四年级奥数之图形问题
- 格式:docx
- 大小:112.70 KB
- 文档页数:2
四年级奥数题及答案-求格点图案面积
【题目】以下这张图里的三个格点图案面积分别是多少?
【解析】
这三个图形都适合用格点面积公式计算面积:
格点多边形面积 = 内格点个数 + 边格点数÷ 2 - 1
这个公式是皮克(Pick)在1899年给出的,被称为“皮克定理”,这是一个实用而有趣的定理。
我们先来看喇叭图案:
这个图案周界上有8个格点,图内却没有格点,那么利用格点面积公式我们可以求得这个喇叭形状的面积为:0+8÷2-1=3;
接下来这只小猫的图案:
小猫图案的周界上有20个格点,而图内有2个格点,面积为:2+20÷2-1=11;
小狗图案同理:
我们可以看到小狗图案是由两个格点多边形组成,那我们可以将两个图案分开求解,先求出每个格点多边形的面积,再求出总面积。
躯干面积:0+12÷2-1=5;
尾巴面积:0+4÷2-1=1;
总面积:5+1=6。
我们在计算像小狗图案这样的有两个或以上的独立格点多边形组成的图案时,可以先求每个独立的格点多边形的面积,再进行求和计算总面积,这样可以避免数漏多个独立图形公共格点而导致计算错误。
第二讲图形计数几何图形计数问题往往没有显而易见的顺序,而且要数的对象通常是重叠交错的,要准确计数就需要一些智慧了.实际上,图形计数问题,通常采用一种简单原始的计数方法-一枚举法.具体而言,它是指把所要计数的对象一一列举出来,以保证枚举时无一重复、.无一遗漏,然后计算其总和.正确地解答较复杂的图形个数问题,有助于培养同学们思维的有序性和良好的学习习惯.一:简单图形计数的方法。
二:复杂图形计数的方法和找规律的方法。
例(1)数出右图中总共有多少个角分析:在∠AOB内有三条角分线OC1、OC2、OC3,∠AOB被这三条角分线分成4个基本角,那么∠AOB内总共有多少个角呢?首先有这4个基本角,其次是包含有2个基本角组成的角有3个(即∠AOC2、∠C1OC3、∠C2OB),然后是包含有3个基本角组成的角有2个(即∠AOC3、∠C1OB),最后是包含有4个基本角组成的角有1个(即∠AOB),所以∠AOB内总共有角:4+3+2+1=10(个)解:4+3+2+1=10(个)答:图中总共有10个角。
例(2 )数一数共有多少条线段?共有多少个三角形?分析:①要数多少条线段:先看线段AB、AD、AE、AF、AC、上各有2个分点,各分成3条基本线段,再看BC、MN、GH这3条线段上各有3个分点,各分成4条基本线段.所以图中总共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条).②要数有多少个三角形,先看在△AGH中,在GH上有3个分点,分成基本小三角形有4个.所以在△AGH中共有三角形4+3+2+1=10(个).在△AMN与△ABC中,三角形有同样的个数,所以在△ABC中三角形个数总共:(4+3+2+1)×3=10×3=30(个)解::①在△ABC中共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条)②在△ABC中共有三角形是:(4+3+2+1)×3=10×3=30(个)答:在△ABC中共有线段60条,共有三角形30个。
第22讲图形的切拼(二)学校有一块正方形的绿地(如下图所示),里面恰好有12棵小松树。
现在学校要把它划分成四块交给四个班的同学认养,要求每块绿地的形状和大小都相同,并且恰好都有三棵小松树。
怎么分呢?)班的同学们。
呵,大家讨论的可热烈啦。
一下课,数学老师把这个问题交给了五(1 同学们就交给了老师两种方案,见下图。
你们知道他们是采用什么方法分割的吗?下面我们通过几个例题一起研究等分同学们,图形的技巧和一些图形的切拼问题。
面积相等把梯形分成形状相同、1下图是一个直角梯形,请在它内部画一条直线段,例的两部分。
(平方厘米)。
60÷2=1800=分析与解答:从计算图形面积开始。
梯形面积(20+40)×900平方厘米。
所以分成两部分后,每一部分的面积为ABCD把梯形2=30(厘米),这样MN的中位线,设MN为梯形ABCDMN=(20+40)÷(平方厘米);梯)×30÷2=105030+40分成了两部分,如图:梯形ABNM的面积是:(两个梯形的面积一大一小相差:2=750(平方厘米)。
的面积是:MNCD(20+30)×30÷形的面积的面积应增MNCD的原理,所以梯形1050-750=300(平方厘米),根据”移多补少”MN=30150平方厘米.因为ABNM300加÷2=150(平方厘米),梯形的面积也就相应减少MPN,使三角形PMN(厘米),比较简单的方法是:以为三角形的高,在NB 上找一点就把梯形分成了面30=102150NP150面积为平方厘米,所以线段:×÷(厘米),这样NP 积相等的两部分。
.ABCD分成了面积相等的两部分。
具体分法见上图,线段MP把梯形垂直点作MEABPM中,过M说明:下面我们来验证这两部分形状完全一样.在四边形因为EBPM.AEM分成了两部分:直角三角形和直角梯形于E,则ME把四边形ABPMABAEM所以三角形ME=NB=30(厘米),,所以AE=10(厘米)。
本讲主要学习三大图形处理方法: 1.理解掌握图形的分割; 2.理解掌握图形的拼合; 3.理解图形的剪拼.本讲中很多类型的题目还要求同学们去动手尝试.通过本讲知识的学习,让同学们了解不同图形的分割、拼合、剪拼的方法,锻炼同学们的平面想象能力以及增强学生的动手操作能力.把一个几何图形按某种要求分成几个图形,就叫做图形的分割.反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合. 将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼. 我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.模块一、图形的分割【例 1】 用一条线段把一个长方形平均分割成两块,一共有多少种不同的分割法?BAO【考点】图形的分割与拼接 【难度】2星 【题型】解答 【解析】 怎样把一个图形按照规定的要求分割成若干部分呢?这就是图形的分割问题.按照规定的要求合理分割图形,是很讲究技巧的,多做这种有趣的训练,可以培养学生的创造性思维,发展空间观念,丰富想象,提高观察能力.这道题要求把长方形平均分割成两块,过长方形中心的任意一条直线都可以把长方形平均分割成两块,根据这点给出如下分法(如右图): ⑴ 做长方形的两条对角线,设交点为O⑵ 过O 点任作一条直线AB ,直线AB 将长方形平均分割成两块. 可见用线段平分长方形的分法是无穷多的.【答案】⑴ 做长方形的两条对角线,设交点为O知识点拨例题精讲4-2-3.图形的分割与拼接⑵ 过O 点任作一条直线AB ,直线AB 将长方形平均分割成两块. 用线段平分长方形的分法有无穷多种。
四年级奥数:几何问题介绍这份文档将向您介绍四年级奥数中的几何问题。
几何是数学中一个重要且有趣的领域,它研究空间、形状和位置之间的关系。
在四年级奥数中,几何问题可以帮助学生发展空间思维能力和解决问题的能力。
常见几何问题下面是几个常见的几何问题类型,涵盖了四年级奥数中的一些重要概念和技巧:图形辨认题这类问题要求学生辨认不同种类的图形,比如正方形、长方形、三角形和圆形等。
学生需要根据不同图形的特征来做出正确的选择。
图形分类题这种问题要求学生将一系列图形按照某种特定的属性进行分类。
学生需要观察图形的特征,并将它们分到正确的组别中。
图形拼凑题这类问题要求学生根据给定的图形碎片,将它们正确组合成特定的图形。
学生需要注意碎片之间的相对位置和方向,并合理地进行拼凑。
图形变换题这种问题要求学生观察给定的图形,并根据某种规律进行推断和变换。
学生需要根据规律进行图形的旋转、翻转和平移等操作,从而得出正确的结果。
图形面积和周长题这类问题要求学生计算图形的面积和周长。
学生需要了解各种图形的面积和周长计算公式,并应用到具体的问题中。
研究资源推荐以下是一些有用的研究资源,可以帮助四年级学生进一步提高在几何问题上的能力:- 教材和练册:使用与课程对应的教材和练册,按照章节进行研究和练。
教材和练习册:使用与课程对应的教材和练习册,按照章节进行学习和练习。
- 在线教育平台:利用在线教育平台上的几何课程和练资源,进行自主研究和巩固。
在线教育平台:利用在线教育平台上的几何课程和练习资源,进行自主学习和巩固。
- 视频教学:观看相关几何问题的视频教学,理解概念和解题方法。
视频教学:观看相关几何问题的视频教学,理解概念和解题方法。
- 练题库:使用几何练题库,进行大量练和反复训练。
练习题库:使用几何练习题库,进行大量练习和反复训练。
总结几何问题在四年级奥数中占有重要地位,通过解决这些问题,学生可以提高空间思维能力和解决问题的能力。
通过使用适当的学习资源,学生可以更好地掌握几何概念和解题技巧。
和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
【数量关系】大数=(和+差)÷2;小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。
1. 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?2. 长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。
3. 甲乙两班共有学生98人,如果从甲班调给乙班6人,两班就一样多了,求两班各有多少人?3. 有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。
4. 甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?5、手表的单价是闹钟的7倍,手表比闹钟贵108元,手表和闹钟各多少元?(先画出线段图,再解答)(5分)6、甲乙两车同时从同一地点向相同的方向出发,甲车每小时行40千米,乙车每小时行60千米,3小时后两车相距多少千米?(5分)7、小华家和小李家共存书960册,如果小华家送给小李家130册,则两家书的册数就同样多,小华和小李两家原来各有存书多少册?(先把已知条件在线段图上表示出来,再解答)(5分)求原来花坛的面积。
2. 红太阳广场原有一个长方形花圃,长40米,后来扩建时把长增加了20米,结果面积增加了400平方米。
这个花圃现在占地面积是多少平方米?(5分)3、实验小学原来有一个长方形操场,长60米,宽50米。
扩建校园时,操场的长增加了15米,宽同时增加了10米。
操场的面积增加了多少平方米?(先在图上画一画,再解答)(5分)4、有一块长54米、宽30米的长方形草坪,把这块草坪的长减少18米,宽应增加多少米时这块草坪的面积不变?5、一个长方形试验田,如果宽不变,长增加5米,它的面积就增加100平方米,如果长不变,宽增加5米,它的面积就增加150平方米。
找规律是解决数学问题的图形找规律一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.一般地说,在观察图形变化规律时,应抓住一下几点来考虑问题:⑴图形数量的变化;⑵图形形状的变化;⑶图形大小的变化;⑷图形颜色的变化;⑸图形位置的变化;⑹图形繁简的变化.对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.板块一数量规律【例 1】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【解析】横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不变.因为圆形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个圆形。
【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【解析】(方法一)横着看,每行三角形的个数依次减少,而正方形的个数依次增加,但每行图形的总个数不变.因为三角形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个三角形△.(方法二)竖着看,三角形由左而右依次减少,而正方形由左而右依次增加,三角形按照4、?、2、1的顺序变化,也可以看出“?”处应是三角形△.【例 2】观察下面的图形,按规律在“?”处填上适当的图形.【解析】本题中,几何图形的变化表现在数量关系上,图中黑三角形的个数从左到右依次增多,从(2)起,每一个格比前面一个格多两个黑三角形,所以,第(4)个方框中应填七个黑三角形.【例 3】观察图形变化规律,在右边补上一幅,使它成为一个完整系列。
【解析】观察发现,乌龟的顺序是:头、身→一只脚、背上一个点→两只脚、背上两个点→两只脚、一条尾、背上三个点→三只脚、一条尾、背上四个点,根据这个规律,最后一幅图应该是:→四只脚、一条尾、背上五个点.即:【例 4】观察图形变化规律,在右边再补上一幅,使它们成为一个完整的系列.【解析】第一格有8个圆圈,第二格有4个圆圈,第三格有2个圆圈,第四格有1个圆圈,第五格有半个圆圈.由此发现,前一格中的图减少一般,正好是后一格的图.所以第六格的图应该是第五格图的一半,即:板块二旋转、轮换型规律【例 5】相传古时候一位老人留在人间很多宝盒,里面装着世界上最宝贵的财富,但是并不是拥有宝盒都可以得到这笔财富,在宝盒的上面设置了密码,只有写出密码的人才会真正拥有这笔财富,聪明的你你能找出密码吗?○□☆△○□☆△△○□☆△○□☆☆△○□☆△○□()()()()()()()()【解析】有几种方法可以找出密码:(方法一)后面一排和前面一排比,上排的第一个图形移到最后,其他每个图形都向前移动了一格,变成了下一排.(方法二)斜着看,每一斜列的图形是一样的.所以密码就是:□☆△○□☆△○【例 6】观察下图的变化规律,画出丙图.【总结】旋转是数学中的重要概念,掌握好这个概念,可以提高观察能力,加快解题速度,对于许多问题的解决,也有事半而功倍的效果.【例 7】下面各种各样的娃娃头好看吗?认真观察你能找到它们排列的规律吗?根据规律把最后一个画出来.【例 8】观察图中所给出图形的变化规律,然后在空白处填画上所缺的图形.【例 9】琪琪特别喜欢蝴蝶,她用直尺和圆规在纸上画了9幅蝴蝶图,并用剪刀将它们一一剪下来.她将这9只纸蝴蝶摆在桌上,见下图1,她发现这些纸蝴蝶排列挺有规律,突然一阵风来,吹走了3只纸蝴蝶,见下图2.你能找出蝴蝶的排列规律,将图2的3只蝴蝶放入图1的空缺处吗?【解析】从已摆好的第一行和第一列来看,无论横看或竖看,同一行中3只蝴蝶的翅膀形状各不相同,翅膀上的斑点的形状也各不相同.根据这个规律,剩下的3只蝴蝶图案的排列应该是:6号位置放图案C;8号位置放图案B;9号位置放图案A.【例 10】观察下列各组图的变化规律,并在“?”处画出相关的图形.(1)【解析】(1)这四个图形的变化规律是:每一个图形都是由其前一个图形顺时针旋转90°而得到的.见下面左图;(2)甲乙丙丁四个图形变化规律也类似,注意因为图形是由旋转而得到的,所以其中三角形、菱形的方向随旋转而变化,作图的时候要注意到这一点.丁图处的图形应是下面右图:【例 11】请你认真仔细观察,按照下面图形的变化规律,在“?”处画出合适的图形。
四年级下册小学奥数《图形推理》练习题及答案小学数学四年级下册奥数试题人教版试题下载试题预览四年级下册小学奥数《图形推理》练习题及答案一、填空1.观察下面这组图形的变化规律,在标号处画出相应的图形.2.下图是由9个小人排列的方阵,但有一个小人没有到位,请你从右面的6个小人中,选一位小人放到问号的位置.你认为最合适的人选是号.3.下图是用几何图形组成的小房子,请你根据组成的规律在标号处画出相应的图形.4.按规律填图.如果变成那么应变为5.按规律填画图.如果变成那么应变成6.观察给出图形的变化规律,按照这种规律,在空格中填上应有的图形.7.请观察下图中已有图形的规律,并按这一规律在空白处填出图形.△ ○○ △○ △ □8.观察下图的变化规律,在空白处填上适当的图形.9.下图的排列规律你发现了吗?请你根据这一规律,把第3幅图填出来.10.下图的变化很多,请你认真仔细地观察,画出第四幅图的答案.二、解答题11.正四面体分别写有1、2、3、4四个数字.现在有三个四面体,请问哪一个和其它两个不同?图(1) 图(2) 图(3)12.“兵”、“马”、“卒”如图所示占“田”字的四个小格,把它们不停的变换位置,第一次上下两排交换,第二次在第一次交换后左右两列交换,第三次再上下两排交换,第四次再左右两列交换……这样交换二十次位置后,“马”在几号小格内?1 2 车马兵卒卒兵3 4 兵卒车马马车13.在下面图形中找出一个与众不同的.(1) (2) (3) (4) (5)14.依照下面图中所给图形的变化规律,在空格中填图.---------------答案----------------------1. 这道题中的每一个图形是由里外两部分组成的,我们分开来看.先看外面的图形.外面的图形都是由△、□、○组成,并每一横行(或每一竖行)中都没有重复的图形.这样我们可以先确定①、②、③外面的图形.通过题目中给出的图形,我们不能确定出③的外部图形,因为不论③所在的横行还是③所在的竖行都只给出1个图形,所以我们应先确定出①和②的外部图形. ①所在的横行中只有○和△,所以①的外部图形是□,②所在的竖行只有△和○,所以②的外部图形也是□,③所在的横行只有□和○,所以③的外部图形是△.然后按照这种方法确定内部图形,可知①的内部图形是□,②的内部图形是△,③的内部图形是○,形状确定好以后,我们还要注意各个图形的内部图形是有不同颜色的,分别由点状、斜线和空白三种组成,确定的方法和确定形状是完全相同的,请你自己把三个图的颜色确定出来.最后①、②、③应分别为:①②③2. 仔细观察,可发现图中小人的排列规律:即每行(列)的小人“手臂”(向上、水平、向下).“身腰”(三角形矩形、半圆),及“脚”(圆脚、方脚、平脚)各不相同.从中可知问号处的小人应是向上伸臂.矩形腰,圆脚的小人.即最合适的人选是6号.3. 这道题同(1)卷解答题第4题分析完全相同. ①、②、③图形分别如下:4. 第1行图形由左向右变化的规律是左右颠倒,上下颠倒.(或旋转),然后将移到上面的图形以中线为对称轴做出另一半图形.根据这个变化规律,请你做出要求的图形.答案应为:5. 分析:先应找出变化的规律,然后再依规律,在空白处填画所缺的图形.从题图的第一行可以看到,当左边的图形变化成右边的图形时,图形外部的圆变为图形的下半部分,且圆变成半圆,白色变成灰色(画有斜线).也就是说,在变化过程中,原来图形的外部部分有形状、位置、颜色这三个方面的变化.再看原图形的内部部分:中间的灰色正方形变到了上半部分(位置变),成了白色的(颜色变化)斜放着的正方形(角度变化).根据这些规律可以知道,空白处的图形其下部分是由左边图形的外部大正方形变化而成的,半个大正方形,颜色为灰色;上半部分是由左边图形的中间部分变化而成的一个白色、正放着的小正方形,如图.解:在空白处的图形如图所示.6. 观察这道题给出的八个图,形状都是箭,这使我们可以肯定空格处的图形也是箭.在这组图中,发生变化的有两点:一是箭的方向,二是箭尾的“羽毛”.首先我们看横行(从左到右),箭的方向是顺时针依次旋转得到的,所以空格处的箭应向上.再看箭尾的“羽毛”,每一行也是依次减少一对,所以空格处的箭箭笔没有“羽毛”.所以空格的图形为:7. 在这幅图中,都是△、○、□,所以我们可以确定空白处也应是△、○、□,中的一种.通过观察每一行,又可以发现每一行都没有重复的图形,这时,我们就可以根据这个规律填出空白处的图形了.第一横行中有△、○,少□,所以空白处应为□.第二横行中也有△、○,所以空白处也为□.所以,最后这幅图应为:△ □ ○□ ○ △○ △ □8. 这组图形不变的有两点,外面是一个大正方形,里面是一个小正方形.所以空白处也应是一个大正方形里面有一个小正方形.变化的有三点:一是大正方形一条对角线的方向.第1个图形是连接右上角和左下角,第2个图形是连接左上角和右下角,第4个图形还是连接左上角和右下角.可见对角线的方向是交替变化的,所以空白处的对角线应是连接右上角左下角的.二是圈住大正方形和小正方形的方形的位置.通过观察可得,它是按顺时针依次旋转得到下一图形的.所以空白处应在右上角.三是阴影部分的位置.阴影部分是按照逆时针方向依次旋转得到的,所以空白处的阴影部分应在小正方形的左上角.这样,我们就可以得到空白处的图形了:9. 在这道题中,不变的是用三角形组成图形,变化的是三角形的个数的颜色.从第一幅图到第二幅图是在图形的上、左、右,三个方向上各加了一个三角形,而且第4幅图比第二幅各方向上多了2个三角形,可见第四幅应比第三幅每个方向上各多1个,第三幅比第二幅每个方向上各多1个.所以第三幅图的横排应有7个三角形,竖排有5个三角形.三角形的颜色是黑白相间的,所以最后第三幅图为:10. 在这道题中,变化较多,我们一方面一方面的分开来看.四个图形的位置.四个图形是按照顺时针旋转的.所以第四幅图内右上角应为三角形,右下角应为半圆形,左下角应为圆形,左上角应为正方形.圆形阴影部分位置的变化.圆形的阴影部分是按顺时针方向依次旋转得到的,所以第四幅图中圆形阴影部分应在圆形的左上角.③正方形的阴影部分位置的变化.正方形的阴影部分是按逆时针方向依次旋转得到的,所以第四幅图中正方形的阴影部分应在它的上方.④三角形的方向变化.三角形是按逆时针方向依次旋转得到的,所以第四幅图中三角形应向右.⑤半圆形的方向变化.半圆形也是逆时针方向依次旋转得到的,所以第四幅图中半圆形向右.通过这样的分析,我们得到了第四幅图的画法:11. 图(1)和图(2)的底面号码都是3.把图(3)向左旋转,也把3做为底面,变为:将其它三面的号码按顺时针方向排起来,图(1)应为图(2)应为图(3)应为 .由此可见图(1)和图(2)的顺序是一样的,图(3)和其它两个不同.12. 因为题目中只是问“马”所在的位置,所以我们只要考虑“马”的位置变化规律就可以了.“马”最开始在2号位置,我们记做②,那么变化规律为: ②④③①②……很容易看出,每交换一次位置,“马”就按顺时针方向转动一格,所以每交换四次,“马”就可以回到原地.因为204=5正好整除,说明“马”正好转了5圈回到原地.所以交换二十次位置后,“马”仍在2号小格内.13. 分析:很容易看出题目图中(1)逆时针旋转就是(4),但是这样一来,(2)、(3)、(5)都与它们不同了.题目上要求找出一个。
四年级奥数之方阵问题知识概要方阵可以分为实心方阵和空心方阵。
计算组成实心方阵、空心方阵的物体的个数是主要的方阵问题。
方阵的基本特点是:方阵中,里一层总比外一层的一边少2个物体,里一层物体的个数一定比个一层物体总个数少8个。
实心方阵中,物体个数=最外层的一边个数×最外层一边的个数;(每边数—1)×4=每层数;每层数÷4+1=每边数空心方阵中物体的个数=(最外层一边的个数—层数)×层数×41、有一个正方形的稻田,四个角上都放1个稻草人,如果每边放5个,四边共放多少个稻草人?2、有围棋子若干,恰好可以排成每边10个的正方形,棋子总数多少个?3、有一个正方形池塘,四个角上都栽1棵树,一共栽了28棵树,那么每边栽多少棵?4、同学们排成一个两层空心方阵,外层每边8人,这个方阵一共有多少人?5、把若干个棋子摆成一个三层的空心方阵,最外层每边12个棋子,求这个方阵共有多少个棋子?6、同学们在军训时排成了一个由204人组成的三层空心方阵,求最外面一层每边有多少人?7、某小学举行运动会,同学们排成正方形队列参加团体操表演。
如果在这个正方形队列中减少一行一列,则要减少15人,问参加团体操表演的有多少同学?8、小刚在用棋子摆好的实心阵上又填了17枚棋子,使它的横竖各增加一排,成了大一点的实心方阵,求原来实心方阵有多少枚棋子?9、同学们在军训时,进行队列表演,由于场地有限,在原来的正方形队列中,横竖各减少一排,一共去掉了21名同学原来参加队列表演的有多少人?10、运动会上,在正方形操场的四周都插上彩旗,四个角上都插一个,每边插12个,那么一共插多少个?11、四年级同学排成了一个每边10人的中空方阵,共2层,求这个方阵总人数?12、在儿童公园的一次菊花展上,用120盆菊花摆成一个三层空心方阵,这个方阵最外层每边有多少盆花?13、一个中空方阵的队列,最外层每边18人,最内层每边10人。
学科培优 数学“直线型面积计算”学生姓名 授课日期 教师姓名授课时长知识定位本讲讲解已经学过的几种基本平面几何图形:正方形、长方形、三角形、平行四边形、梯形等的相关面积计算方法,是几何问题中的常见常考内容。
知识梳理一、 基本平面图形的计算公式【授课批注】在复习学校所学基本面积公式的同时也顺带复习周长的公式,这些知识点在具体题目中都可能用到。
二、 重要模型模型一:同一三角形中,相应面积与底的正比关系:bs 2s 1即:两个三角形高相等,面积之比等于对应底边之比。
S 1︰S 2 =a ︰b ;模型一的拓展: 等分点结论(“鸟头定理”)如图,三角形AED 占三角形ABC 面积的23×14=16模型二:任意四边形中的比例关系 (“蝴蝶定理”) ①S 1︰S 2=S 4︰S 3 或者S 1×S 3=S 2×S 4②AO ︰OC=(S 1+S 2)︰(S 4+S 3)模型三:梯形中比例关系(“梯形蝴蝶定理”)①S 1︰S 3=a 2︰b 2 ②S 1︰S 3︰S 2︰S 4= a 2︰b 2︰ab ︰ab ; ③S 的对应份数为(a+b )2【授课批注】因为四年级还没学过比例,所以在讲用比所表示的模型时可使用份数这个概念,学生更容易理解。
对于部分学有余力的学生可以先讲比例再直接引入上面的关系式。
【重点难点解析】1.等底或等高的三角形的面积关系2.长方形或平行四边形与同底等高三角形的面积关系 3. 三角形内不规则图形部分的面积计算【竞赛考点挖掘】1. 基本几何图形的面积计算2. 三角形中底和高与面积的关系3. 四边形对角线所分成的四个三角形的面积关系S 4S 3s 2s 1ba S 4S 3s 2s 1O DCB A例题精讲【试题来源】【题目】图中三角形ABC的面积是180平方厘米,D是BC的中点,AD的长是AE长的3倍, EF 的长是BF长的3倍.那么三角形AEF的面积是多少平方厘米?【试题来源】【题目】如图,把四边形ABCD的各边都延长2倍,得到一个新四边形EFGH如果ABCD的面积是5平方厘米,则EFGH的面积是多少平方厘米?【试题来源】【题目】图中的四边形土地的总面积是52公顷,两条对角线把它分成了4个小三角形,其中2个小三角形的面积分别是6公顷和7公顷.那么最大的一个三角形的面积是多少公顷?【试题来源】【题目】如图16-4,已知.AE=15AC,CD=14BC,BF=16AB,那么DEFABC三角形的面积三角形的面积等于多少?【试题来源】【题目】如图,长方形ABCD的面积是2平方厘米,EC=2DE,F是DG的中点.阴影部分的面积是多少平方厘米?【试题来源】【题目】如图,已知D是BC中点,E是CD的中点,F是AC的中点.三角形ABC由①~⑥这6部分组成,其中②比⑤多6平方厘米.那么三角形ABC的面积是多少平方厘米?【试题来源】【题目】左下图是一个各条边分别为5厘米、12厘米、13厘米的直角三角形.如右下图,将它的短直角边对折到斜边上去与斜边相重合,那么右下图中的阴影部分(即未被盖住的部分)的面积是多少平方厘米?习题演练【试题来源】【题目】如图,在一个梯形内有两个三角形的面积分别为10与12,已知梯形的上底长是下底长的23.那么余下阴影部分的面积是多少?【试题来源】【题目】图中ABCD是梯形,三角形ADE面积是1.8,三角形ABF的面积是9,三角形BCF的面积是27.那么阴影部分面积是多少?【试题来源】【题目】如图,梯形ABCD的上底AD长为3厘米,下底BC长为9厘米,而三角形ABO的面积为12平方厘米.则梯形ABCD的面积为多少平方厘米?【试题来源】【题目】如图,BD,CF将长方形ABCD分成4块,红色三角形面积是4平方厘米,黄色三角形面积是6平方厘米.问:绿色四边形面积是多少平方厘米?【试题来源】【题目】如图,平行四边形ABCD周长为75厘米.以BC为底时高是14厘米;以CD为底时高是16厘米.求平行四边形ABCD的面积.【试题来源】【题目】如图,一个正方形被分成4个小长方形,它们的面积分别是110平方米、15平方米、3 10平方米和25平方米.已知图中的阴影部分是正方形,那么它的面积是多少平方米?【试题来源】【题目】图中外侧的四边形是一边长为10厘米的正方形,求阴影部分的面积.【试题来源】【题目】如图,长方形被其内的一些直线划分成了若干块,已知边上有3块面积分别是13,35,49.那么图中阴影部分的面积是多少?【试题来源】【题目】在右图的△ABC中,CE=2AE,BD=3DC,已知△DEC的面积是4cm2,求△ABC的面积。
四年级奥数之图形的面积问题
1. 人民路小学操场长90米,宽45米,改选后,长增加10米,宽增加收入5米,现在操场面积比原来增加了多少平方米? 2. 有一块长方形的木板,长22分米,宽8分米,如果长和宽分别减少10分米,3分米,面积比原来减少多少平方分米? 3. 一块长方形铁板,长18公分,宽13分米,如果长和宽各减少2分米,面积比原来减少多少平方分米? 4. 一块长方形地,长是80米,宽是45米,如果把宽增加5米,要使面积不变,长应减少多少米? 5.一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米,如果长不变,宽减少3米,那么它的面积减少36平方米,这个长方形原来的面积是多少平方米? 6.一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米,如果长不变,宽增加4米,那么它的面积增加60平方米,这个长方形原来的面积是多少平方米? 7.一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米,如果长不变,宽增加3米,那么它的面积增加48平方米,这个长方形原来的面积是多少平方米? 8.一个长方形,如果它的长减少3米,或它的宽减少2米,那么它的面积都减少36平方米,求这个长方形原
来的面积?
9.右图是一个养禽专业户用一段长16米的篱笆围成的
一个长方形养鸡场,求占地面积有多大。
4米
10.用56米长的木栏围成长或宽是20米的长方形,其中
一边利用围墙,怎样才能使围成的面积最大?
11.街心花园中一个正方形的花坛四周有1米宽的水泥
路,如果水泥路的总面积是12平方米,中间花坛的面
积是多少平方米?
12.四个完成相同的长方形和一个小正方形拼成一个大
正方形(如图)。大正方形的面积是64平方米,小正方
形的面积是4平方米,长方形的短边是多少米?
13.已知大正方形比小正方形的边长多4厘米,大正方形
的面积比小正方形面积大96平方厘米(如下图)。问大、
小正方形的面积各是多少?
4
96
4
96平方厘米
14.一块正方形的钢板,先截去宽5分米的长方形,又截
去宽8分米的长方形:(如图)面积比原来的正方形减少
181平方分米,原正方形的边长是多少?
8
5
15.一个正方形一条边减少6分米,另一条边减少10分
类后变为一个长方形,这个长方形的面积比正方形的面
积少260平方米,求原来正方形的边长?
16.一个长方形的木板,如果长减少5分米,宽减少2分
米,那么它的面积就减少66平方分米,这时剩下的部
分恰好是一个正方形,求原来长方形面积。
17.一块正方形的玻璃,长、宽都截去8厘米后,剩下的
正方形比原来少448平方厘米,这块正方形玻璃原来的
面积是多大?