列的判断方法主要有如下两种:(1)定义法,若()或(),数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.(2018全国1卷)13. 若,满足约束条件,则的最大值为_____________.【答案】6【解析】分析:首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式,之后在图中画出直线,在上下移动的过程中,结合的几何意义,可以发现直线过B点时取得最大值,联立方程组,求得点B的坐标代入目标函数解析式,求得最大值.详解:根据题中所给的约束条件,画出其对应的可行域,如图所示:由可得,画出直线,将其上下移动,结合的几何意义,可知当直线过点B时,z取得最大值,由,解得,此时,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.(2018全国2卷)14. 若满足约束条件则的最大值为__________.【答案】9【解析】分析:先作可行域,再平移直线,确定目标函数最大值的取法.详解:作可行域,则直线过点A(5,4)时取最大值9.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.(2018天津卷)2. 设变量x,y满足约束条件则目标函数的最大值为A. 6B. 19C. 21D. 45【答案】C【解析】分析:首先画出可行域,然后结合目标目标函数的几何意义确定函数取得最大值的点,最后求解最大值即可.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A的坐标为:,据此可知目标函数的最大值为:.本题选择C选项.点睛:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.(2018天津卷)4. 设,则“”是“”的A. 充分而不必要条件B. 必要而不重复条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】分析:首先求解绝对值不等式,然后求解三次不等式即可确定两者之间的关系.详解:绝对值不等式,由.据此可知是的充分而不必要条件.本题选择A选项.点睛:本题主要考查绝对值不等式的解法,充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.(2018北京卷)12. 若x,y满足x+1≤y≤2x,则2y–x的最小值是__________.【答案】3【解析】分析:作可行域,根据目标函数与可行域关系,确定最小值取法.详解:作可行域,如图,则直线过点A(1,2)时,取最小值3.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.(2018天津卷)13. 已知,且,则的最小值为_____________.【答案】【解析】分析:由题意首先求得a-3b的值,然后结合均值不等式的结论整理计算即可求得最终结果,注意等号成立的条件.详解:由可知,且:,因为对于任意x,恒成立,结合均值不等式的结论可得:.当且仅当,即时等号成立.综上可得的最小值为.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误. (2018江苏卷)13. 在中,角所对的边分别为,,的平分线交于点D ,且,则的最小值为________.【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值. 详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.(2018浙江卷)12.若x ,y 满足约束条件,则z =x +3y 的最小值是________________________,最大值是_____________________ 12.答案:2- 8解答:不等式组所表示的平面区域如图所示,当42x y ì=ïïíï=-ïî时,3z x y =+取最小值,最小值为2-;当22x y ì=ïïíï=ïî时,3z x y =+取最大值,最大值为8.(2018全国1卷)14. 记为数列的前项和,若,则_____________.【答案】【解析】分析:首先根据题中所给的,类比着写出,两式相减,整理得到,从而确定出数列为等比数列,再令,结合的关系,求得,之后应用等比数列的求和公式求得的值. 详解:根据,可得, 两式相减得,即, 当时,,解得,所以数列是以-1为首项,以2为公布的等比数列,所以,故答案是.点睛:该题考查的是有关数列的求和问题,在求解的过程中,需要先利用题中的条件,类比着往后写一个式子,之后两式相减,得到相邻两项之间的关系,从而确定出该数列是等比数列,之后令,求得数列的首项,最后应用等比数列的求和公式求解即可,只要明确对既有项又有和的式子的变形方向即可得结果. (2018北京卷)9. 设是等差数列,且a 1=3,a 2+a 5=36,则的通项公式为__________.【答案】【解析】分析:先根据条件列关于公差的方程,求出公差后,代入等差数列通项公式即可. 详解:点睛:在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为首项与公差(公比)问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用. (2018浙江卷)10已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),若a 1>1,则( )A . a 1<a 3,a 2<a 4B . a 1>a 3,a 2<a 4C . a 1<a 3,a 2>a 4D . a 1>a 3,a 2>a 410.答案:B解答:∵ln 1x x ≤-,∴1234123123ln()1a a a a a a a a a a +++=++≤++-,得41a ≤-,即311a q ≤-,∴0q <.若1q ≤-,则212341(1)(1)0a a a a a q q +++=++≤,212311(1)1a a a a q q a ++=++≥>,矛盾.∴10q -<<,则2131(1)0a a a q -=->,2241(1)0a a a q q -=-<. ∴13a a >,24a a <.(2018江苏卷)14. 已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________.【答案】27【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值.详解:设,则由得所以只需研究是否有满足条件的解,此时,,为等差数列项数,且.由得满足条件的最小值为.点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如).(2018全国2卷)17. 记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.【答案】(1)a n=2n–9,(2)S n=n2–8n,最小值为–16.【解析】分析:(1)根据等差数列前n项和公式,求出公差,再代入等差数列通项公式得结果,(2)根据等差数列前n项和公式得的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.详解:(1)设{a n}的公差为d,由题意得3a1+3d=–15.由a1=–7得d=2.所以{a n}的通项公式为a n=2n–9.(2)由(1)得S n=n2–8n=(n–4)2–16.所以当n=4时,S n取得最小值,最小值为–16.点睛:数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.(2018全国3卷)17. 等比数列中,.(1)求的通项公式;(2)记为的前项和.若,求.【答案】(1)或(2)【解析】分析:(1)列出方程,解出q可得;(2)求出前n项和,解方程可得m。
第六章 不等式二 不等式的证明【考点阐述】不等式的证明.【考试要求】(3)掌握分析法、综合法、比较法证明简单的不等式.【考题分类】【考题分类】(一)选择题(共1题)1.(上海春卷16)已知)1,0(,21∈a a ,记1,2121-+==a a N a a M ,则M 与N 的大小关系是( )A .N M <B .N M >C .N M =D .不确定答案:B解析:由1212121(1)(1)0M N a a a a a a -=--+=-->,故M N >,选B.(二)解答题(共2题) 1.(江苏卷21④)已知实数a,b ≥0,求证:)b a (ab b a 2233+≥+[解析] 本题主要考查证明不等式的基本方法,考查推理论证的能力。
满分10分。
(方法一)证明:332222()()()a b ab a b a a a b b b b a +-+=-+- 55()[()()]a b a b =--2432234()[()()()()()()()()]a b a a b a b a b b =-++++因为实数a 、b ≥0,2432234()0,[()()()()()()()()]0a b a a b a b a b b -≥++++≥ 所以上式≥0。
即有3322()a b ab a b +≥+。
(方法二)证明:由a 、b 是非负实数,作差得332222()()()a b ab a b a a a b b b b a +-+=-+-55()[()()]a b a b =--当a b ≥时,a b ≥,从而55()()a b ≥,得55()[()()]0a b a b --≥; 当a b <时,a b <,从而55()()a b <,得55()[()()]0a b a b --<; 所以3322()a b ab a b +≥+。
2.(辽宁卷理24文24)已知cba,,均为正数,证明:36)111(2222≥+++++cbacba,并确定cba,,为何值时,等号成立。
2018-2020年高考数学试题分类汇编不等式选讲1、(2018年高考全国卷1文理科第23题)(10分)已知f(x)=|x+1|﹣|ax﹣1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.【解答】解:(1)当a=1时,f(x)=|x+1|﹣|x﹣1|=,由f(x)>1,∴或,解得x>,故不等式f(x)>1的解集为(,+∞),(2)当x∈(0,1)时不等式f(x)>x成立,∴|x+1|﹣|ax﹣1|﹣x>0,即x+1﹣|ax﹣1|﹣x>0,即|ax﹣1|<1,∴﹣1<ax﹣1<1,∴0<ax<2,∵x∈(0,1),∴a>0,∴0<x<,∴a<∵>2,∴0<a≤2,故a的取值范围为(0,2].2、(2018年高考全国卷II文理科第23题)[选修4-5:不等式选讲](10分)设函数f(x)=5﹣|x+a|﹣|x﹣2|.(1)当a=1时,求不等式f(x)≥0的解集;(2)若f(x)≤1,求a的取值范围.【解答】解:(1)当a=1时,f(x)=5﹣|x+1|﹣|x﹣2|=.当x≤﹣1时,f(x)=2x+4≥0,解得﹣2≤x≤1,当﹣1<x<2时,f(x)=2≥0恒成立,即﹣1<x<2,当x≥2时,f(x)=﹣2x+6≥0,解得2≤x≤3,综上所述不等式f(x)≥0的解集为[﹣2,3],(2)∵f(x)≤1,∴5﹣|x+a|﹣|x﹣2|≤1,∴|x+a|+|x﹣2|≤4,∴|x+a|+|x﹣2|=|x+a|+|2﹣x|≥|x+a+2﹣x|=|a+2|,∴|a+2|≤4,即﹣4≤a+2≤4,解得﹣6≤a≤2,故a的取值范围[﹣6,2].3、(2018年高考全国卷III文理科第23题)[选修4-5:不等式选讲](10分)设函数f(x)=|2x+1|+|x﹣1|.(1)画出y=f(x)的图象;(2)当x∈[0,+∞)时,f(x)≤ax+b,求a+b的最小值.【解答】解:(1)当x≤﹣时,f(x)=﹣(2x+1)﹣(x﹣1)=﹣3x,当﹣<x<1,f(x)=(2x+1)﹣(x﹣1)=x+2,当x≥1时,f(x)=(2x+1)+(x﹣1)=3x,则f(x)=对应的图象为:画出y=f(x)的图象;(2)当x∈[0,+∞)时,f(x)≤ax+b,当x=0时,f(0)=2≤0•a+b,∴b≥2,当x>0时,要使f(x)≤ax+b恒成立,则函数f(x)的图象都在直线y=ax+b的下方或在直线上,∵f(x)的图象与y轴的交点的纵坐标为2,且各部分直线的斜率的最大值为3,故当且仅当a≥3且b≥2时,不等式f(x)≤ax+b在[0,+∞)上成立,即a+b的最小值为5.4、(2018年高考江苏卷第24题)[选修4-5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z=6,求x 2+y 2+z 2的最小值.【解答】解:由柯西不等式得(x 2+y 2+z 2)(12+22+22)≥(x +2y +2z )2, ∵x +2y +2z=6,∴x 2+y 2+z 2≥4 是当且仅当时,不等式取等号,此时x=,y=,z=,∴x 2+y 2+z 2的最小值为45、(2019全国III 卷文理科)[选修4-5:不等式选讲](10分) 设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-. 解:(1)由于2[(1)(1)(1)]x y z -++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =-+++++-++++++-2223(1)(1)(1)x y z ⎡⎤≤-++++⎣⎦,故由已知得2224(1)(1)(1)3x y z -++++≥, 当且仅当x =53,y =–13,13z =-时等号成立.所以222(1)(1)(1)x y z -++++的最小值为43. (2)由于2[(2)(1)()]x y z a -+-+-222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+--2223(2)(1)()x y z a ⎡⎤≤-+-+-⎣⎦,故由已知2222(2)(2)(1)()3a x y z a +-+-+-≥,当且仅当43a x -=,13a y -=,223a z -=时等号成立. 因此222(2)(1)()x y z a -+-+-的最小值为2(2)3a +.由题设知2(2)133a +≥,解得3a ≤-或1a ≥-.6、(2019全国II 卷文理科)[选修4-5:不等式选讲](10分)已知()|||2|().f x x a x x x a =-+-- (1)当1a =时,求不等式()0f x <的解集; (2)若(,1]x ∈-∞时,()0f x <,求a 的取值范围. 解:(1)当a =1时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥. 所以,不等式()0f x <的解集为(,1)-∞. (2)因为()=0f a ,所以1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x ----- 所以,a 的取值范围是[1,)+∞.7、(2019全国I 卷文理科)[选修4—5:不等式选讲](10分)已知a ,b ,c 为正数,且满足abc =1.证明:(1)222111a b c a b c++≤++; (2)333()()()24a b b c c a +++≥++.解:(1)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c++++≥++==++.所以222111a b c a b c++≤++. (2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥=3(+)(+)(+)a b b c a c3≥⨯⨯⨯=24.所以333()()()24a b b c c a +++++≥. 8、(2019江苏卷21C )C.[选修4-5:不等式选讲](本小题满分10分) 设x ∈R ,解不等式||+|2 1|>2x x -.解:当x <0时,原不等式可化为122x x -+->,解得x <-13; 当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >12时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3x x x <->或. 9、(2020•全国1卷)已知函数()|31|2|1|f x x x =+--. (1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集. 答案:(1)详解解析;(2)7,6⎛⎫-∞-⎪⎝⎭. 解析:(1)根据分段讨论法,即可写出函数()f x 的解析式,作出图象; (2)作出函数()1f x +的图象,根据图象即可解出.解:(1)因为()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图象,如图所示:(2)将函数()f x 的图象向左平移1个单位,可得函数()1f x +的图象,如图所示: 由()3511x x --=+-,解得76x =-. 所以不等式()(1)f x f x >+的解集为7,6⎛⎫-∞-⎪⎝⎭. 10、(2020•全国2卷)已知函数2()|21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ,求a 的取值范围. 答案:(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞.解析:(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果; (2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果. 解:(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤; 当34x <<时,()4314f x x x =-+-=≥,无解; 当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭. (2)()()()()22222121211f x x a x a x ax a aa a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥, a ∴的取值范围为(][),13,-∞-+∞.11、(2020•全国3卷)设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c . 答案:(1)证明见解析(2)证明见解析.解析:(1)由2222()2220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明;(2)不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bcbc+++=⋅==,结合基本不等式,即可得出证明. 解:(1)2222()2220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. 1,,,abc a b c =∴均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<; (2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--=,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=.当且仅当b c =时,取等号,a ∴≥,即3max{,,}4a b c .12、(2020•江苏卷)设x ∈R ,解不等式2|1|||4x x ++≤. 答案:22,3⎡⎤-⎢⎥⎣⎦解析:根据绝对值定义化为三个方程组,解得结果解:因为1224x x x <-⎧⎨---≤⎩或10224x x x -≤≤⎧⎨+-≤⎩或0224x x x >⎧⎨++≤⎩21x ∴-≤<-或10x -≤≤或203x <≤所以解集为22,3⎡⎤-⎢⎥⎣⎦。
不等式
(必修5P80A3改编)若关于x 的一元二次方程x 2-(m +1)x -m =0有两个不相等的实数根,则m 的取值范围是________.
解析 由题意知Δ=[(m +1)]2+4m >0.即m 2+6m +1>0, 解得m >-3+22或m <-3-2 2.
答案 (-∞,-3-22)∪(-3+22,+∞)
(2016·全国Ⅱ卷)若x ,y
满足约束条件⎩⎨⎧x -y +1≥0,
x +y -3≥0,x -3≤0,
则
z =x -2y 的最小值为
________.
解析 画出可行域,数形结合可知目标函数的最小值在直线x =3与直线x -y +1=0的交点(3,4)处取得,代入目标函数z =x -2y 得到-5. 答案 -5
(2016·全国Ⅲ卷)设x ,y 满足约束条件⎩⎨⎧2x -y +1≥0,
x -2y -1≤0,x ≤1,
则z =2x
+3y -5的最小值为_____.
解析 画出不等式组表示的平面区域如图中阴影部分所示.由题意可知,
当直线y =-23x +53+z
3过点A (-1,-1)时,z 取得最小值,即z min =2×(-1)+3×(-1)-5=-10.
(2017·西安检测)已知变量x ,y 满足⎩⎨⎧2x -y ≤0,
x -2y +3≥0,x ≥0,
则z =(2)2x +y 的最大值为________.
解析 作出不等式组所表示的平面区域,如图阴影部分所示.令m =2x +y ,由图象可知当直线y =-2x +m 经过点A 时,直线y =-2x +m 的纵截距最大,此时m 最大,故z 最大.由⎩⎪⎨⎪⎧2x -y =0,x -2y +3=0,解得⎩⎪⎨⎪⎧x =1,y =2,
即A (1,2).代入目标函数z =(2)2x +y 得,z =(2)2×1+2=4. 答案 4
(2016·北京卷)若x ,y 满足⎩⎨⎧2x -y ≤0,x +y ≤3,x ≥0,
则2x +y 的最大值为(
)
A.0
B.3
C.4
D.5
解析 画出可行域,如图中阴影部分所示,
令z =2x +y ,则y =-2x +z ,当直线y =-2x +z 过点A (1,2)时,z 最大,z max =4.
答案 C
(2016·山东卷)若变量x ,y 满足⎩⎨⎧x +y ≤2,
2x -3y ≤9,x ≥0,
则x 2+y 2的最大值是(
)
A.4
B.9
C.10
D.12
解析 作出不等式组所表示的平面区域,如图(阴影部分)所示, x 2+y 2表示平面区域内的点到原点的距离的平方,由图易知平面区域内的点A (3,-1)到原点的距离最大.所以x 2+y 2的最大值为32+(-1)2=10. 答案 C
(2015·福建卷)若直线x a +y
b =1(a >0,b >0)过点(1,1),则a +b 的最小值等于( ) A.2 B.3
C.4
D.5
解析 因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1
b =1. 所以a +b =(a +b )·
⎝ ⎛⎭⎪⎫
1a +1b =2+a b +b a ≥2+2a b ·b a =4,当且仅当a =b =2时取
“=”,故选C. 答案 C
(2016·合肥二模)若a ,b 都是正数,则⎝ ⎛
⎭⎪⎫1+b a ·⎝ ⎛⎭⎪⎫1+4a b 的最小值为( )
A.7
B.8
C.9
D.10
解析 ∵a ,b 都是正数,∴⎝ ⎛
⎭⎪⎫1+b a ⎝ ⎛⎭⎪⎫1+4a b =5+b a +4a b ≥5+2
b a ·4a
b =9,当且仅
当b =2a >0时取等号.故选C.答案 C
(2015·湖南卷)若实数a ,b 满足1a +2
b =ab ,则ab 的最小值为( ) A. 2 B.2
C.2 2
D.4
解析 依题意知a >0,b >0,则1a +2b ≥2
2ab =22ab ,
当且仅当1a =2
b ,即b =2a 时,“=”成立. 因为1a +2b =ab ,所以ab ≥22ab ,即ab ≥22,
所以ab 的最小值为22,故选C 答案 C。