三角形的外接圆PPT课件
- 格式:ppt
- 大小:728.00 KB
- 文档页数:22
三角形的外接圆和内切圆三角形是几何学中最基本的图形之一,它有许多引人注目的性质和特点。
其中,外接圆和内切圆是三角形中常见的两种圆,它们与三角形的关系引起了广泛的研究和应用。
一、外接圆外接圆是一个与三角形的三条边都相切的圆。
对于任意给定的三角形,它都存在一个唯一的外接圆。
外接圆有许多特点,其中一些被广泛应用于几何学和其它相关领域。
首先,外接圆的圆心是三角形三边的垂直平分线的交点。
也就是说,如果我们将三角形的三条边分别延长,然后找到它们垂直平分线的交点,这个交点就是外接圆的圆心。
其次,外接圆的半径等于三角形的边长的一半除以正弦值的倒数。
这个性质被称为外接圆定理,可以用来计算外接圆的半径。
再次,外接圆的直径等于三角形的任一边的长度除以正弦值。
这个性质被称为外接圆直径定理,也是计算外接圆直径的一个重要公式。
此外,外接圆对于三角形的角度关系也有一定的影响。
例如,对于直角三角形来说,外接圆的直径等于斜边的长度,这个性质被广泛应用于解决直角三角形相关的问题。
二、内切圆内切圆是一个与三角形的三条边都相切的圆。
与外接圆类似,任意给定的三角形都存在一个唯一的内切圆。
内切圆同样具有一些重要的性质和应用。
首先,内切圆的圆心是三角形的内角平分线的交点。
也就是说,如果我们将三角形的三个内角的平分线延长,这三条延长线的交点就是内切圆的圆心。
其次,内切圆的半径可以通过三角形的面积和半周长来计算。
内切圆半径公式为:r = Δ / s,其中Δ 表示三角形的面积,s 表示三角形的半周长。
再次,内切圆与三角形的边长和内角关系也有重要的性质。
例如,内切圆的半径等于三角形任意一条边的长度乘以正切值的倒数。
最后,内切圆还有一个重要的性质,即它与三角形的三条边的交点构成三角形的角平分线。
这个性质有助于解决一些与角平分线相关的问题。
结论三角形的外接圆和内切圆是在几何学中经常遇到的两种圆形。
它们分别与三角形的三个顶点或三个内角相切,具有许多有趣的性质和应用。
三角形外接圆半径的求法及应用 方法一:R =ab/(2h)三角形外接圆的直径等于两边的乘积除以第三边上的高所得的商。
AD 是△ABC 的高,AE 是△ABC 的外接圆直径.求证 AB ·AC =AE ·AD . 证:连接AO 并延长交圆于点E ,连接BE , 则∠ABE =90°.∵∠E =∠C , ∠ABE =∠ADC =90°, ∴Rt △ABE ∽Rt △ADC ,∴ACAE ADAB , ∴ AB ·AC =AE ·AD方法二:2R =a/SinA ,a 为∠A 的对边在锐角△ABC 中,外接圆半径为R 。
求证: 2R =AB/SinC 证:连接AO 并延长交圆于点E ,连接BE , 则∠ABE =90°. ∴AE =AB/SinE ∵∠C =∠E ,SinC =SinE∴AE =AB/SinC∴2R =AB/SinC若C 为钝角,则SinC =Sin (180o -C )应用一、已知三角形的三边长,求它的外接圆的半径。
例1 已知:如图,在△ABC 中,AC =13,BC =14,AB =15,求△ABC 外接圆⊙O 的半径r.分析:作出直径AD ,构造Rt △ABD.只要求出△ABC 中BC 边上的高AE ,用方法一就可以求出直径AD. 解:作AE ⊥BC ,垂足为E.设CE =x, ∵AC 2-CE 2=AE 2=AB 2-BE 2 ,∴132-x 2=152-(14-x)2∴x=5,即CE =5,∴AE =12 R =ab/(2h)=13x15/(2x12)=65/8ABCODE∴△ABC 外接圆⊙O 的半径r 为865. 例 2 已知:在△ABC 中,AB =13,BC =12,AC =5,求△ABC 的外接圆的半径R.分析:通过判定三角形为直角三角形,易求得直角三角形外接圆的直径等于斜边。
应用二、已知三角形的二边长及其夹角(特殊角),求外接圆的半径。
三角形外接圆画法原理
三角形外接圆怎么画(三角形外接圆)
1、三角形内切圆的圆心是三个角角平分线的交点。
2、外接圆的圆心是三边的垂直平分线的交点。
3、具体做法:角分线:用圆规从一个角的顶点出发,在这个角的两边取相同长度的距离并做记号,然后分别以边上的两个记号为圆心,以等长的半径做圆(半径要保证两圆相交),过两圆的两个交点(或过其中一个交点和这个角的顶点)做一条直线。
4、这条直线即将这个角平分(即角的平分线)做出3个角的角分线,交点是唯一的即内切圆圆心(原理就是角平分线上一点到角的两边的距离相等)垂直平分线:(以线段为例,可以看作是三角形一边)分别以两个端点为圆心适当长度(相等)为半径做圆(只画出与线段相交的弧即可),再分别以两交点为圆心,等长为半径(保证两圆相交)做圆,过最后的两个圆的两个交点做直线,这条直线垂直且平分这条线段即线段的垂直平分线。
5、做3个边的垂直平分线,取交点为圆心以交点到三角形各顶点的距离为半径做圆,得三角形外接圆。
6、原理是在一个圆中,经过一条弦的中点的半径必垂直于这条弦。
7、每种三角形都适用。
三角形内切圆外接圆的关系一、内切圆和外接圆的定义1.内切圆:一个圆能够同时和三角形的三边相切,这个圆就被称为三角形的内切圆。
内切圆的圆心称为内切圆圆心。
2.外接圆:一个圆能够同时和三角形的三个顶点相切,这个圆就被称为三角形的外接圆。
外接圆的圆心称为外接圆圆心。
二、内切圆和外接圆的关系1.内切圆和外接圆的圆心是同一点。
即内切圆圆心就是外接圆圆心,这个点称为三角形的垂心。
2.内切圆和外接圆的半径之间存在一定的关系。
设三角形的边长分别为a、b、c,内切圆半径为r,外接圆半径为R,则有:R = (a + b + c) / (4 * r)同时,根据三角形的面积公式,有:S = (1/2) * a * r = (1/2) * R * (a + b + c)将R的表达式代入上式,可以得到:(1/2) * a * r = (1/2) * ((a + b + c) / (4 * r)) * (a + b + c)化简后可得:r^2 = (a + b + c) / (4 * a)三、内切圆和外接圆的性质1.三角形的内切圆圆心、外接圆圆心和垂心是同一点。
2.三角形的内切圆和外接圆的半径之间存在固定的比例关系,即R = (a + b + c) / (4 * r)。
3.三角形的面积可以用内切圆半径和外接圆半径表示,即S = (1/2) * a * r = (1/2) * R * (a + b + c)。
4.内切圆和外接圆的圆心到三角形各顶点的距离相等。
四、内切圆和外接圆的应用1.在解决三角形相关的问题时,可以利用内切圆和外接圆的关系来简化计算。
2.内切圆和外接圆的性质在证明几何问题时非常有用,可以帮助我们找到证明的线索。
3.在实际应用中,如建筑工程、土地测量等领域,内切圆和外接圆的关系可以帮助我们快速计算三角形的面积和其他相关参数。
习题及方法:1.习题:设三角形ABC的内切圆半径为r,外接圆半径为R,且AB=6,BC=8, AC=10。
三角形的外接圆与内切圆在数学几何学中,三角形是一个基本的几何形状。
而三角形的外接圆与内切圆是与之密切相关的概念。
本文将介绍三角形的外接圆与内切圆的定义、性质以及相关定理,帮助读者深入理解这两个圆的特点和作用。
一、外接圆的定义及性质外接圆是指能够完全包含三角形的圆,圆心在三角形的外部。
下面以三角形ABC为例,说明外接圆的构造和性质。
构造外接圆的方法之一是利用三角形的垂直平分线。
从三角形ABC 的三个顶点A、B、C分别作垂直平分线,垂直平分线的交点即为外接圆的圆心O,连接OA、OB、OC即可构成外接圆。
外接圆的性质如下:1. 三角形的三条边的中垂线交于同一点,即外接圆的圆心是中垂线的交点。
2. 外接圆的半径等于任意一条边的垂直平分线到边的中点的距离。
3. 外接圆的直径等于三角形的任意一边。
二、内切圆的定义及性质内切圆是指能够与三角形的三条边相切的圆,圆心在三角形的内部。
下面以三角形ABC为例,说明内切圆的构造和性质。
构造内切圆的方法之一是利用三角形的角平分线。
从三角形ABC的三个顶点A、B、C分别作角平分线,角平分线的交点即为内切圆的圆心I,连接IA、IB、IC即可构成内切圆。
内切圆的性质如下:1. 内切圆的圆心I是三角形的内角平分线的交点。
2. 内切圆的半径等于三角形的三条边的交点到三角形各边的距离。
3. 内切圆的半径与三角形的三条边的切点分别连成的线段相互连通,构成的三个三角形面积相等。
三、外接圆与内切圆的关系外接圆和内切圆的位置和关系是数学中的一个重要问题。
接下来我们将介绍外接圆与内切圆的关系及相关定理。
1. 对于任何一个三角形,外接圆的半径大于或等于内切圆的半径。
2. 对于等边三角形,外接圆和内切圆重合,半径相等。
3. 对于等腰三角形,内切圆的半径等于底边中线的长度。
4. 外接圆的半径等于内切圆的半径与三角形的半周长之和的一半。
结论:外接圆与内切圆的半径之间存在一定的关系,可以通过这个关系推导出三角形的相关性质。
三角形的外接圆和内切圆三角形是几何学中最基本的图形之一,具有许多独特的特性。
其中两个与三角形密切相关的圆形是外接圆和内切圆。
在本文中,我们将探讨这两个圆形在三角形中的性质和应用。
一、三角形的外接圆外接圆是经过三角形三个顶点的圆形。
具体来说,在一个三角形ABC中,如果存在一个圆,使得圆的圆心与三角形三个顶点A、B、C 共线,且圆的半径与三条边AB、BC、CA之间的距离相等,那么这个圆就是该三角形的外接圆。
外接圆具有以下性质:1. 外接圆的圆心位于三角形的三条垂直平分线的交点上,这个交点被称为三角形的外心。
2. 外接圆的半径等于三角形任意一边的垂直平分线到该边的距离。
3. 外接圆的直径等于三角形的最长边长度。
外接圆的性质使得它在几何学中具有广泛的应用。
例如,外接圆可以用来解决三角形的角平分线性质问题,或者作为一个重要的辅助工具来推导其他几何学问题的解。
二、三角形的内切圆内切圆是与三角形的三条边都相切的圆形。
具体来说,在一个三角形ABC中,如果存在一个圆,使得圆的圆心到三角形三条边上的点的距离都相等,那么这个圆就是该三角形的内切圆。
内切圆具有以下性质:1. 内切圆的圆心位于三角形三条角平分线的交点上,这个交点被称为三角形的内心。
2. 内切圆的半径等于三角形的三条边的长度之和除以三角形的周长的一半。
与外接圆类似,内切圆也在几何学中有广泛的应用。
例如,内切圆可以用来解决三角形的角平分线性质问题,或者作为一个重要的辅助工具来推导其他几何学问题的解。
三、外接圆和内切圆之间的关系在一个三角形中,外接圆和内切圆有一定的关系。
具体来说:1. 外接圆的圆心、内接圆的圆心和三角形的重心(三条中线交点)共线。
2. 外接圆的半径是内接圆半径的两倍。
这些关系使得外接圆和内切圆在解决几何学问题时相互配合,提供了更多的几何性质和可用的信息。
综上所述,三角形的外接圆和内切圆是与三角形密切相关的两个圆形。
它们具有特定的性质和应用,能够帮助我们解决各种几何学问题。
三角形中的内切圆与外接圆性质三角形是几何学中的基础概念之一,而与三角形密切相关的内切圆和外接圆更是常见的几何形状。
本文将介绍三角形中的内切圆和外接圆的性质,以及它们与三角形的关系。
一、内切圆性质内切圆指的是与三角形的三条边都有且仅有一个公共点的圆。
我们先来看一下内切圆的性质。
1. 内切圆的圆心在三角形的角平分线的交点上。
三角形的角平分线是指从一个角的顶点出发,将该角分成两个相等的角的一条线段。
内切圆的圆心恰好位于三角形的三个角的平分线的交点上。
2. 内切圆的半径和三角形的三条边之间存在特定的关系。
设三角形的三个边长为a、b、c,内切圆的半径为r,那么内切圆的半径r与三条边有以下关系:r = √[(s-a)(s-b)(s-c)]/s其中,s = (a+b+c)/2是三角形的半周长。
3. 内切圆与三角形的接触点构成一个等边三角形。
内切圆与三角形的接触点是指内切圆与三角形的三条边相切的点。
这些接触点构成的三角形是一个等边三角形,即三条边的长度相等。
二、外接圆性质外接圆指的是可以将三角形的三个顶点放到一个圆上的圆。
接下来我们来介绍一下外接圆的性质。
1. 外接圆的圆心是三角形三个顶点的垂直平分线的交点。
三角形的垂直平分线是指从一个顶点出发,与对边垂直且平分对边的线段。
外接圆的圆心位于三个垂直平分线的交点上。
2. 三角形的三条边是外接圆上的弦。
外接圆的弦是指连接圆上两点的线段。
三角形的三条边恰好是外接圆上的三条弦。
3. 外接圆的半径等于外接圆的直径,即三角形三个顶点与外接圆圆心的距离都相等。
三角形的三个顶点与外接圆圆心的距离相等,且等于外接圆的半径。
三、内切圆与外接圆的关系三角形中的内切圆与外接圆之间存在一定的关系。
1. 内切圆的圆心、外接圆的圆心和三角形的垂直平分线的交点位于同一条直线上。
内切圆和外接圆的圆心以及三角形的垂直平分线的交点位于同一条直线上,这条直线被称为欧拉直线。
2. 内切圆的半径是外接圆半径的一半。
三角形的内切圆与外接圆三角形是几何学中最基本的图形之一,而与三角形相关的内切圆和外接圆是三角形内部和外部特殊的圆。
本文将介绍三角形的内切圆和外接圆的定义、性质以及求解方法。
一、内切圆内切圆是与三角形的三条边都相切的圆,它的圆心与三角形的三条边的交点共线,且圆心到三角形的三条边的距离相等。
内切圆的半径称为内切圆半径,内切圆半径的求解可以通过三角形的边长来计算。
设三角形的三条边长分别为a、b、c,半周长为s,内切圆半径r的计算公式如下:r = sqrt((s-a)(s-b)(s-c)/s)其中,sqrt表示开平方根运算。
二、外接圆外接圆是能够完全包围三角形的圆,它的圆心位于三角形的三条边的垂直平分线的交点上。
外接圆的半径称为外接圆半径,外接圆半径的求解可以通过三角形的边长来计算。
设三角形的三条边长分别为a、b、c,外接圆半径R的计算公式如下:R = (a*b*c)/(4*Δ)其中,Δ表示三角形的面积。
三、性质1. 内切圆与三角形的三条边相切,且圆心和三条边的交点共线。
2. 外接圆的圆心位于三角形的三条边的垂直平分线的交点上。
3. 内切圆的半径r满足r = sqrt((s-a)(s-b)(s-c)/s),其中s为三角形半周长。
4. 外接圆的半径R满足R = (a*b*c)/(4*Δ),其中Δ为三角形的面积。
四、应用1. 内切圆和外接圆常用于计算三角形的性质和求解三角形的相关问题,例如三角形的面积、周长等。
2. 内切圆和外接圆可以帮助确定三角形的形状和位置,进一步研究三角形的几何性质。
3. 内切圆和外接圆在工程、建筑、地理等领域中有广泛的应用,例如地图绘制、建筑设计等。
五、总结本文介绍了三角形的内切圆和外接圆的定义、性质以及求解方法。
内切圆和外接圆是三角形内部和外部特殊的圆,它们在几何学和实际应用中有重要的地位。
深入理解和应用内切圆和外接圆的概念,可以帮助我们更好地研究和解决与三角形相关的问题。
三角形的外接圆与内切圆三角形是几何学中最基本的图形之一。
它由三条线段组成,且任意两边之和大于第三边。
在三角形的研究中,外接圆和内切圆是重要的概念。
一、外接圆外接圆是指能通过三角形的三个顶点构成的圆,它的圆心位于三角形外部,但与三角形的每一条边都相切。
在研究外接圆时,我们首先需要了解外接圆的性质。
根据外接圆的定义,我们可以得到以下结论:1. 外接圆的半径等于三角形三条边的中线的乘积除以四倍三角形的面积。
这是外接圆半径的一个重要计算公式。
2. 三角形的三条高线的交点即为外接圆的圆心。
这意味着圆心是三角形三个顶点的垂直平分线的交点。
3. 外接圆的直径等于三角形的周长。
有了这些性质,我们可以利用它们来解决一些与外接圆相关的问题。
比如,我们可以通过外接圆的半径和圆心,求解三角形的面积。
我们还可以利用外接圆与三角形边的关系,推导出其他几何问题的解决方法。
外接圆的研究不仅能帮助我们深入理解三角形的特性,还可以为其他几何形状的研究提供一些启示。
二、内切圆与外接圆相反,内切圆是指能够与三角形的三条边相切的圆,它的圆心位于三角形的内部。
内切圆也有一些重要的性质:1. 内切圆的半径等于三角形的面积除以半周长。
这也是内切圆半径的计算公式。
2. 内切圆的圆心位于三角形三条角平分线的交点。
这说明圆心是三个顶点的角平分线的交点。
内切圆与外接圆一样,可以用来解决一些几何问题。
通过内切圆和三角形的关系,我们可以推导出一些有关三角形的性质。
例如,我们可以利用内切圆半径和圆心的位置,求解三角形的高和角平分线的长度。
三、外接圆与内切圆的关系外接圆和内切圆是三角形内在的两个圆,它们之间存在一些有趣的关系。
首先,外接圆的直径等于内切圆的半径的两倍。
这是因为内切圆的圆心与三角形的三个顶点相辐,而外接圆的圆心位于三角形三个顶点的角平分线的交点。
根据角的性质,我们可以得知外接圆的直径等于内切圆的半径的两倍。
其次,外接圆和内切圆的圆心与三角形的关系也非常特殊。