3.2.2函数模型的应用实例
- 格式:doc
- 大小:38.00 KB
- 文档页数:2
3.2.2 函数模型的应用实例自主学习1.掌握几种初等函数的应用.2.理解用拟合函数的方法解决实际问题的方法. 3.了解应用实例的三个方面和数学建模的步骤.1.函数模型的应用实例主要包括三个方面:(1)________________________________________________; (2)________________________________________________; (3)________________________________________________. 2.面临实际问题,自己建立函数模型的步骤:(1)________________;(2)________;(3)______________; (4)______________; (5)________;(6)______________.对点讲练已知函数模型的应用问题【例1】 某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R (x )=⎩⎪⎨⎪⎧400x -12x 2 (0≤x ≤400)80 000 (x >400).其中x 是仪器的月产量.(1)将利润表示为月产量的函数f (x );(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)变式迁移1 为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t的函数关系式为y =(116)t -a (a 为常数)如图所示.根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为__________________;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室.自建函数模型的应用问题【例2】某公司每年需购买某种元件8 000个用于组装生产,每年分n次等量进货,每进一次货(不分进货量大小)费用500元,为了持续生产,需有每次进货的一半库存备用,每件每年库存费2元,问分几次进货可使得每年购买和贮存总费用最低?变式迁移2 某工厂拟建一座平面图为矩形且面积为200 m2的三级污水处理池(平面图如图所示),由于地形限制,长、宽都不能超过16 m,如果池外周壁建造单价为每米400元,中间墙建造单价为每米248元,池底建造单价为每平方米80元(池壁的厚度忽略不计,且池无盖).(1)写出总造价y(元)与污水处理池长x(m)的函数关系式,并指出其定义域.(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求出最低总造价.函数模型的选择【例3】某工厂今年1月、2月、3月生产某种产品的数量分别是1万件、1.2万件、1.3万件,为了估测以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量y与月份x的关系,模拟函数可以选用二次函数或函数y=ab x+c(其中a,b,c为常数,a≠0),已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.变式迁移3 某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/102kg)(1)Q 与上市时间t 的变化关系;Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t ;(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.1.解答应用题的基本步骤: (1)设:合理、恰当地设出变量;(2)写:根据题意,抽象概括数量关系,并能用数学语言表示,得到数学问题; (3)算:对所得数学问题进行分析、运算、求解;(4)答:将数学问题的解还原到实际生活问题中,给出最终的答案. 2.在中学阶段,用函数拟合解决实际问题的基本过程是:课时作业一、选择题1现准备用下列函数中的一个近似地表示这些数满足的规律,其中最接近的一个是( )A .V =log 2tB .V =log 12t C .V =t 2-12D .V =2t -22.计算机成本不断降低,若每隔3年计算机价格降低13,则现在价格为8 100元的计算机,9年后的价格可降为( )A .2 400元B .900元C .300元D .3 600元3. 一个高为H ,盛水量为V 0的水瓶的轴截面如图所示,现以均匀速度往水瓶中灌水,直到灌满为止,如果水深h 时水的体积为V ,则函数V =f (h )的图象大致是( )4.某种电热水器的水箱盛满水是200升,加热到一定温度可浴用.浴用时,已知每分钟放水34升,在放水的同时注水,t分钟注水2t2升,当水箱内水量达到最小值时,放水自动停止.现假定每人洗浴用水65升,则该热水器一次至多可供几人洗澡() A.3人B.4人C.5人D.6人二、填空题5.60年国庆,举国欢腾,某旅游胜地的客流量急速增加.某家客运公司为招揽游客,推出了客运定票的优惠政策:如果行程不超过100 km,票价是0.4元/km;如果超过100 km,则超过100 km的部分按0.3元/km定价.则客运票价y元与行程公里x km之间的函数关系是______________________________.6. 右图表示一位骑自行车和一位骑摩托车者在相距为80 km的两城镇间旅行的函数图象,由图可知:骑自行车者用6 h(含途中休息的1 h),骑摩托车者用了2 h.有人根据这个函数图象,提出了关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发3 h,晚到1 h;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5 h后追上骑自行车者.其中正确的序号是__________________________________________________.三、解答题7.某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3 000+20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25万元,则生产者不赔本时(销售收入不小于总成本)的最低产量是多少.8.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,凡多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式;(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1 000个,利润又是多少元?3.2.2函数模型的应用实例答案自学导引1.(1)利用给定的函数模型解决实际问题 (2)建立确定性的函数模型解决问题 (3)建立拟合函数模型解决实际问题2.(1)收集数据 (2)描点 (3)选择函数模型 (4)求函数模型 (5)检验 (6)用函数模型解决实际问题对点讲练【例1】 解 (1)设每月产量为x 台,则总成本为20 000+100x ,从而f (x )=⎩⎪⎨⎪⎧-12x 2+300x -20 000 (0≤x ≤400)60 000-100x (x >400).(2)当0≤x ≤400时,f (x )=-12(x -300)2+25 000,∴当x =300时,有最大值25 000;当x >400时,f (x )=60 000-100x 是减函数, f (x )<60 000-100×400<25 000. ∴当x =300时,f (x )取最大值.∴每月生产300台仪器时,利润最大, 最大利润为25 000元.变式迁移1 (1) y =⎩⎨⎧10t , 0≤t ≤110,⎝⎛⎭⎫116t -110, t >110(2)0.6解析 (1)设y =kt (k ≠0),由图象知y =kt 过点(0.1,1),则1=k ×0.1,k =10, ∴y =10t (0≤t ≤0.1);由y =⎝⎛⎭⎫116t -a过点(0.1,1)得1=⎝⎛⎭⎫1160.1-a , a =0.1,∴y =⎝⎛⎭⎫116t -0.1(t >0.1).∴y =⎩⎨⎧10t , 0≤t ≤110,⎝⎛⎭⎫116t -110,t >110.(2)由⎝⎛⎭⎫116t -0.1≤0.25=14,得t ≥0.6, 故至少需经过0.6小时.【例2】 解 设每年购买和贮存元件总费用为y 元,其中购买成本费为固定投入, 设为c 元,则y =500n +2×8 000n ×12+c=500n +8 000n +c =500(n +16n )+c=500(n -4n )2+4 000+c ,当且仅当n =4n,即n =4时,y 取得最小值且y min =4 000+c .所以分4次进货可使得每年购买和贮存元件总费用最低.变式迁移2 解 (1)设污水处理池的长为x m ,则宽为200xm ,总造价为y .∴y =400(2x +2×200x )+248×200x ×2+80×200=800(x +324x )+16 000.∵⎩⎪⎨⎪⎧0<x ≤160<200x≤16,∴12.5≤x ≤16.故其定义域为[12.5,16].(2)先讨论y =800(x +324x)+16 000在[12.5,16]上的单调性.设x 1,x 2∈[12.5,16]且x 1<x 2,则y 1-y 2=800[(x 1-x 2)+324(1x 1-1x 2)]=800(x 1-x 2)(1-324x 1x 2).∵x 1,x 2∈[12.5,16],x 1<x 2, ∴x 1·x 2<162<324.∴1-324x 1x 2<0,x 1-x 2<0.∴y 1-y 2>0.∴此函数在[12.5,16]上单调递减. ∴当x =16时,y min =45 000(元),此时,宽为20016m =12.5 m.∴当池长为16 m ,宽为12.5 m 时, 总造价最低为45 000元.【例3】 解 设f (x )=px 2+qx +r (p ≠0),则有 ⎩⎪⎨⎪⎧f (1)=p +q +r =1,f (2)=4p +2q +r =1.2,f (3)=9p +3q +r =1.3.解得p =-0.05,q =0.35,r =0.7. ∴f (x )=-0.05x 2+0.35x +0.7,∴f (4)=-0.05×42+0.35×4+0.7=1.3. 设g (x )=ab x +c (a ≠0),则有 ⎩⎪⎨⎪⎧g (1)=ab +c =1,g (2)=ab 2+c =1.2,g (3)=ab 3+c =1.3.解得a =-0.8,b =0.5,c =1.4. ∴g (x )=-0.8×0.5x +1.4,∴g (4)=-0.8×0.54+1.4=1.35.经比较可知,用g (x )=-0.8×0.5x +1.4作为模拟函数较好. 变式迁移3 解 (1)由表中数据知,当时间t 变化时,种植成本并不是单调的, 故只能选取Q =at 2+bt +c .即⎩⎪⎨⎪⎧150=a ×502+b ×50+c 108=a ×1102+b ×110+c 150=a ×2502+b ×250+c, 解得Q =1200t 2-32t +4252. (2)Q =1200(t -150)2+4252-2252=1200(t -150)2+100, ∴当t =150天时,西红柿的种植成本最低,为100元/102 kg. 课时作业 1.C 2.A3.D [考察相同的Δh 内ΔV 的大小比较.] 4.B [设最多用t 分钟,则水箱内水量y =200+2t 2-34t ,当t =172时,y 有最小值,此时共放水34×172=289(升),可供4人洗澡.]5.y =⎩⎪⎨⎪⎧0.4x ,0<x ≤100,40+0.3(x -100),x >1006.①②解析 ③错,骑摩托车者出发1.5 h 时走了60 km ,而从图中可看出骑自行车者走的距离大于60 km.7.解 由题意得⎩⎪⎨⎪⎧3 000+20x -0.1x 2≤25x 0<x <240解得150≤x <240,x ∈N *∴生产者不赔本时的最低产量是150台.8.解 (1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x 0个,则x 0=100+60-510.02=550(个).∴当一次订购量为550个时,每个零件的实际出厂价恰好降为51元. (2)当0<x ≤100时,P =60; 当100<x <550时,P =60-0.02(x -100)=62-0.02x ; 当x ≥550时,P =51.∴P =f (x )=⎩⎪⎨⎪⎧60, 0<x ≤100,62-0.02x , 100<x <550,51, x ≥550(x ∈N +).(3)设销售商一次订购量为x 个时,工厂获得的利润为S 元,则 S =(P -40)x =⎩⎪⎨⎪⎧20x , 0<x ≤100,22x -0.02x 2, 100<x <550,11x , x ≥550(x ∈N +)当x =500时,S =22×500-0.02×5002=6 000(元);当x =1 000时,S =11×1 000=11 000(元).∴当销售商一次订购500个零件时,该厂获得的利润是6 000元;如果一次订购1 000个零件时,利润是11 000元.。
3.2.2函数模型的应用实例一、基础达标1.某同学家门前有一笔直公路直通长城,星期天,他骑自行车匀速前往,他先前进了a km,觉得有点累,就休息了一段时间,想想路途遥远,有些泄气,就沿原路返回骑了b km(b<a),当他记起诗句“不到长城非好汉”,便调转车头继续前进,则该同学离起点的距离与时间的函数关系图象大致为()答案 C解析由题意可知,s是关于时间t的一次函数,所以其图象特征是直线上升.由于中间休息了一段时间,该段时间的图象应是平行于横轴的一条线段.然后原路返回,图象下降,再调转车头继续前进,则直线一致上升.2.国内快递1 000 g以内的包裹的邮资标准如下表:如果某人在西安要快递800 g的包裹到距西安1 200 km的某地,那么他应付的邮资是() A.5.00元B.6.00元C.7.00元D.8.00元答案 C解析由题意可知,当x=1 200时,y=7.00元.3.某机器总成本y(万元)与产量x(台)之间的函数关系式是y=x2-75x,若每台机器售价为25万元,则该厂获利润最大时应生产的机器台数为() A.30 B.40C.50 D.60答案 C解析 设安排生产x 台,则获得利润 f (x )=25x -y =-x 2+100x =-(x -50)2+2 500.故当x =50台时,获利润最大.4.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧cx ,x <A ,c A ,x ≥A (A ,c 为常数).已知工人组装第4件产品用时30 min ,组装第A 件产品用时15 min ,那么c 和A 的值分别是 ( )A .75,25B .75,16C .60,25D .60,16答案 D解析 由题意知,组装第A 件产品所需时间为cA=15,故组装第4件产品所需时间为c 4=30,解得c =60.将c =60代入c A=15,得A =16. 5.某工厂生产某产品x 吨所需费用为P 元,而卖出x 吨的价格为每吨Q 元,已知P =1 000+5x +1102,Q =a +xb ,若生产出的产品能全部卖出,且当产量为150吨时利润最大,此时每吨的价格为40元,则有 ( )A .a =45,b =-30B .a =30,b =-45C .a =-30,b =45D .a =-45,b =-30答案 A解析 设生产x 吨产品全部卖出,获利润为y 元,则y =xQ -P =x ⎝⎛⎭⎪⎫a +xb -⎝ ⎛⎭⎪⎫1 000+5x +110x 2 =⎝ ⎛⎭⎪⎫1b -110x 2+(a -5)x -1 000(x >0). 由题意知,当x =150时,y 取最大值,此时Q =40.∴⎩⎨⎧-a -52⎝⎛⎭⎪⎫1b -110=150,a +150b =40,解得⎩⎨⎧a =45,b =-30.6.已测得(x ,y )的两组值为(1,2),(2,5),现有两个拟合模型,甲:y =x 2+1,乙:y =3x -1.若又测得(x ,y )的一组对应值为(3,10.2),则选用________作为拟合模型较好. 答案 甲解析 对于甲:x =3时,y =32+1=10,对于乙:x =3时,y =8,因此用甲作为拟合模型较好.7.武汉市的一家报摊主从报社买进《武汉晚报》的价格是每份0.40元,卖出的价格是每份0.50元,卖不掉的报纸还可以以每份0.08元的价格退回报社.在一个月(以30天计算)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,他应该每天从报社买进多少份,才能使每月所获得的利润最大?并计算他一个月最多可赚得多少元? 解 设报摊主每天买进报纸x 份,每月利润为y 元(x 为正整数). 当x ≤250时,y =0.1×30×x =3x . 当250≤x ≤400时,y =0.1×20×x +0.1×10×250-(x -250)×0.32×10 =2x +250-3.2x +800 =1 050-1.2x . 当x ≥400时,y =0.1×20×400+0.1×10×250-(x -400)×0.32×20-(x -250)×0.32×10 =800+250-6.4x +2 560-3.2x +800 =-9.6x +4 410.当x ≤250时,取x =250,y max =3×250=750(元). 当250≤x ≤400时,取x =250,y max =750(元). 当x ≥400时,取x =400,y max =570(元).故他应该每天从报社买进250份报纸,才能使每月所获得的利润最大,最大值为750元.二、能力提升8.衣柜里的樟脑丸,随着时间会挥发而体积缩小,刚放进的新丸体积为a ,经过t 天后体积V 与天数t 的关系式为:V =a ·e -kt .已知新丸经过50天后,体积变为49a .若一个新丸体积变为827a ,则需经过的天数为( )A .125B .100C .75D .50答案 C解析 由已知,得49a =a ·e -50k ,∴e -k=⎝⎛⎭⎪⎫49150.设经过t 1天后,一个新丸体积变为827a ,则827a =a ·e -kt 1, ∴827=(e -k)t 1=⎝⎛⎭⎪⎫49t 150, ∴t 150=32,t 1=75. 9.“学习曲线”可以用来描述学习某一任务的速度,假设函数t =-144lg ⎝ ⎛⎭⎪⎫1-N 90中,t 表示达到某一英文打字水平所需的学习时间,N 表示每分钟打出的字数.则当N =40时,t =________(已知lg 2≈0.301,lg 3≈0.477). 答案 36.72解析 当N =40时,则t =-144lg ⎝ ⎛⎭⎪⎫1-4090=-144lg 59144(lg 5-2lg 3)=36.72.10.如图所示,某池塘中浮萍蔓延的面积y (m 2)与时间t (月)的关系y =a t ,有以下几种说法:①这个指数函数的底数为2;②第5个月时,浮萍面积就会超过30 m2;③浮萍从4 m2蔓延到12 m2需要经过1.5个月;④浮萍每月增加的面积都相等.其中正确的命题序号是________.答案①②解析由图象知,t=2时,y=4,∴a2=4,故a=2,①正确.当t=5时,y=25=32>30,②正确,当y=4时,由4=2t1知t1=2,当y=12时,由12=2t2知t2=log212=2+log23.t2-t1=log23≠1.5,故③错误;浮萍每月增长的面积不相等,实际上增长速度越来越快,④错误.11.在对口扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型残疾人企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).根据甲提供的资料有:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销售价格P(元)的关系如下图所示;③每月需各种开支2 000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额.(2)企业乙只依靠该店,最早可望在几年后脱贫? 解 设该店月利润余额为L ,则由题设得: L =Q (P -14)×100-3 600-2 000.①由销量图易得:Q =⎩⎪⎨⎪⎧-2P +50,14≤P ≤20,-32P +40,20<P ≤26,代入①式得L =⎩⎪⎨⎪⎧(-2P +50)(P -14)×100-5 600,14≤P ≤20,(-32P +40)(P -14)×100-5 600,20<P ≤26,(1)当14≤P ≤20时,L max =450(元), 此时P =19.5(元);当20<P ≤26时,L max =1 2503(元),此时P =613(元).故当P =19.5(元)时,月利润余额最大,为450元. (2)设可在n 年后脱贫,依题意有12n ×450-50 000-58 000≥0,解得n ≥20. 即最早可望在20年后脱贫. 三、探究与创新12.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T 0,经过一定时间t 后的温度是T ,则T -T a =(T 0-T a )·⎝ ⎛⎭⎪⎫12th ,其中T a 表示环境温度,h 称为半衰期.现有一杯用88℃热水冲的速溶咖啡,放在24℃的房间中,如果咖啡降温到40℃需要20 min ,那么降温到35℃时,需要多少时间? 解 由题意知40-24=(88-24)·⎝ ⎛⎭⎪⎫1220h , 即14=⎝ ⎛⎭⎪⎫1220h . 解之,得h =10.故T -24=(88-24)·⎝ ⎛⎭⎪⎫12t 10. 当T =35时,代入上式,得 35-24=(88-24)·⎝ ⎛⎭⎪⎫12t 10, 即⎝⎛⎭⎪⎫12t 10=1164.两边取对数,用计算器求得t ≈25. 因此,约需要25 min ,可降温到35℃.13.(2014·成都高一期末)今年冬季,我国大部分地区遭遇雾霾天气,给人们的健康、交通安全等带来了严重影响.经研究,发现工业废气等污染物排放是雾霾形成和持续的重要因素,污染治理刻不容缓.为此,某工厂新购置并安装了先进的废气处理设备,使产生的废气经过过滤后排放,以降低对空气的污染.已知过滤过程中废气的污染物数量P (单位:mg/L)与过滤时间t (单位:小时)间的关系为P (t )=P 0e -kt (P 0,k 均为非零常数,e 为自然对数的底数),其中P 0为t =0时的污染物数量.若经过5小时过滤后还剩余90%的污染物. (1)求常数k 的值;(2)试计算污染物减少到40%至少需要多少时间(精确到1小时,参考数据:ln 0.2≈-1.61,ln 0.3≈-1.20,ln 0.4≈-0.92,ln 0.5≈-0.69,ln 0.9≈-0.11.) 解 (1)由已知,当t =0时,P =P 0; 当t =5时,P =90%P 0. 于是有90%P 0=P 0e -5t .解得k =-15ln 0.9(或0.022).(2)由(1)得,知P =P 0e ⎝ ⎛⎭⎪⎫15ln 0.9t . 当P =40%P 0时,有0.4P 0=P 0e ⎝ ⎛⎭⎪⎫15t . 解得t =ln 0.415ln 0.9≈-0.9215×(-0.11)=4.600.11≈41.82.故污染物减少到40%至少需要42小时.。
§3.2.2函数模型的应用实例
一、教学目标:
1、能够收集图表数据信息,建立适合函数解决实际问题,体验收集图表数据信息的过程与方法,能建立适合函数解决实际问题
二、教学重难点
1、重点:将收集图表数据信息,建立函数模型解决实际问题。
2、难点:建立起函数模型,并进行模型修正
三、教学过程
(一)复习旧知,揭示课题.
解决实际问题的步骤:
实际问题读懂问题将问题抽象化数学模型解决问题
现实生活中有些实际问题给出了图表数据信息,对这类问题就要求我们能够收集图表数据信息,建立适合的函数模型来解决问题。
请看下面的例子:
(二)实例尝试,探求新知
例1(见P104例5)、某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如下表所示:
请根据以上根据作出分析,这个经营部怎样定价才能获得最大利润?
分析:由表中可知,销售单价每增加1元,日均销售量就减少40桶,设在进价的基础上增加x元后,日均销售利润为y元,在此情况下的日均销售量为480-40(x-1)
=520-40x(桶)由于x>0,所且520-40x>0,即0<x<13
于是得:y=(520-40x)x-200=-40x2+520x-200,0<x<13
由二次函数的性质,易知,当x=6.5时,y有最大值。
所以只需将销售单价定为11.5元,就可获得最大的利润。
使它能比较近似地反映这个地区未成年男性体重ykg与身高xcm的函数关系?试写出这个函数模型的解析式。
2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175cm ,体重为78kg的在校男生的体重是否正常?
先让学生探索以下问题:
1)借助计算器或计算机,根据统计数据,画出它们相应的散点图;
2)观察所作散点图,你认为它与以前所学过的何种函数的图象较为接近?
3)你认为选择何种函数来描述这个地区未成年男性体重ykg与身高xcm的函数关系比较合适?
4)确定函数模型,并对所确定模型进行适当的检验和评价.
5)怎样修正所确定的函数模型,使其拟合程度更好?
解:(1)以身高为横坐标,体重为纵坐标,画出散点图,根据点的分布特征,可考虑用y=a·b x作为刻画这个地区未成年男性体重ykg与身高xcm关系的函数模型。
不妨取其中的两组数据(70,7.90),(160,47.25)代入y =a ·b x
得:
⎪⎩⎪⎨⎧•=•=1607025.479.7b a b a ,用计算器解得:⎩⎨⎧≈≈02.12b a 这样,我们就得到一函数模型:x y 02.12⨯=
将已知数据代入上述函数解析式,或作出函数的图象,可以发现,这个函数模型与已知数据的拟合程度较好,这说明它能较好地反映这个地区未成年男性体重与身高的关系。
(2)将x =175代入x y 02.12⨯=,得:17502.12⨯=y ≈63.98
(3)由于78÷63.98≈1.22>1.2,所以这个男生偏胖。
总结:课本106页函数是描述客观世界变化规律的重要数学模型,是解决实际问题的重要思想方法. 利用函数思想解决实际问题的基本过程如下:
符合
实际
不符合实际
(三)、练习实践,巩固提高
练习:P106 1、2
(四)、课堂小结
利用函数思想解决实际问题的基本过程。