第十讲 解三角形
△ABC中:
(1)A+B+C=
(2)A B C C
2
2 22
(3)A B a b sin A sin B
C
b
a
B
A
c
正弦定理:
a b c 2R sin A sin B sin C
a 2R sin A b 2R sin B
c 2R sin C
cos AcosC sin Asin C cos B 1 2sin2 B cos AcosC sin AsinC cos B 1 2sin AsinC
cos AcosC sin AsinC cos B 1
cos(A C) cos B 1 1
例9、如果△ABC内接于半径为的圆,且 2R(sin 2 A sin 2 C) ( 2a b) sin B, 求△ABC的面积的最大值。
∴
AB ,
2
即 A B0
2
2
∴ sin A sin( B)即 sin A cos B
2
同理 sin B cosC ,sin C cos A
∴ sin A sin B sin C cosA cosB cosC
例2、在△ ABC中,若b 2a sin B
则 A 等于( )
.
∴ AC BC
2( 6 2)(sin A sin B) 4( 6 2)sin A B cos A B
2
2
AB
B
4cos 2 4, (AC BC)max 4
C
A
例4、在△ABC中,若 a cos A bcosB c cosC,
则△ABC的形状是什么?
解: acos A bcos B ccosC,sin Acos A sin Bcos B sinC cosC