结晶性塑料
- 格式:doc
- 大小:54.50 KB
- 文档页数:4
中英名称中文名称(聚丙烯)[1]英文名称Polypropylene性能特性(1)物理性能:聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0.90~.091g/cm3,是目前所有塑料中最轻的品种之一。
它对水特别稳定,在水中24h的吸水率仅为0.01%,分子量约8~15万之间。
成型性好,但因收缩率大,厚壁制品易凹陷。
制品表面光泽好,易于着色。
(2)力学性能:聚丙烯的结晶度高,结构规整,因而具有优良的力学性能,其强度和硬度、弹性都比HDPE高,但在室温和低温下,由于本身的分子结构规整度高,所以冲击强度较差,分子量增加的时候,冲击强度也增大,但成型加工性能变差。
PP最突出的性能就是抗弯曲疲劳性,如用PP注塑一体活动铰链,能承受7×107次开闭的折迭弯曲而无损坏痕迹,干摩擦系数与尼龙相似,但在油润滑下,不如尼龙。
(3)热性能:PP具有良好的耐热性,熔点在164~170℃,制品能在100℃以上温度进行消毒灭菌,在不受外力的,150℃也不变形。
脆化温度为-35℃,在低于-35℃会发生脆化,耐寒性不如聚乙烯。
(4)化学稳定性:聚丙烯的化学稳定性很好,除能被浓硫酸、浓硝酸侵蚀外,对其它各种化学试剂都比较稳定,但低分子量的脂肪烃、芳香烃和氯化烃等能使PP软化和溶胀,同时它的化学稳定性随结晶度的增加还有所提高,所以聚丙烯适合制作各种化工管道和配件,防腐蚀效果良好。
(5)电性能:聚丙烯的高频绝缘性能优良,由于它几乎不吸水,故绝缘性能不受湿度的影响。
它有较高的介电系数,且随温度的上升,可以用来制作受热的电气绝缘制品,它的击穿电压也很高,适合用作电气配件等。
抗电压、耐电弧性好,但静电度高,与铜接触易老化。
(6)耐候性:聚丙烯对紫外线很敏感,加入氧化锌、硫代丙酸二月桂酯、碳黑或类似的乳白填料等可以改善其耐老化性能。
PP聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0.90~0.91g/cm3,是目前所有塑料中最轻的品种之一。
PPS工程塑料1: 聚苯硫醚英文名称: Polyphenylene sulfide,简称PPS. 中文名称: 聚苯硫醚,是一种新型高性能热塑性树脂聚苯硫醚是一种结晶性的聚合物。
未经拉伸的纤维具有较大的无定形区(结晶度约为5%),在125℃时发生结晶放热,玻璃化温度为93℃;熔点281℃。
拉伸纤维在拉伸过程中产生了部分结晶,(增加至30%),如在130—230℃温度下对拉伸纤维进行热处理,可使结晶度增加到60—80%。
因此,拉伸后的纤维没有明显的玻璃化转变或结晶放热现象,其熔点为284℃。
随着拉伸热定形后结晶度的提高,纤维的密度也相应增大,由拉伸前的1.33g/cm3到拉伸后的1.34g/cm3,经热处理后则可达1.38g/cm3。
PPS是一种综合性能优异的特种工程塑料。
PPS具有优良的耐高温、耐腐蚀、耐辐射、阻燃、均衡的物理机械性能和极好的尺寸稳定性以及优良的电性能等特点,被广泛用作结构性高分子材料,通过填充、改性后广泛用作特种工程塑料。
同时,还可制成各种功能性的薄膜、涂层和复合材料,在电子电器、航空航天、汽车运输等领域获得成功应用。
近年来,国内企业积极研发,并初步形成了一定的生产能力,改变了以往完全依赖进口的状况。
但是,中国PPS技术还存在产品品种少、高功能产品少、产能急待扩大等问题,这些将是PPS下一步发展的重点。
特点:具有机械强度高、耐高温、高阻燃、耐化学药品性能强等优点;具有硬而脆、结晶度高、难燃、热稳定性好、机械强度较高、电性能优良等优点。
PPS是工程塑料中耐热性最好的品种之一,热变形温度一般大于260度、抗化学性仅次于聚四氟乙烯,流动性仅次于尼龙。
此外,它还具有成型收缩率小(约0.08%),吸水率低(约0.02%),防火性好、耐震动疲乏性好等优点。
比重:1.36克/立方厘米成型收缩率:0.7%成型温度:300-330℃ PPS塑料的物料性能1、电绝缘性(尤其高频绝缘性)优良,白色硬而脆,跌落于地上有金属响声,透光率仅次于有机玻璃,着色性耐水性,化学稳定性良好。
五大通用塑料聚乙烯(PE)聚乙烯是塑料工业中产量最高的品种。
聚乙烯是不透明或半透明、质轻的结晶性塑料,具有优良的耐低温性能(最低使用温度可达-70 ~ -100℃),电绝缘性、化学稳定性好,能耐大多数酸碱的侵蚀,但不耐热。
聚乙烯适宜采用注塑、吹塑、挤塑等方法加工。
聚丙烯(PP)聚丙烯是由丙烯聚合而得的热塑性塑料,通常为无色、半透明固体,无臭无毒,密度为0.90 ~ 0.919克/厘米3,是最轻的通用塑料,其突出优点是具有在水中耐蒸煮的特性,耐腐蚀,强度、刚性和透明性都比聚乙烯好,缺点是耐低温冲击性差,易老化,但可分别通过改性和添加助剂来加以改进。
聚丙烯的生产方法有淤浆法、液相本体法和气相法3种。
聚氯乙稀(PVC)聚氯乙稀是由氯乙烯聚合而得的塑料,通过加入增塑剂,其硬度可大幅度改变。
它制成的硬制品以至软制品都有广泛的用途。
聚氯乙稀的生产方法有悬浮聚合法、乳液聚合法和本体聚合法,以悬浮聚合法为主。
聚苯乙烯(PS)通用的聚苯乙烯是苯乙烯的聚合物,外观透明,但有发脆的缺点,因此,通过加入聚丁二烯可制成耐冲击性聚苯乙烯(HTPS)。
聚苯乙烯的主要生产方法有本体聚合、悬浮聚合和溶液聚合。
ABSABS树脂是丙烯腈-丁二烯-苯乙烯三种单体共同聚合的产物,简称ABS三元共聚物。
这种塑料由于其组分A(丙烯腈)、B(丁二烯)和S(苯乙烯)在组成中比例不同,以及制造方法的差异,其性质也有很大的差别。
ABS适合注塑和挤压加工,故其用途也主要是生产这两类制品。
PE是聚乙烯塑料,化学性能稳定,通常制作食品袋及各种容器,耐酸、耐碱及盐类水溶液的侵蚀,但不宜用强碱性洗涤剂擦拭或浸泡。
PP是聚丙烯塑料,无毒、无味,可在100℃的沸水中浸泡不变形、不损伤,常见的酸、碱有机溶剂对它几乎不起作用。
多用于食具。
PS是聚苯乙烯塑料,容易着色、透明性好,多用于制作灯罩、牙刷柄、玩具、电器零部件。
它耐酸碱腐蚀,但易溶于氯仿、二氯乙烯、香蕉水等有机溶剂。
本文摘自再生资源回收-变宝网()关于塑料结晶性、收缩率和流动性的解析一、结晶性1、热塑性塑料按其冷凝时无出现结晶现象可划分为结晶型塑料与非结晶型(又称无定形)塑料两大类。
所谓结晶现象即为塑料由熔融状态到冷凝时,分子由独立移动,完全处于无次序状态,变成分子停止自由运动,按略微固定的位置,并有一个使分子排列成为正规模型的倾向的一种现象。
2、作为判别这两类塑料的外观标准可视塑料的厚壁塑件的透明性而定,一般结晶性料为不透明或半透明(如POM等),无定形料为透明(如PMMA等)。
但也有例外情况,如聚四甲基戍烯为结晶型塑料却有高透明性,ABS为无定形但却并不透明。
3、在模具设计及选择注塑机时应注意对结晶型塑料时,料温上升到成型温度所需的热量多,要用塑化能力大的设备。
二、收缩率影响热塑性塑料成型收缩的因素如下:1、塑料品种热塑性塑料成型过程中由于还存在结晶化形起的体积变化,内应力强,冻结在塑件内的残余应力大,分子取向性强等因素,因此与热固性塑料相比则收缩率较大,收缩率范围宽、方向性明显,另外成型后的收缩、退火或调湿处理后的收缩率一般也都比热固性塑料大。
2、塑件特性成型时熔融料与型腔表面接触外层立即冷却形成低密度的固态外壳。
由于塑料的导热性差,使塑件内层缓慢冷却而形成收缩大的高密度固态层。
所以壁厚、冷却慢、高密度层厚的则收缩大。
另外,有无嵌件及嵌件布局、数量都直接影响料流方向,密度分布及收缩阻力大小等,所以塑件的特性对收缩大小、方向性影响较大。
3、进料口形式、尺寸、分布这些因素直接影响料流方向、密度分布、保压补缩作用及成型时间。
直接进料口、进料口截面大(尤其截面较厚的)则收缩小但方向性大,进料口宽及长度短的则方向性小。
距进料口近的或与料流方向平行的则收缩大。
4、成型条件模具温度高,熔融料冷却慢、密度高、收缩大,尤其对结晶料则因结晶度高,体积变化大,故收缩更大。
模温分布与塑件内外冷却及密度均匀性也有关,直接影响到各部分收缩量大小及方向性。
塑料注塑性能工艺概括一、注塑性能1. 结晶性,收缩率分子结构简单、对称性高的聚合物从高温向低温转变时都能结晶,如聚乙烯,聚丙烯,聚偏二氯乙烯,聚四氟乙烯等;一些分子链节较大,但分子之间作用力也很大的聚合物也可以结晶,如聚酰胺,聚甲醛等;分子链上有很大侧基的聚合物一般很难结晶,如聚苯乙烯,聚醋酸乙烯酸,聚甲基丙烯酸甲酯等;分子链刚性大的聚合物也不能结晶,如聚砜,聚碳酸酯,聚苯醚等。
结晶聚合物一般都具有耐热性、非透明性和较高的强度。
结晶程度越高,体积收缩越大(收缩率越大),易因收缩不均而引起翘曲。
结晶必须发生在塑料的玻璃化温度之上,熔点之下。
一般没有明确的熔点,对称性高的熔点高,对称性低的熔点低。
冷却速度提高以及模温降低,结晶度降低,密度减小。
切应力和剪切速率增大,取向程度将提高,结晶速度和结晶度增大;但作用时间太长,变形松弛使取向结构减小或消失,结晶速度又会减小。
压力增大,聚合物结晶温度将提高,结晶度将增大,密度增大。
聚合物沿料流方向收缩大,强度高;与料流垂直方向收缩小,强度低。
厚度越大,收缩也越大。
塑料品种各种塑料都有其各自的收缩范围,同种类塑料由于填料、分子量及配比等不同,则其收缩率及各向异性也不同。
塑件特性塑件的形状、尺寸、壁厚、有无嵌件,嵌件数量及布局对收缩率大小也有很大影响。
模具结构模具的分型面及加压方向,浇注系统的形式,布局及尺寸对收缩率及方向性影响也较大。
预热情况、成形温度、成形压力、保持时间、填装料形式及硬化均匀性对收缩率及方向性都有影响。
成形时由于塑件各部位密度及填料分布不匀,故使收缩也不匀。
产生的收缩差使塑件易发生翘曲、变形、裂纹结晶塑料(收缩率)非结晶塑料(收缩率)PE(1.5~3.5) PTEE() PS(0.5~0.8) PPO(0.5~1.0) EP(0.1~0.5) 未知(收缩率)MF(0.5~1.5) 塑料名称 PA1010 塑料制品壁厚/mm 1 0.5~1 PP HDPE POM 1~2 1.5~21~1.5 2~2.5 1.5~2 2~2.6 105~120% 2 3 1.1~1.3 4 2~2.5 5 1.8~2 2.5~3 - 2.5~3.5 120~140% 110~150% 2~2.5 6 7 8 >8 高度/水平的收缩率百分比 PP( 1.0~2.5) PVDF() PSF(0.4~0.8) UF(0.6~1.4) PA() PET(2.0~2.5) POM(1.2-3.0) PBT(1.3~2.4) PC(0.3~0.8) PF(0.4~0.9) PMMA(0.2~0.8) 硬PVC(0.6~1.5) ABS(0.4~0.7) 2.5~4 70% 1.4~1.62. 各个转化温度,热敏性(热降解)1热降解:由于聚合物在高温下受热时间过长(或浇口截面过小,剪切作用大时)而引起的变色降解反应。
塑料结晶温度-概述说明以及解释1.引言1.1 概述塑料结晶温度是指塑料在一定条件下,通过热处理或冷却过程使分子有序排列而发生结晶的温度。
塑料材料的结晶过程是其在加热时分子链的有序排列,使其形成规则的结晶区域,并最终达到熔融状态。
塑料结晶温度的研究对于理解塑料材料的热处理过程、改善塑料制品的性能,以及指导塑料制品的加工工艺具有重要意义。
塑料的结晶温度受多种因素的影响,包括塑料分子的化学结构、分子链的长短和支化程度、分子间力的作用等。
对于不同的塑料材料,其结晶温度可能会有较大的差异。
因此,准确测定塑料的结晶温度对于研究和开发新型塑料材料以及优化塑料制品的性能至关重要。
目前,有许多方法被用于测定塑料的结晶温度,包括差示扫描量热法(DSC)、热机械分析法(TMA)、X射线衍射法等。
这些方法可以通过测量塑料材料的热性能、结构变化和晶体形态来确定其结晶温度。
同时,结晶温度的测定也可以借助计算机模拟和数值模型来预测和优化。
塑料结晶温度的应用领域广泛。
在塑料制品的加工工艺中,了解塑料的结晶温度有助于选择合适的加工温度和冷却条件,从而提高塑料制品的成品率和质量。
此外,塑料结晶温度还在塑料改性、塑料复合材料和塑料可降解材料等领域发挥着重要作用。
随着对塑料结晶温度研究的深入,我们可以预期在未来的研究中,人们将探索更多的塑料结晶温度测定方法、深入理解塑料结晶的机理以及发展更具性能优越的塑料材料。
1.2文章结构文章1.2 文章结构:本文将按照以下结构进行叙述:第一部分是引言部分,主要对本文的研究领域进行概述,介绍塑料结晶温度的背景和重要性。
同时,还将呈现文章的整体结构安排和目的,为读者提供一个清晰的导引。
第二部分是正文部分,将详细讨论塑料结晶温度的定义、影响因素、测定方法和应用领域。
在2.1节,将解释塑料结晶温度的定义,并探讨其在塑料工业中的重要性。
在2.2节,将分析影响塑料结晶温度的因素,包括塑料的分子结构、热处理条件等。
结晶塑料与非结晶塑料的区别一、什么是结晶性塑料?结晶性塑料有明显的熔点,固体时分子呈规则排列。
规则排列区域称为晶区,无序排列区域称为非晶区,晶区所占的百分比称为结晶度,通常结晶度在80%以上的聚合物称为结晶性塑料。
常见的结晶性塑料有:聚乙烯PE、聚丙烯PP、聚甲醛POM、聚酰胺PA6、聚酰胺PA66、PET、PBT等。
二、结晶对塑料性能的影响1)力学性能结晶使塑料变脆(耐冲击强度下降),韧性较强,延展性较差。
2)光学性能结晶使塑料不透明,因为晶区与非晶区的界面会发生光散射。
减小球晶尺寸到一定程式度,不仅提高了塑料的强度(减小了晶间缺陷)而且提高了透明度,(当球晶尺寸小于光波长时不会产生散射)。
3)热性能结晶性塑料在温度升高时不出现高弹态,温度升高至熔融温度TM 时,呈现粘流态。
因此结晶性塑料的使用温度从Tg (玻璃化温度)提高到TM(熔融温度)。
4)耐溶剂性,渗透性等得到提高,因为结晶分排列更加紧密。
三、影响结晶的因素有哪些?1)高分子链结构,对称性好、无支链或支链很少或侧基体积小的、大分子间作用力大的高分子容易相互靠紧,容易发生结晶。
2)温度,高分子从无序的卷团移动到正在生长的晶体的表面,模温较高时提高了高分子的活动性从而加快了结晶。
高射出压力和保压压力来控制结晶性塑料的结晶度。
4)形核剂,由于低温有利于快速形核,但却减慢了晶粒的成长,因此为了消除这一矛盾,在成型材料中加入形核剂,这样使得塑料能在高模温下快速结晶。
四、结晶性塑料对注塑机和模具有什么要求1)结晶性塑料熔解时需要较多的能量来摧毁晶格,所以由固体转化为熔融的熔体时需要输入较多的热量,所以注塑机的塑化能力要大,最大注射量也要相应提高。
2)结晶性塑料熔点范围窄,为防止射咀温度降低时胶料结晶堵塞射咀,射咀孔径应适当加大,并加装能单独控制射咀温度的发热圈。
3)由于模具温度对结晶度有重要影响,所以模具水路应尽可能多,保证成型时模具温度均匀。
4)结晶性在结晶过程中发生较大的体积收缩,引起较大的成型收缩率,因此在模具设计中要认真考虑其成型收缩率5)由于各向异性显著,内应力大,在模具设计中要注意浇口的位置和大小,加强筋和位置与大小,否则容易发生翘曲变形,而后要靠成型工艺去改善是相当困难的。
赛钢是聚缩醛的简称聚缩醛性质为结晶性热可塑性塑料,具明显熔点165~175℃,性质最接近金属,一般称其为塑钢优点1、具高机械强度和刚性2、最高的疲劳强度3、环境抵抗性、耐有机溶剂性佳4、耐反覆冲击性强5、广泛的使用温度范围(-40℃~120℃)6、良好的电气性质7、复原性良好8、具自已润滑性、耐磨性良好9、尺寸安定性优缺点1、加工过程若长时间高温下易起热分解2、无自熄性3、抗酸性差4、成形收缩率大用途电子电器:洗衣机、果汁机零件、定时器组件汽车:车把零件、电动窗零件工业零件:机械零件、齿轮、把手、玩具、螺杆更详细的资料和技术我这里也有,你可以发个信息给我白赛钢就是pom聚甲醛塑料.聚甲醛塑料是继尼龙之后发展的又一优良树脂品种,它是一种高密度、无侧链、高结晶必的线性聚合物,具有优良的综合性能。
一、物理性能:聚甲醛是一种表面光滑,有光泽的硬而致密的材料,淡黄或白色,结晶度高,着色性好,尺寸称定,吸水率极小。
二、机械性能:聚甲醛有着很高的硬度和钢性,具有高度抗蠕变和应力松驰能力,优良的耐磨性,自润滑性,而疲劳性,是其它工程塑料不能相比的。
三、热性能:聚甲醛有着较高的热变形温度,可在-40℃-104℃温度范围长期使用。
四、电性能:它的介质损耗和介电常数在很宽的频率和温度范围内变化很小,保持着良好的耐弧性。
五、化学性能:聚甲醛有着良好的耐溶剂、耐油类、耐弱酸、弱碱等性能。
聚甲醛具有优良的物理、机械、热和电性能,耐有机溶剂、耐磨、抗蠕变、耐疲劳等性能,广泛用于代替各种有色金属和合金制作汽车、机械、仪表、农机、化工零部件。
如齿轮、凸轮、轴承、衬套、垫圈、阀门、液体输运管道、把手及化工溶器等。
特别是在汽车工业上,大量用于制作万向轴、汽化器;在建筑上制作水龙头、农业喷器喷,农用喷雾器元件、录音录像磁带、磁带卷轴、照像器材及各种精密仪器的部件等。
结晶性塑料的定义:
结晶是指分子排列的规则,冷却后成为结晶构造。
一般塑料的结晶构造是由许多线状、细长的高分子化合物组成的集合体,依分子成正规排列的程度,称为结晶化程度(结晶度),亦谓每条分子只有本分排列整齐,所以结晶性树脂其实只有部分是结晶。
结晶部分占有的比例,即为结晶度。
而结晶化程度可用X线的反射来测量。
有机化合物的构造复杂,塑料构造更复杂,且分子链的构造(线状、毛球状、折迭状、螺旋状等)多变化,致其构造亦因成形条件不同而有很大的变化。
结晶度大的塑胶为结晶性塑料,分子间的引力易相互作用,而成为强韧的塑料。
为了要结晶化及规则的正确排列,故体积变小,成形收缩率及热膨胀率变大。
因此,若结晶性越高,则透明性越差,但强度越大。
结晶性塑料有明显熔点(Tm),固体时分子呈规则排列,强度较强,拉力也较强。
熔解时比容积变化大,固化后较易收缩,内应力不易释放出来,成品不透明,成形中散热慢,冷模生产后收缩较大,热模生产后收缩较小。
相对于结晶性塑料,另有一种为非结晶性塑料,其无明显熔点,固体时分子呈现不规则排列,熔解时比容积变大不大,固化后不易收缩,成品透明性佳,料温越高色泽越黄,成形中散热快,以下针对两者物性进行比较。
结晶性塑料的特性:
1,、分子在结晶构造中紧密的靠在一起,所以结构就更坚实。
密度、强度、刚度、硬度就增加,但透明度降低。
2、结晶性树脂在熔点温度时产生了急剧的比容下降,非结晶性树脂比容在熔点温度没有急剧改变。
比容是指单位质量的体积,单位是cm²/g。