Z 重难聚焦 HONGNANJUJIAO
D 典例透析 IANLITOUXI
题型一 题型二
测量两个不可到达的点之间的距离问题 【例 2】 如图,隔河看到两个目标 A,B,但均不能到达,在岸边选取 相距 3 km 的������, ������两点, 并测得∠ACB=75°,∠BCD=45°,∠ADC= 30°,∠ADB=45°(A,B,C,D 在同一平面内),求两个目标 A,B 之间的距 离.
反思如图,不可到达的A,B是地面上两点,要测量A,B两点之间的距 离,步骤是:
(1)取基线CD; (2)测量CD,∠ACB,∠BCD,∠ADC,∠BDA; (3)在△ACD中,解三角形得AC;在△BCD中,解三角形得BC; (4)在△ABC中,利用余弦定理得 AB= ������������2 + ������������2-2������������·������������·cos∠������������������ .
且∠
ADB=30°,∠BDC=30°,∠DCA=60°,∠ACB=45°,如图所示,求蓝方这
两支精锐部队之间的距离.
解法一∵∠ADC=∠ADB+∠CDB=60°,
又∠ACD=60°,∴∠DAC=60°.
∴AD=CD=AC=
3 2
������.
在△BCD 中,∠DBC=180°-30°-105°=45°.
题型一 题型二
目标导航
Z 知识梳理 HISHISHULI
Z 重难聚焦 HONGNANJUJIAO
D 典例透析 IANLITOUXI
反思如图,设A(可到达),B(不可到达)是地面上两点,要测量A,B两 点之间的距离,步骤是:
(1)取基线AC(尽量长),且使AB,AC不共线;