第10章 配位化合物讲述
- 格式:ppt
- 大小:734.50 KB
- 文档页数:21
第十章配位化合物本章总目标:1:掌握配合物的基本概念和配位键的本质2:掌握配合物的价键理论的主要论点,并能用此解释一些实例3:配离子稳定常数的意义和应用4:配合物形成时性质的变化。
各小节目标:第一节:配位化合物的基本概念1:掌握中心原子、配体、配位原子、配位键、配位数、螯合物等概念,○1配位单元:由中心原子(或离子)和几个配位分子(或离子)以配位键向结合而形成的复杂分子或离子。
○2配位化合物:含有配位单元的化合物。
○3配位原子:配体中给出孤电子对与中心直接形成配位键的原子。
○4配位数:配位单元中与中心直接成键的配位原子的个数。
2:学会命名部分配合物,重点掌握命名配体的先后顺序:(1)先无机配体后有机配体(2)先阴离子配体,后分子类配体(3)同类配体中,先后顺序按配位原子的元素符号在英文字母表中的次序(4)配位原子相同时,配体中原子个数少的在前(5)配体中原子个数相同,则按和配位原子直接相连的其它原子的元素符号的英文字母表次序;3:了解配合物的结构异构和立体异构现象第二节:配位化合物的价键理论1:熟悉直线形、三角形、正方形、四面体、三角双锥、正八面体构型的中心杂化类型。
2:会分辨内轨型和外轨型配合物。
可以通过测定物质的磁矩来计算单电子数μ=。
3:通过学习羰基配合物、氰配合物以及烯烃配合物的d p π-配键来熟悉价键理论中的能量问题。
第三节:配合物的晶体场理论1:掌握配合物的分裂能、稳定化能概念2:掌握配合物的晶体场理论。
3;了解影响分裂能大小的因素○1)晶体场的对称性0p t ∆>∆>∆○2中心离子的电荷数,中心离子的电荷高,与配体作用强,∆大。
○3中心原子所在的周期数,对于相同的配体,作为中心的过渡元素所在的周期数大,∆相对大些。
(4)配体的影响,配体中配位原子的电负性越小,给电子能力强,配体的配位能力强,分裂能大。
224232I Br SCN Cl F OH ONO C O H O NCS NH en NO CN CO -----------<<<<<<-<<<<<<<≈ 4:重点掌握(1)配合物颜色的原因之一——d-d 跃迁以及颜色与分裂能大小的关系;(2)高自旋与低自旋以及与磁矩的大小的关系。
无机化学第十章配位化合物课程预习第十章配位化合物一、配位化合物的基本概念1.配位化合物(1)由中心原子(或离子)和多个配体分子(或离子)结合形成的具有配位键的复杂分子或离子被定义为配位单元(或配位单元)。
含有配位单元的化合物称为配位化合物,简称配合物。
(2)配合物构成配合物一般由内界和外界两部分构成。
配合物内界由中心原子(或离子)和配体构成。
(3)配位原子和配位数① 配位原子是指配体中的原子,它使孤电子对直接与中心形成配位键。
② 配位数是指直接结合到配位单元中心的配位原子数。
配位数与中心的电荷和半径以及配体的电荷和半径有关。
(4)多碱基配体和螯合物①多基配体是指含有多个配体原子的配体,如乙二胺四乙酸。
②螯合物:由双基配体或多基配体形成的配合物常形成环状结构。
2.配位化合物的命名一些常见配体的化学式、代码和名称需要记忆。
3.配位化合物的异构现象配位化合物的异构是指配位单元的异构。
(1)结构异构配位单元的组成相同,但配体与中心原子的键联关系不同,则产生结构异构。
结构异构特征:组成相同,但键合关系不同。
(2)立体异构配位单元的组成相同,配体与中心的键联关系也相同,但在中心的周围各配之间的相关位置不同或在空间的排列次序不同,则产生立体异构。
二、配位化合物的价键理论1。
配位化合物的构型构型有:直线形、三角形、正方形、四面体、三角双锥、正八面体。
常见配位单元的构型与中心的轨道杂化方式之间的关系如下:2.中心价轨道的杂化(1)nsnpnd杂化若中心参与杂化的价层轨道属同一主层,即中心采取nsnpnd杂化,d轨道在s轨道和p轨道的外侧,形成的配合物被称为外轨型配合物。
(2)(n-1)dnsnp如果中心参与杂化的价轨道不属于同一主层,即中心采用(n-1)dnsnp杂化,且d轨道位于s轨道和p轨道的内层,则形成的络合物称为内轨道络合物。
3.配位化合物的磁性4.价键理论中的能量内轨配合物一般较外轨配合物稳定。
形成内轨道复合物还是外轨道复合物取决于总能量的变化。
第十章配位化合物(教案提供:王日为)一、 教学内容:第十章 配位化合物二、 教学目的:1.理解和掌握配合物的有关基本概念。
2.掌握配合物的命名原则,能熟练地根据化学式命名配合物,并能由配合物名称写出相应的化学式;3.掌握配合物结构的价键理论及理论的应用;4.熟练掌握有关配位反应的标准稳定常数的计算以及有关配合反应和其它(酸碱、沉淀—溶解、氧化还原等)反应的偶合反应的计算。
三、 教学重点:基本概念、价键理论、配位平衡理论与应用。
四、 学习难点:价键理论、配位平衡与其它平衡的相互影响。
五、 教学方法:讲述法+模型演示+课堂讨论。
教学进程:新课导入:配位化合物(络合物)又称配合物。
历史上记载最早的第一个配合物是亚铁氰化铁Fe4[Fe(CN)6]3(普鲁士蓝)。
它是1704年普鲁士人狄斯巴赫在寻找蓝色染料时得到的。
配合物的存在广泛,绝大多数无机化合物都以配合物形式存在,金属离子在生物体内基本上以配合物形式存在。
随着对配合物研究的不断深入,目前配位化学已发展成一门独立的学科,配合物的应用日益广泛。
它不仅在湿法冶金、电镀工业、医药工业、化学分析、有机合成的催化剂等诸多方面广为应用,而且在现代生物化学和分子生物学中也起着非常重要的作用。
国内外一些重大课题,如化学模拟生物固氮、光合作用人工模拟和太阳能利用等,也都和配合物密切相关。
因此,学习配合物的知识有很重要的意义。
本章将简要地介绍有关配合物的基本知识。
10.1 配合物的基本概念一、配合物的定义和组成1. 配合物的定义一个能接受孤对电子的简单阳离子和一定数目可以给出孤对电子的中性分子或阴离子以配位键结合,形成具有一定空间构型和特性的物质。
带电荷的配位个体叫做配离子。
配离子可分为配阳离子(如[Cu(NH3)4]2+,等)和配阴离子(如[Fe(CN)6]3-等)。
配离子与带相反电荷的离子组成的中性化合物,如K4[Fe (CN)6]就叫做配合物。
有些不带电荷的配位个体本身就是电中性化合物,如[Ni(CO)4]、[CoCl3(NH3)3]等也叫配合物或称配合分子。
第十章 配位化合物学习要点配合物、配合物价键理论、sp 、sp 3、dsp 2、sp3d2、d2sp3杂化轨道、外轨型、内轨型配合物、磁矩、晶体场理论、分裂能、晶体场稳定化能(CFSE )、螯合物、配位平衡学习指南配合物是配位化合物的简称。
配离子或配位分子是由中心原子提供价层空轨道,配体中的配原子提供孤对电子,以配位键结合而成的难解离的复杂结构单元。
它是由中心原子和配体组成的。
中心原子往往是过渡金属离子,配体一般分为单齿配体和多齿配体,配体中直接与中心原子配位的原子称为配原子。
配离子或配位分子中配原子的数目称为中心原子的配位数。
配合物顺、反异构体的理化性质不同。
配合物的名称有俗名、商品名和系统命名,系统命名法是配合物内外界之间服从一般无机化学命名原则,内界命名的先后顺序所遵循的一般原则是配体数—配体名称—合—中心原子名称(中心原子氧化数),不同配体按阴离子—中性分子—阳离子顺序排列。
配合物的价键理论认为:中心原子与配体之间以配位键相结合,成键过程中,中心原子提供的价层空轨道首先进行杂化,形成杂化空轨道,配合物的空间构型,取决于中心原子价层空轨道的杂化类型。
常见的杂化方式有sp 、sp 2、sp 3、dsp 2、sp 3d 2、d 2sp 3等。
配合物的内、外轨型,可通过配合物的磁矩测定,结合中心原子的价层电子结构来判断,进一步可推断中心原子价层空轨道的杂化类型、配合物的空间构型、磁性及定性说明部分配合物的稳定性。
配合物的晶体场理论把中心原子和配体都看成点电荷,中心原子和配体之间靠静电作用力相结合,并不形成共价键。
在晶体场的作用下,中心原子d 轨道发生能级分裂,分裂能的大小与配合物的空间构型、配体场强、中心原子所带的电荷数和它所属周期等因素有关。
对于d 4~d 7电子构型的中心原子,其配合物有高、低自旋之分。
根据晶体场稳定化能的相对大小可以比较相同类型配合物的稳定性。
晶体场理论还可以较好地解释配合物的颜色。