数学实验_第二章
- 格式:doc
- 大小:29.00 KB
- 文档页数:3
(青岛版)义务教育课程标准实验教科书《数学》目录青岛版七年级上册第一章基本的几何图形1.1 我们身边的图形世界1.2 点、线、面、体1.3 线段、射线和直线1.4 线段的度量和比较第二章有理数2.1 生活中的正数和负数2.2 数轴2.3 相反数与绝对值第三章有理数的运算3.1 有理数的加法与减法3.2 有理数的乘法与除法3.3 有理数的乘方3.4 有理数的混合运算3.5 利用计算器进行简单的计算第四章数据的收集与简单统计图4.1 收集数据的方式4.2 数据的整理4.3 简单的统计图4.4 统计图的相互转化第五章代数式与函数的初步认识5.1 用字母表示数5.2 代数式5.3 代数式的值5.4 生活中的常量与变量5.5 函数的初步认识第六章整式的加减6.1 单项式与多项式6.2 同类项6.3 去括号6.4 整式的加减第七章数值估算7.1 生活中的数值估算7.2 近似数和有效数字7.3 估算的应用与调整第八章一元一次方程8.1 方程和方程的解8.2 一元一次方程8.3 等式的基本性质8.4 一元一次方程的解法8.5 一元一次方程的应用七年级下册第九章角9.1 角的表示9.2 角的比较9.3 角的度量9.4 对顶角9.5 垂直第十章平行线10.1 同位角10.2 平行线和它的画法10.3 平行线的性质10.4 平行线的判定第十一章图形与坐标11.1 怎样确定平面内点的位置11.2 平面直角坐标系11.3 直角坐标系中的图形11.4 函数与图象11.5 一次函数和它的图象第十二章二元一次方程组12.1 认识二元一次方程组12.2 向一元一次方程转化12.3 图象的妙用12.4 列方程组解应用题第十三章走进概率13.1 天有不测风云13.2 确定事件与不确定事件13.3 可能性的大小13.4 概率的简单计算第十四章整式的乘法14.1 同底数幂的乘法与除法14.2 指数可以是零和负整数吗14.3 科学计数法14.4 积的乘方与幂的乘方14.5 单项式的乘法14.6 多项式乘多项式第十五章平面图形的认识15.1 三角形15.2 多边形15.3 多边形的密铺15.4 圆的初步认识15.5 用直尺和圆规作图八年级上册第一章轴对称与轴对称图形1.1 我们身边的轴对称图形1.2 线段的垂直平分线1.3 角的平分线1.4 等腰三角形1.5 成轴对称的图形的性质1.6 镜面对称1.7 简单的图案设计第二章乘法公式与因式分解2.1 平方差公式2.2 完全平方公式2.3 用提公因式法进行因式分解2.4 用公式法进行因式分解第三章分式3.1 分式的基本性质3.2 分式的约分3.3 分式的乘法与除法3.4 分式的通分3.5 分式的加法与减法3.6 比和比例3.7 分式方程第四章样本与估计4.1 普查与抽样调查4.2 样本的选取4.3 加权平均数4.4 中位数4.5 众数4.6 用计算器求平均数第五章实数5.1 算术平方根5.2 勾股定理5.3 根号2是有理数吗5.4 由边长判定直角三角形5.5 平方根5.6 立方根5.7 方根的估算5.8 用计算器求平方根和立方根5.9 实数第六章一元一次不等式6.1 不等关系和不等式6.2 一元一次不等式6.3 一元一次不等式组八年级下册第七章二次根式7.1 二次根式及其性质7.2 二次根式的加减法7.3 二次根式的乘除法第八章平面图形的全等与相似8.1 全等形与相似形8.2 全等三角形8.3 怎样判定三角形全等8.4 相似三角形8.5 怎样判定三角形相似8.6 相似多边形第九章解直角三角形9.1 锐角三角比9.2 30°,45°,60°角的三角比9.3 用计算器求锐角三角比9.4 解直角三角形9.5 解直角三角形的应用第十章数据离散程度的度量10.1 数据的离散程度10.2 极差10.3 方差与标准差10.4 用科学计算器计算方差和标准. 第十一章几何证明初步11.1 定义与命题11.2 为什么要证明11.3 什么是几何证明11.4 三角形内角和定理11.5 几何证明举例11.6 反证法九年级上册第一章特殊四边形1.1 平行四边形及其性质1.2 平行四边形的判定1.3 特殊的平行四边形1.4 图形的中心对称1.5 梯形1.6 中位线定理第二章图形与变换2.1 图形的平移2.2 图形的旋转2.3 位似第三章一元二次方程3.1 一元二次方程3.2 用配方法解一元二次方程3.3 用公式法解一元二次方程3.4 用因式分解法解一元二次方程3.5 一元二次方程的应用第四章对圆的进一步认识4.1 圆的对称性4.2 确定圆的条件4.3 圆周角4.4 直线与圆的位置关系4.5 三角形的内切圆4.6 圆与圆的位置关系4.7 弧长及扇形面积的计算九年级下册第五章对函数的再探索5.1 函数与它的表示法5.2 一次函数与一元一次不等式5.3 反比例函数5.4 二次函数5.5 二次函数y=ax2图象和性质5.6 二次函数y=ax2+bx+c图象和性.5.7 确定二次函数的解析式5.8 二次函数的应用5.9 用图象法解一元二次方程第六章频率与概率6.1 频数与频率6.2 频数分布直方图6.3 用频率估计概率6.4 用树状图计算概率第七章空间图形的初步认识7.1 几种常见的几何体7.2 棱柱的侧面展开图7.3 圆柱、圆锥的侧面展开图第八章投影与视图8.1 从不同的方向看物体8.2 盲区8.3 影子和投影8.4 正投影8.5 物体的三视图11。
高等数学实验教材摘要:本实验教材旨在为高等数学实验课程提供全面而易于理解的指导,旨在帮助学生巩固和应用他们在课堂上学到的理论知识。
本教材包括多个实验项目,每个实验项目都涵盖了高等数学中的不同领域和概念。
每个实验项目都提供了详细的步骤说明和相关数学原理,以及对实验结果的分析和讨论。
第一章:导数与微分实验项目1:导数的基本性质本实验旨在帮助学生理解导数的概念和基本性质。
通过使用计算机软件或其他数学工具,学生将学会计算函数的导数,并观察导数与原函数之间的关系。
实验将涵盖极限、导数的定义和导数的运算法则。
其中包括常数函数、幂函数、指数函数和对数函数。
实验项目2:函数的图像与导数本实验将引导学生研究函数图像与导数之间的关系。
学生将通过绘制函数的图像,并计算函数的导数来观察图像的特征。
实验将包括分析极值、拐点以及函数的增减性等内容。
学生还将学会使用导数来解决实际问题,例如求最大值和最小值、求曲线的切线等。
第二章:定积分与不定积分实验项目3:定积分的计算本实验将引导学生学习如何计算定积分。
学生将通过数值积分法和符号积分法来求解定积分,并比较两种方法的结果差异。
实验还将包括定积分的性质和定积分的应用,例如计算曲线下的面积和求平均值。
实验项目4:不定积分的计算本实验将帮助学生理解不定积分的概念和计算方法。
学生将学习使用基本积分法和换元法来计算不定积分,并了解不同函数的原函数。
实验还将包括分部积分法和三角函数积分等内容。
第三章:级数与幂级数实验项目5:级数的收敛性与发散性本实验将引导学生研究级数的收敛性和发散性。
学生将通过计算级数的部分和来观察级数的趋势,并判断级数是否收敛或发散。
实验还将涵盖常见级数的性质和判别法,例如比值判别法和根值判别法。
实验项目6:幂级数的运算与收敛域本实验旨在帮助学生了解幂级数的运算法则和收敛域的概念。
学生将学习如何计算幂级数的和,并讨论幂级数的收敛域。
实验还将包括常见函数的幂级数展开和泰勒级数的计算。
一、选择题1.(0分)与(-b)-(-a)相等的式子是( )A .(+b)-(-a)B .(-b)+aC .(-b)+(-a)D .(-b)-(+a)B解析:B【分析】将各选项去括号,然后与所给代数式比较即可﹒【详解】解: (-b)-(-a)=-b+aA. (+b)-(-a)=b+a ;B. (-b)+a=-b+a ;C. (-b)+(-a)=-b-a ;D. (-b)-(+a)=-b-a ;故与(-b)-(-a)相等的式子是:(-b)+a ﹒故选:B ﹒【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒2.(0分)如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A .19B .20C .21D .22D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n 个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.3.(0分)已知322x y 和m 2x y -是同类项,则式子4m 24-的值是( )A .21-B .12-C .36D .12B解析:B【分析】 根据同类项定义得出m 3=,代入求解即可.【详解】解:∵322x y 和m 2x y -是同类项,∴m 3=,∴4m 24432412-=⨯-=-,故选B .【点睛】本题考查了对同类项定义的应用,注意:所含字母相同,并且相同字母的指数也分别相等的项,叫同类项,常数也是同类项.4.(0分)已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( ) A .2018B .2018-C .1009-D .1009C 解析:C【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于-12(n-1),n 是偶数时,结果等于-2n ,然后把n 的值代入进行计算即可得解. 【详解】解: 123450|01|1|12|1|13|2|24|2a a a a a ==-+=-=--+=-=--+=-=--+=-678|25|3|36|3|37|4a a a =--+=-=-+=-=--+=-⋯⋯∴201920181009a a ==-,故选择C【点睛】本题考查了数字变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.5.(0分)若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( )A .17B .67C .-67 D .0B解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+,∵不含二次项,∴6﹣7m =0,解得m =67.故选:B .【点睛】本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 6.(0分)已知多项式()210m x m x +--是二次三项式,m 为常数,则m 的值为( )A .2-B .2C .2±D .3± A解析:A【分析】根据已知二次三项式得出m-2≠0,|m|=2,从而求解即可.【详解】 解:因为多项式()210m x m x +--是二次三项式,∴m-2≠0,|m|=2,解得m=-2,故选:A.【点睛】本题考查了二次三项式的定义,掌握多项式的项和次数的定义是本题的解题关键. 7.(0分)下列说法正确的是( )A .0不是单项式B .25R π的系数是5C .322a 是5次单项式D .多项式2ax +的次数是2D解析:D【分析】根据整式的相关概念可得答案.【详解】A 、0是单项式,故A 错误;B 、25R π的系数是5π,故B 错误;C 、322a 是2次单项式,故C 错误;D 、多项式2ax +的次数是2,故D 正确.故选:D .【点睛】本题考查单项式的系数,单项式中的数字因数叫做这个单项式的系数,单项式中,所有字母的指数和叫做这个单项式的次数,也考查了多项式的次数.8.(0分)代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数C .a 的平方与b 的差的倒数D .a 的平方与b 的倒数的差D 解析:D【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【详解】 解:代数式21a b -的正确解释是a 的平方与b 的倒数的差. 故选:D.【点睛】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.9.(0分)在3a ,x+1,-2,3b -,0.72xy ,2π,314x -中单项式的个数有( ) A .2个B .8个C .4个D .5个C解析:C【分析】根据单项式的定义逐一判断即可.【详解】 3a中,分母含未知数,是分式,不是单项式, x+1是多项式,不是单项式,-2是单项式,3b -是单项式, 0.72xy 是单项式,2π是单项式,314x -=3144x -,是多项式, ∴单项式有-2、3b -、0.72xy 、2π,共4个, 故选C.【点睛】本题考查单项式的定义,熟练掌握定义是解题关键.10.(0分)下列说法错误的是( )A .23-2x y 的系数是32- B .数字0也是单项式 C .-x π是二次单项式D .23xy π的系数是23πC 解析:C【分析】根据单项式的有关定义逐个进行判断即可.【详解】 A. 23-2x y 的系数是32-,故不符合题意; B. 数字0也是单项式 故不符合题意;C. -x π是一次单项式 ,故原选项错误D. 23xy π的系数是23π,故不符合题意. 故选C .【点睛】本题考查对单项式有关定义的应用,能熟记单项式的有关定义是解此题关键.二、填空题11.(0分)填在各正方形中的四个数字之间具有相同的规律,根据这种规律,m 的值应是_______.184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积且左上左下右上三个数是相邻的奇数据此解答【详解】由前面数字关系:135;357;579可得最后一个三个数分别为:11解析:184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积,且左上,左下,右上三个数是相邻的奇数.据此解答.【详解】由前面数字关系:1,3,5;3,5,7;5,7,9,可得最后一个三个数分别为:11,13,15,3×5-1=14;5×7-3=32;7×9-5=58;由于左上的数是11,则左下角的是13,右上角的是15,∴m=13×15-11=184.故答案为:184.【点睛】本题考查了数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出m 的值.12.(0分)如果多项式32242(176)x x kx x +-+-中不含2x 的项,则k 的值为__.2【分析】先去括号再根据不含的项列出式子求解即可得【详解】由题意得:解得故答案是:2【点睛】本题考查了去括号多项式中的无关型问题熟练掌握去括号法则是解题关键解析:2【分析】先去括号,再根据“不含2x 的项”列出式子求解即可得.【详解】3223242(176)4(2)176x x kx x x k x x +-+-=+--+,由题意得:20k -=,解得2k =,故答案是:2.【点睛】本题考查了去括号、多项式中的无关型问题,熟练掌握去括号法则是解题关键. 13.(0分)在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n 条直线相交最多有1+2+3+…+(n-1)=个解析:()12n n - 【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n 条直线相交,最多有1+2+3+…+(n-1)=()12n n -个交点. 【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12 n n-个交点.即()12n nm-=故答案为:()12n n-.【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.14.(0分)关于x的二次三项式的一次项的系数为5,二次项的系数是-3,常数项是-4.按照x的次数逐渐减小排列,这个二次三项式为____.-3x2+5x-4【分析】由于多项式是由单项式组成的而多项式的次数是多项式中次数最高的项的次数而关于x 的二次三项式的二次项系数是-3一次项系数是5常数项是-4根据前面的定义即可确定这个二次三项式【详解析:-3x2+5x-4【分析】由于多项式是由单项式组成的,而多项式的次数是“多项式中次数最高的项的次数”,而关于x的二次三项式的二次项系数是-3,一次项系数是5,常数项是-4,根据前面的定义即可确定这个二次三项式.【详解】∵关于x的二次三项式,二次项系数是-3,∴二次项是-3x2,∵一次项系数是,∴一次项是5x,∵常数项是-4,∴这个二次三项式为:-3x2+5x-4.故答案为:-3x2+5x-4【点睛】本题考查了多项式的知识,多项式是由单项式组成的,本题首先要确定是由几个单项式组成,要记住常数项也是一项,单项式前面的符号也应带着.15.(0分)将一列数1,2,3,4,5,6---,…,按如图所示的规律有序排列.根据图中排列规律可知,“峰1”中峰顶位置(C的位置)是4,那么“峰206”中C的位置的有理数是______.-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝对值为以此进行分析即可【详解】解:由图可知每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝解析:-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,以此进行分析即可.【详解】解:由图可知,每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,当206n =时,52061103011029⨯-=-=,因为1029是奇数,所以“峰206”中C 的位置的有理数是1029-.故答案为:1029-.【点睛】本题考查图形的数字规律,熟练掌握根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -是解题的关键.16.(0分)若单项式322m x y -与3-x y 的差仍是单项式,则m 的值为__________.【分析】根据题意可知单项式与是同类项从而可求出m 的值【详解】解:∵若单项式与的差仍是单项式∴这两个单项式是同类项∴m-2=1解得:m=3故答案为:3【点睛】本题考查合并同类项和单项式解题关键是能根据解析:3【分析】根据题意可知单项式322m x y-与3-x y 是同类项,从而可求出m 的值. 【详解】解:∵若单项式322m x y -与3-x y 的差仍是单项式, ∴这两个单项式是同类项,∴m-2=1解得:m=3.故答案为:3.【点睛】本题考查合并同类项和单项式,解题关键是能根据题意得出m=3.17.(0分)在迎新春活动中,三位同学玩抢2018游戏,甲、乙、丙围成一圈依序报数,规定:甲、乙、丙首次报的数依次为1、2、3,接着甲报4、乙报5…按此规律,后一位同学报的数比前一位同学报的数大1,当报的数是2018时,报数结束;按此规则,最后能抢到2018的同学是______.乙【分析】由题意可得甲乙丙报的数字顺序规律为从1起三个数字为一个循环即丙报的数字规律为3的倍数将2018除以3余数为2即2018为一个循环的第2个数字即可判断为乙报的数字【详解】解:∵2018÷3= 解析:乙【分析】由题意可得甲、乙、丙报的数字顺序规律为,从1起三个数字为一个循环,即丙报的数字规律为3的倍数,将2018除以3余数为2,即2018为一个循环的第2个数字,即可判断为乙报的数字.【详解】解:∵2018÷3=672 (2)∴最后能抢到2018的同学是乙.故答案为:乙【点睛】本题考查数字规律,读懂题意,找到数字循环规律是解答此题的关键.18.(0分)两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍.设第一堆原有a 个棋子,第二堆原有______个棋子.【分析】根据题意可得第二堆现在的棋子数是2(a-2)因此原来的棋子数为2(a-2)-2【详解】解:由题意可得:现在第二堆有2(a-2)个棋子因此原来第二堆有2(a-2)-2=2a-6个棋子故答案为:解析:()26a -【分析】根据题意可得第二堆现在的棋子数是2(a -2),因此原来的棋子数为2(a -2)-2.【详解】解:由题意可得:现在第二堆有2(a -2)个棋子,因此原来第二堆有2(a -2)-2=2a -6个棋子.故答案为:(2a -6).【点睛】本题考查了整式加减的应用,根据题意列出代数式是解决此题的关键.19.(0分)在整式:32x y -,98b -,336b y -,0.2,57mn n --,26a b +-中,有_____个单项式,_____个多项式,多项式分别是_______.4【分析】根据单项式与多项式的概念即可求出答案【详解】解:单项式有2个:02多项式有4个:【点睛】本题考查单项式与多项式的概念解题的关键是正确理解单项式与多项式之间的联系本题属于基础题型解析:4 32x y -、336b y -、57mn n --、26a b +- 【分析】根据单项式与多项式的概念即可求出答案.【详解】解:单项式有2个:98b -,0.2,,多项式有4个:32x y -,336b y -,57mn n --26a b +- 【点睛】本题考查单项式与多项式的概念,解题的关键是正确理解单项式与多项式之间的联系,本题属于基础题型.20.(0分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m +n+p =_________; 4【分析】根据约定的方法求出mnp 即可【详解】解:根据约定的方法可得:;∴;∴∴故答案为4【点睛】本题考查了列代数式和代数式求值解题的关键是掌握列代数式的约定方法解析:4【分析】根据约定的方法求出m ,n ,p 即可.【详解】解:根据约定的方法可得:18n -+= ,81m +=- ;∴7n = ,9m =- ;∴()716p =+-=∴9764m n p ++=-++=故答案为4.【点睛】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法.三、解答题21.(0分)在数学活动课上,李老师设计了一个游戏活动,四名同学分别代表一种运算,四名同学可以任意排列,每次排列代表一种运算顺序,剩余同学中,一名学生负责说一个数,其他同学负责运算,运算结果既对又快者获胜,可以得到一个奖品.下面我们用四个卡片代表四名同学(如下):(1)列式,并计算:①3-经过A ,B ,C ,D 的顺序运算后,结果是多少?②5经过B ,C ,A ,D 的顺序运算后,结果是多少?(2)探究:数a 经过D ,C ,A ,B 的顺序运算后,结果是45,a 是多少? 解析:(1)①7;②206;(2)256a =-或256a =--【分析】(1)把-3和5经过A ,B ,C ,D 的运算顺序计算即可;(2)根据已知条件列列出关于a 的方程计算即可;【详解】(1)①2[(3)2(5)]67-⨯--+=;②2[5(5)]26206--⨯+=;(2)()()226545a +--=,()2620a +=,解得256a =-或256a =--.【点睛】本题主要考查了规律型数字变化类,一元二次方程的求解,准确计算是解题的关键. 22.(0分)观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式:①1=12;②1+3=22;③1+3+5=32;④_____________;⑤_____________;….(2)通过猜想写出与第n 个点阵图相对应的等式.解析:(1) 1+3+5+7=42; 1+3+5+7+9=52;(2)1+3+5+…+(2n -1)=n 2.【分析】根据图示和数据可知规律是:等式左边是连续的奇数和,等式右边是等式左边的首数与末数的平均数的平方,据此进行解答即可.【详解】(1)由图①知黑点个数为1个,由图②知在图①的基础上增加3个,由图③知在图②基础上增加5个,则可推知图④应为在图③基础上增加7个即有1+3+5+7=42,图⑤应为1+3+5+7+9=52,故答案为④1+3+5+7=42;⑤1+3+5+7+9=52;(2)由(1)中推理可知第n 个图形黑点个数为1+3+5+…+(2n -1)=n 2.【点睛】本题考查了规律型——数字的变化类,解答此类问题的关键是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.23.(0分)先化简,再求值(1)()223421332a a a a -+-+-,其中23a =- (2)()()22352542m mn mn m -+--+,其中22m mn -=解析:(1)原式=23362a a --+;256;(2)原式()2111m mn =-+;23. 【分析】(1)根据整式的运算法则,先将整式进行化简,再将字母的值代入计算求值即可.(2)根据整式的运算法则,去括号合并同类项,将整式化成最简,然后将字母的值代入计算即可.【详解】解(1)原式=22333-4233222a a a a ⨯-⨯++-=22363332a a a a --++-=23362a a --+ 将23a =-代入得:222336332⎛⎫⎛⎫-⨯--⨯-+ ⎪ ⎪⎝⎭⎝⎭=256; (2)原式=()()2222352542351084m mn mn m m mn mn m -+--+=+-+-- ()2111m mn =-+将22m mn -=代入得:11×2+1=23【点睛】本题考查了整式的化简求值,解决本题的挂件是正确理解题意,熟练掌握整式的运算法则,将整式正确进行化简.24.(0分)若1+2+3+…+n=m ,求(ab n )•(a 2b n ﹣1)…(a n ﹣1b 2)•(a n b )的值.解析:a m b m【解析】试题分析:根据单项式的乘法法则,同底数幂相乘,底数不变,指数相加的性质,(ab n )•(a 2b n ﹣1)…(a n ﹣1b 2)•(a n b )=a 1+2+…n b n+n ﹣1+…+1=a m b m .解:∵1+2+3+…+n=m ,∴(ab n )•(a 2b n ﹣1)…(a n ﹣1b 2)•(a n b ),=a 1+2+...n b n+n ﹣1+ (1)=a m b m考点:单项式乘单项式;同底数幂的乘法.点评:本题考查单项式的乘法法则和同底数幂的乘法的性质.25.(0分)已知多项式2x2+4xy﹣3y2+x2+kxy+5y2,当k为何值时,它与多项式3x2+6xy+2y2是相等的多项式.解析:k=2.【分析】根据两个多项式是相同的多项式,可以直接列等式根据各项前对应系数相等直接列式计算.【详解】解:2x2+4xy﹣3y2+x2+kxy+5y2,=3x2+(4+k)xy+2y2,因为它与多项式3x2+6xy+2y2是相等的多项式,所以4+k=6,解得:k=2.【点睛】本题考查了带系数多项式与已知多项式相等求未知系数,掌握多项式的概念是解决此题的关键.26.(0分)通过计算和观察,可以发现:1=12,1+3=4=22,1+3+5=9=32,请你计算:(1)1+3+5+7=____________=____________,1+3+5+7+9=____________=____________,1+3+5+7+9+…+97+99=____________=____________(2)用字母表示1+3+5+7+9+…+(2n-1)的结果;(3)用一句话概括你发现的规律.解析:(1)16,42,25,52,2500,502;(2)n2;(3)前n个连续正奇数的和为n2【分析】(1)观察给出的等式得到:从1开始的连续2个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52…,即可求出答案;(2)根据规律即可猜想从1开始的连续n个奇数的和;(3)根据上述的规律,即可得到答案.【详解】解:(1)根据题意,则1+3+5+7=16=42;1+3+5+7+9=25=52;1+3+5+7+9+…+97+99=2500=502;故答案为:16,42,25,52,2500,502;(2)根据题意:1+3+5+7+9+…+(2n-1)=n2;(3)根据上述的结论,则得到:前n个连续正奇数的和为n2.【点睛】此题主要考查学生对规律型题的掌握,关键是要对给出的等式进行仔细观察分析,发现规律,根据规律解题.27.(0分)用代数式表示:(1)a的5倍与b的平方的差;(2)m的平方与n的平方的和;(3)x,y两数的平方和减去它们积的2倍.解析:(1)5a-b2(2)m2+n2(3)x2+y2-2xy【分析】(1)a的5倍表示为5a,b的平方表示为b2,然后把它们相减即可;(2)m与n平方的和表示为m2+n2;(3)x、y两数的平方和表示为x2+y2,它们积的2倍表示为2xy,然后把两者相减即可;【详解】解:(1)a的5倍与b的平方的差可表示为:5a-b2;(2)m的平方与n的平方的和可表示为:m2+n2;(3)x,y两数的平方和减去它们积的2倍可表示为:x2+y2-2xy.【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;分清数量关系;规范地书写.28.(0分)古人云:凡事宜先预后立.我们做任何事情都要先想清楚,然后再动手去做,才能避免盲目从事.一天,需要小亮计算一个L形的花坛的面积,在动手测量前,小亮依花坛形状画出示意图,并用字母表示出了将要测量的边长(如图所示),小亮在列式进行面积计算时,发现还需要再测量一条边的长度,你认为他还需要测量哪条边的长度?请你在图中用字母n表示出来,然后求出它的面积.+-解析:图详见解析,am bn mn【分析】由图可知花坛是由两块矩形组成,若想求解矩形面积就必需知道矩形的长和宽,而图中少了左边矩形的宽.【详解】解:需要测量的边如图所示(或测量剩下的那条边的长度).+-.图形的面积为am bn mn【点睛】不规则的几何图形的面积的计算要转化为规则的几何图形面积的和差.。
2.1 整式 第2课时 单项式一、导学 1.课题导入:我们的学习引言与上节例1中出现了如下一些式子:100t,0.8p,mn,a 2h,-n,这些式子有什么特点呢?它叫做什么式呢?板书课题:单项式. 2.三维目标: (1)知识与技能①能叙述并理解单项式及单项式的系数,次数的概念. ②会正确确定一个单项式的系数和次数. (2)过程与方法通过观察式子探究单项式的意义,学会归纳和总结. (3)情感态度 培养应用数学的意识. 3.学习重、难点:重点:单项式、单项式的系数、次数的意义. 难点:确定单项式的次数和系数. 4.自学指导:(1)自学内容:教材第56页“思考”至第57页“思考”上面的内容. (2)自学时间:8分钟.(3)自学要求:仔细阅读课文,圈点重要内容和提示,结合例题进一步理解概念. (4)自学参考题纲:①什么叫做单项式?什么叫做单项式的系数和次数?式子是数字或字母的积,系数是单项式中的数字因数,次数是单项式中的所有字母的指数和.②下列各式是不是单项式?为什么?23, -m, 0, 2x , 12a 2b, 213x +, -2x y πa 3πabc, (π-3)aR 2213x +和(π-3)aR 2因为含有加减号,所以不是单项式,而2x 和-2x yπa 因为分母中有字母,所以也不是单项式. ③填表二、自学学生结合自学指导进行自学.三、助学1.师助生:(1)明了学情:教师巡视课堂了解学生学习情况,针对性地抽查部分学生的自学提纲完成情况.(2)差异指导:对个别学生不能正确确定系数、指数的情况进行点拨指导.2.生助生:引导学生相互交流帮助解决一些疑难问题.四、强化1.概念:单项式;单项式的系数;单项式的次数.2.注意事项:(1)圆周率π是常数.(2)当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等.(3)系数是-1时,1省略不写,但“-”号不能省.(4)单项式次数只与字母指数有关.3.练习:(1)判断下列各式是否是单项式.如果不是,请说明理由;如果是,请指出它的系数和次数.x+1(×);1x(×) ;πr2(√);-32a2b(√);22(2)3x y-(√)第三、四、五个式子是数字与字母乘积的形式所以是单项式. 系数和次数:πr2:系数:π;次数:2-32a2b:系数:-32;次数:3 22(2)3x y-:系数:2(2)3-;次数:3.第一个式子有加号,第二个式子分母里有字母,都不是单项式. (2)下面的判断是否正确?-7xy 2的系数是7;(×)-x 2y 3与x 3没有系数;(×) -ab 3c 2的次数是1+3+2 = 6(√);-a 3的系数是-1;(√) -32x 2y 3的次数是7;(×)13πr 2h 的系数是13.(×) 五、评价1.学生的自我评价(围绕三维目标):学生自我评价本节课的学习表现和收获以及存在的不足.2.教师对学生的评价:(1)表现性评价:教师对本节课学习中大家在自主学习和交流学习中的表现进行总结. (2)纸笔评价:课堂评价检测. 3.教师的自我评价(教学反思):本课时内容是概念学习课,教学过程要重点展示概念的形成过程,由学生观察、分析、比较,找出单项式的共同特点,教学时可充分让学生利用小组交流的方式探索出法则,并在应用时互相学习.一、基础巩固(第1、2、3题每题10分,第4题20分,共50分) 1.(40分)在代数式3ab ,x,xy-1,1, 2a b ,3x 中,单项式有3ab,x,1. 2.(30分)填表:二、综合应用(每题15分,共30分)3.(20分)(1)若2x 2y m-2a 是6次单项式,试求m 的值; (2)若(m-5)x 2y|m|-2a 是6次单项式,试求m 的值.解:(1)∵2+m-2+1=6,∴m=5.(2)∵|m|-2=3且m≠5,∴m=-5.三、拓展延伸(20分)4.(10分)下列单项式:-x,2x2,-3x3,4x4,…(1)根据它们的排列规律,写出第101,102个单项式;(2)写出第n个单项式的表达式.解:(1)-101x101,102x102.(2)n(-x)n.4.2 直线、射线、线段(二)1.会用尺规画一条线段等于已知线段;2.会比较两条线段的长短;3.理解线段中点的概念,了解“两点之间,线段最短”的性质.重点:线段的中点概念,“两点之间,线段最短”的性质;难点:画一条线段等于已知线段.一、温故知新1.过A,B,C三点作直线,小明说有三条,小颖说有一条,小林说不是一条就是三条,你认为__小林的说法是对的.二、自主学习问题:现有一根长木棒,如何从它上面截下一段,使截下的木棒等于另一根木棒的长?上面的实际问题可以转化为下面的数学问题:1.作一条线段等于已知线段,现在我们来解决这个问题.作法:(1)作射线AM;(2)在AM上截取AB=a.则线段AB即为所求.应用:已知线段a,b,求作线段AB=a+b.解:(1)作射线AM;(2)在AM上顺次截取AC=a,CB=b.则AB=a+b即为所求.做一做:作线段AB=a-b.2.比较两条线段的长短两条线段可能相等,也可能不相等,那么怎样比较两条线段的长短呢?我们先来回答下面的问题.怎样比较两个同学的身高?一是用尺子测量;二是站在一起比(脚在同一高度).如果把两个同学看成两条线段,那么比较两条线段就有两种方法:(1)度量法:用刻度尺分别量出两条线段的长度,从而进行比较.(2)叠合法:把一条线段移到另一条线段上,使一端对齐,从而进行比较.(如图)AB<CD AB>CD AB=CD3.线段的中点及等分点如图(1),点M 把线段AB 分成相等的两条线段AM 与BM ,点M 叫做线段AB 的中点; 记作AM =MB 或AM =MB =12AB 或2AM =2MB =AB .如图(2),点M ,N 把线段AB 分成相等的三段AM ,MN ,NB ,点M ,N 叫做线段AB 的三等分点.类似地,还有四等分点,等等.4.线段的性质请同学们阅读课本P128的思考. 结论:两点的所有连线中,线段最短.简单地说成:两点之间,线段最短.你能举出这条性质在生活中的一些应用吗? 两点的距离的定义:连接两点间的线段的长度.注意:距离是用“数”来衡量的,它是线段的长度,而不是线段本身.1.课本P128练习1,2,3.2.在直线上顺次取A ,B ,C 三点,使 AB =4 cm ,BC =3 cm ,点O 是线段AC 的中点,则线段OB 的长度是( C )A .2 cmB .1.5 cmC .0.5 cmD .3.5 cm3.已知线段AB =5 cm ,C 是直线AB 上一点,若BC =2 cm ,则线段AC 的长为7_cm 或3_cm.1.画一条线段等于一条已知线段. 2.怎样比较两条线段的长短? 3.线段的性质是什么? 4.什么是两点的距离?3绝对值【知识与技能】1.借助数轴,初步理解相反数,绝对值的概念,能求一个数的相反数和绝对值.2.会利用绝对值比较两个负数的大小.【过程与方法】借助数轴,认识相反数和绝对值,通过应用相反数和绝对值解决实际问题,体会相反数、绝对值的意义和作用,培养学生的数感和符号感.【情感态度】结合本课教学特点,向学生进行热爱生活教育和美育渗透,激发学生观察、探究、发现数学问题的兴趣.【教学重点】会求一个数的相反数和绝对值,会利用绝对值比较两个负数的大小.【教学难点】会利用绝对值比较两个负数(尤其是两个负分数)的大小.一、情境导入,初步认识“南辕北辙”这个成语讲的是古代某人要去南方,却向北走了起来,有人预言他无法到达目的地,他却说“我的马很快,车的质量也很好”,请问他能到达目的地吗?1.“马很快,车质量好”会出现什么结果?2.同学们能用数轴来描述这个成语吗?【教学说明】从学生非常熟悉的“南辕北辙”这个成语引入,再让学生用数轴来描述这个成语,有利于学生从直观形象上认识相反数.二、思考探究,获取新知1.相反数的代数意义和几何意义问题1 3与-3有什么相同点?32与-32,5与-5呢?你还能列举两个这样的数吗?你发现了什么?由此你能得到什么结论?【教学说明】由学生观察、思考,再与同伴进行交流,得出相反数的概念,教师加以规范.【归纳结论】如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数(代数意义).注意:0的相反数是0.问题 2 将上面三组数用数轴上的点表示出来,每组数所对应的点在数轴上的位置有什么关系?【教学说明】学生动手操作、观察、分析,再与同伴进行交流,得出结论.【归纳结论】在数轴上,表示互为相反数的两个点,位于原点的两侧,且与原点的距离相等.(几何意义)2.绝对值的概念及求法在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.例如,+2的绝对值等于2,记作|+2|=2;-3的绝对值等于3,记作|-3|=3.问:(1)如果a表示有理数,那么|a|有什么含义?(2)互为相反数的两个数的绝对值有什么关系?【教学说明】使学生能准确地理解绝对值的意义和求法.问题3 求下列各数的绝对值:-21,49,0,-7.8,-21.【教学说明】学生独立完成,再与同伴进行交流,进一步掌握绝对值的求法.问:一个数的绝对值与这个数有什么关系?通过这个问题我们能得到绝对值的性质.【归纳结论】正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.用字母表示为:a (a>0)|a| 0 (a=0)-a (a<0)3.用绝对值比较两个负数的大小问题4 (1)在数轴上表示下列各数,并比较它们的大小:-1.5,-3,-1,-5.(2)求出(1)中各数的绝对值,并比较它们的大小;(3)你发现了什么?【教学说明】先回顾前面学习的利用数轴比较有理数的大小,再利用绝对值比较它们的大小,有利于学生掌握不同的方法.【归纳结论】两个负数比较大小,绝对值大的反而小.问题5 比较下列每组数的大小:(1)-1和-5;(2)-56和-2.7.【教学说明】学生独立完成,有利于学生掌握所学新知.三、运用新知,深化理解1.-5的相反数是,绝对值是 .2.绝对值小于3的整数有个,分别是 .3.用>、<、=号填空.-(-5) 0,-(+3) 0,|+8||-8|,-(-5) -(-8).4.在数轴上距离原点2个单位长度的点表示什么数?5.在数轴上表示下列各数及其相反数,并求它们的绝对值:-32,6,-3.6.比较下列各组数的大小:(1)-110,-27;(2)-0.5,-|23|;(3)0,| -23|;(4)|-7|,|7|.(1)小李在送第几位乘客时行车里程最远?(2)若汽车耗油量为0.1L/km,这天下午汽车共耗油多少升?【教学说明】学生自主完成,检测对相反数、绝对值有关知识的掌握情况,加深对新学知识的理解.对学生的疑惑及时指导,并进行强化.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.5 5 2. 5 ±2 ±1 03.>< = <4. ±25.|-32|=32|6|=6 |-3|=36.(1)-110>-27(2)-0.5>-2 3(3)0<|-23|(4)|-7|=|7|7.(1)小李在送最后一名乘客时行车里程最远,是26km;(2)总耗油量为:0.1×(|+15|+|-3|+|+14|+|-1|+|+10|+|+4|+|-26|)=7.3(L).四、师生互动,课堂小结1.师生共同回顾相反数的意义,绝对值的定义和性质等知识点.2.通过这节课的学习,你掌握了哪些新知识?请与同伴交流.【教学说明】教师引导学生回顾知识点进行知识的提炼和归纳.【板书设计】1.布置作业:从教材“习题2.3”中选取.2.完成练习册中本课时的相应作业.本节课借助数轴来理解相反数、绝对值的概念,通过类比、观察、思考培养学生动手、动脑习惯,加深对所学知识的认识.。
人教版初中数学实验目录(含实验器材)第一章实数1. 数的分类实验- 实验目的:了解数的分类方法。
- 实验器材:1个黑板,2支粉笔。
- 实验步骤:在黑板上画一个大的圆圈,然后将不同的数分类到圆圈的不同位置。
2. 正数与负数的比较实验- 实验目的:研究正数与负数的比较方法。
- 实验器材:1个黑板,2支粉笔。
- 实验步骤:在黑板上画出正数和负数的数轴,根据给定的数进行排序比较。
3. 实数的整体布局实验- 实验目的:掌握实数的整体布局。
- 实验器材:1个黑板,2支粉笔。
- 实验步骤:在黑板上画出数轴,标明整数、有理数和无理数的位置。
第二章代数基础1. 字母代数化实验- 实验目的:研究字母代数化的方法。
- 实验器材:1个黑板,2支粉笔。
- 实验步骤:在黑板上列举一些数学式子,用字母代替具体数值。
2. 单变量方程实验- 实验目的:解单变量方程。
- 实验器材:1个黑板,2支粉笔。
- 实验步骤:给定一元方程,通过变形和运算得出方程的解。
3. 二元方程组实验- 实验目的:解二元方程组。
- 实验器材:1个黑板,2支粉笔。
- 实验步骤:给定二元方程组,通过配准、消元和回代找出方程组的解。
第三章几何基础1. 各种图形的分类实验- 实验目的:掌握各种图形的分类方法。
- 实验器材:1个黑板,2支粉笔。
- 实验步骤:给出不同的图形,让学生根据特征进行分类。
2. 直线与角度实验- 实验目的:研究直线和角度的基本概念。
- 实验器材:1个直尺,1个角规。
- 实验步骤:利用直尺测量直线长度,用角规测量角度大小。
3. 比例与相似实验- 实验目的:了解比例与相似的概念。
- 实验器材:1个直尺,1个角规。
- 实验步骤:给出不同大小的几何图形,让学生判断它们是否相似。
...(继续编写其他章节和实验)。
1.在代数式a2+1,﹣3,x2﹣2x,π,1x中,是整式的有()A.2个B.3个C.4个D.5个C 解析:C【分析】单项式和多项式统称为整式,分母中含有字母的不是整式.【详解】解:a2+1和 x2﹣2x是多项式,-3和π是单项式,1x不是整式,∵单项式和多项式统称为整式,∴整式有4个.故选择C.【点睛】本题考查了整式的定义.2.下面用数学语言叙述代数式1a﹣b,其中表达正确的是()A.a与b差的倒数B.b与a的倒数的差C.a的倒数与b的差D.1除以a与b的差C 解析:C【分析】根据代数式的意义,可得答案.【详解】用数学语言叙述代数式1a﹣b为a的倒数与b的差,故选:C.【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.3.下列代数式的书写,正确的是()A.5n B.n5 C.1500÷t D.114x2y A解析:A【分析】直接利用代数式书写方法分析得出答案.【详解】解:A、5n,书写正确,符合题意;B、n5,书写错误,不合题意;C、1500÷t,应为1500t,故书写错误,不合题意;D 、114x 2y=54x 2y ,故书写错误,不合题意;故选:A . 【点睛】此题主要考查了代数式,正确把握代数式的书写方式是解题关键. 4.化简2a -[3b -5a -(2a -7b )]的值为( ) A .9a -10b B .5a +4b C .-a -4b D .-7a +10b A解析:A 【解析】2a -[3b -5a -(2a -7b)]=2a-(3b-5a-2a+7b)=2a-(10b-7a)=2a-10b+7a=9a-10b , 故选A.【点睛】本题考查去括号,合并同类项,解题的关键是按运算的顺序先去括号,然后再进行合并同类项.5.一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( ) A .1B .-1C .2020D .2020- A解析:A 【分析】首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案. 【详解】 解:11a =-,()21111,1112a a ===--- 32112,1112a a ===-- 43111112a a ===---,所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=- 所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A . 【点睛】本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 6.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2 B .3C .4D .5B解析:B 【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值. 【详解】解:∵132n x y +与4313x y 是同类项, ∴n+1=4, 解得,n=3, 故选:B. 【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.7.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C解析:C 【分析】分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.解:8×10−6=74, 故选:C . 【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数. 8.下列各式中,符合代数书写规则的是( )A .273xB .14a ⨯C .126p - D .2y z ÷ A解析:A【分析】根据代数式的书写要求判断各项. 【详解】 A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p -,故选项C 错误; D 、应为2yz,故选项D 错误; 故选:A . 【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写; (2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.9.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( ) A .2 B .﹣2C .3D .﹣3D解析:D 【分析】先将多项式合并同类型,由不含x 的二次项可列 【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项, ∴6+2m=0, 解得m =﹣3, 故选:D .此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值. 10.下列去括号正确的是( ) A .221135135122x y x x y y ⎛⎫--+=-++⎪⎝⎭B .()8347831221a ab b a ab b --+=---C .()()222353261063x y x x y x+--=+-+D .()()223423422x y x x y x--+=--+ C解析:C 【分析】依据去括号法则计算即可判断正误. 【详解】 A. 221135135122x y x x y x ⎛⎫--+=-+-⎪⎝⎭,故此选项错误;B. ()8347831221a ab b a ab b --+=-+-,故此选项错误;C. ()()222353261063x y x x y x+--=+-+,此选项正确;D. ()()223423422x y x x y x--+=---,故此选项错误;故选:C. 【点睛】此题考查整式的化简,注意去括号法则.11.点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,2BC =,OA OB =,若C 点所表示的数为x ,则A 点所表示的数为( )A .2x -+B .2x --C .2x +D .-2A解析:A 【分析】由BC=2,C 点所表示的数为x ,求出B 表示的数,然后根据OA=OB ,得到点A 、B 表示的数互为相反数,则问题可解. 【详解】解:∵BC=2,C 点所表示的数为x , ∴B 点表示的数是x-2, 又∵OA=OB ,∴B 点和A 点表示的数互为相反数, ∴A 点所表示的数是-(x-2),即-x+2.【点睛】此题考查用数轴上的点表示数的方法和数轴上两点间的距离以及相反数的性质,解答关键是应用数形结合思想解决问题.12.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+31C解析:C【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n(n+1)和12(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.【详解】∵A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和.故选:C.【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.13.有20个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是2,这20个数的和是()A.2 B.﹣2 C.0 D.4A解析:A【分析】根据题意可以写出这组数据的前几个数,从而发现数字的变化规律,再利用规律求解.【详解】解:由题意可得,这列数为:0,2,2,0,﹣2,﹣2,0,2,2,…,∴这20个数每6个为一循环,且前6个数的和是:0+2+2+0+(﹣2)+(﹣2)=0,∵20÷6=3…2,∴这20个数的和是:0×3+(0+2)=2.故选:A.【点睛】本题考查了数字的变化规律,正确理解题意,发现题目中数字的变化规律:每6个数重复出现是解题的关键.14.某养殖场2018年底的生猪出栏价格为每千克a元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元 A .(115%)(120%)a ++ B .(115%)20%a + C .(115%)(120%)a +- D .(120%)15%a + A解析:A 【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可. 【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元. 故选A . 【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键. 15.长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( ) A .3a B .6a +bC .6aD .10a -b C解析:C 【解析】 【分析】根据长方形的周长公式列出算式后化简合并即可. 【详解】∵长方形一边长为2a +b ,另一边为a -b , ∴长方形周长为:2(2a +b +a -b )=6a. 故选C. 【点睛】本题考查了整式的加减的应用,根据长方形的周长公式列出算式是解决问题的关键. 1.观察如图,发现第二个和第三个图形是怎样借助第一个图形得到的,概括其中的规律在第n 个图形中,它有n 个黑色六边形,有_______个白色六边形.【分析】发现规律下一个图形是在上一个图形的基础上加上1个黑色六边形和4个白色六边形【详解】解:第一个图形中有6个白色六边形第二个图形有6+4个白色六边形第三个图形有6+4+4个白色六边形根据发现的规 解析:42n +【分析】发现规律,下一个图形是在上一个图形的基础上加上1个黑色六边形和4个白色六边形. 【详解】解:第一个图形中有6个白色六边形, 第二个图形有6+4个白色六边形, 第三个图形有6+4+4个白色六边形, 根据发现的规律,第n 个图形中有6+4(n -1)个白色四边形. 故答案是:4n +2. 【点睛】本题考查规律的探究,解题的关键是先发现图形之间的规律,再去归纳总结出公式. 2.m ,n 互为相反数,则(3m –2n )–(2m –3n )=__________.0【解析】由题意m+n=0所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0【点睛】本题考查相反数去括号法则等解题的关键是根据题意得出m+n=0然后再对所求的式子进行去括号合并同解析:0 【解析】 由题意m+n=0,所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0.【点睛】本题考查相反数、去括号法则等,解题的关键是根据题意得出m+n=0,然后再对所求的式子进行去括号,合并同类项,整体代入数值即可.3.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学; 第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7 【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案. 【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌, A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7.本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.4.将连续正整数按以下规律排列,则位于第7行第7列的数x是________________.?136********259142027?48131926??7121825??111724??1623??22?????x?【分析】先根据第一行的第一列的数以及第二行的第二列的数第三行的第三列数第四行的第四列数进而得出变化规律由此得出结果【详解】第一行的第一列的数是1;第二行的第二列的数是5=1+4;第三行的第三列的数是解析:85【分析】先根据第一行的第一列的数,以及第二行的第二列的数,第三行的第三列数,第四行的第四列数,进而得出变化规律,由此得出结果.【详解】第一行的第一列的数是 1;第二行的第二列的数是 5=1+4;第三行的第三列的数是 13=1+4+8;第四行的第四列的数是 25=1+4+8+12;......第n行的第n列的数是1+4+8+12+...+4(n-1)=1+4[1+2+3+...+(n+1)]=1+2n(n-1);∴第七行的第七列的数是1+2×7×(7-1)=85;故答案为:85.【点睛】本题考查数字的变化规律,学生通过观察、分析、归纳发现其中的规律,从而利用规律解5.如图,在整式化简过程中,第②步依据的是_______.(填运算律)化简:()22253a b ab a b ab +--+解:()22253ab ab a b ab +--+22253a b ab a b ab =++-① 22253a b a b ab ab =++-②()222(53)a b a b ab ab =++-③232a b ab =+.④加法交换律【分析】直接利用整式的加减运算法则进而得出答案【详解】解:原式=2a2b+5ab+a2b-3ab=2a2b+a2b+5ab-3ab=(2a2b+a2b )+(5ab-3ab )=3a2b+2a解析:加法交换律 【分析】直接利用整式的加减运算法则进而得出答案. 【详解】解:原式=2a 2b+5ab+a 2b-3ab =2a 2b+a 2b+5ab-3ab =(2a 2b+a 2b )+(5ab-3ab ) =3a 2b+2ab .第②步依据是:加法交换律. 故答案为:加法交换律. 【点睛】此题主要考查了整式的加减运算,正确掌握相关运算法则是解题关键.6.将一张长方形的纸对折,如图,可得到一条折痕(图中虚线),连续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得7条折痕,连续对折5次后,可以得到________条折痕.31【分析】根据题意找出折叠次的折痕条数的函数解析式再将代入求解即可【详解】折叠次的折痕为;折叠次的折痕为;折叠次的折痕为;……故折叠次的折痕应该为;折叠次将代入折痕为故答案为:31【点睛】本题考查解析:31【分析】根据题意找出折叠n 次的折痕条数的函数解析式,再将5n =代入求解即可.【详解】折叠1次的折痕为1,1121=-;折叠2次的折痕为3,2321=-;折叠3次的折痕为7,3721=-;……故折叠n 次的折痕应该为21n -;折叠5次,将5n =代入,折痕为52131-=故答案为:31.【点睛】本题考查了图形类的规律题,找出折叠n 次的折痕条数的函数解析式是解题的关键. 7.在括号内填上恰当的项:22222x xy y -+-=-(_____________________).【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去解析:222x xy y -+【分析】根据添括号的法则解答.【详解】解:222222(2)x xy y x xy y -+-=--+.故答案是:222x xy y -+.【点睛】本题考查了去括号与添括号,添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.8.已知|a|=-a ,bb =-1,|c|=c ,化简 |a+b| + |a-c| - |b-c| = _________.-2a 【分析】由已知可以判断出ab 及c 的正负进而确定出a+ba-c 与b-c 的正负利用绝对值的代数意义化简即可得到结果【详解】解:∵|a|=-a=-1|c|=c ∴∴则|a+b|+|a-c|-|b-c| 解析:-2a【分析】由已知可以判断出a, b 及c 的正负,进而确定出a+b ,a-c 与b-c 的正负,利用绝对值的代数意义化简,即可得到结果.【详解】解:∵|a|=-a ,bb=-1,|c|=c∴00, 0,a b c ≤<≥, ∴000,a b a c b c +<-≤-<,,则|a+b| + |a-c| - |b-c| =-+2a b a c b c a --+-=- .故答案为: -2a.【点睛】此题考查了整式的加减, 涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.9.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分别数出图解析:()43n -【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3;图②中三角形的个数为5=4×2-3;图③中三角形的个数为9=4×3-3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.10.在迎新春活动中,三位同学玩抢2018游戏,甲、乙、丙围成一圈依序报数,规定:甲、乙、丙首次报的数依次为1、2、3,接着甲报4、乙报5…按此规律,后一位同学报的数比前一位同学报的数大1,当报的数是2018时,报数结束;按此规则,最后能抢到2018的同学是______.乙【分析】由题意可得甲乙丙报的数字顺序规律为从1起三个数字为一个循环即丙报的数字规律为3的倍数将2018除以3余数为2即2018为一个循环的第2个数字即可判断为乙报的数字【详解】解:∵2018÷3= 解析:乙【分析】由题意可得甲、乙、丙报的数字顺序规律为,从1起三个数字为一个循环,即丙报的数字规律为3的倍数,将2018除以3余数为2,即2018为一个循环的第2个数字,即可判断为乙报的数字.【详解】解:∵2018÷3=672 (2)∴最后能抢到2018的同学是乙.故答案为:乙【点睛】本题考查数字规律,读懂题意,找到数字循环规律是解答此题的关键.11.已知()11nn a =-+,当1n =时,10a =;当2n =时,22a =;当3n =时,30a =;…;则123a a a ++456a a a +++的值为______.【分析】利用乘方符号的规律当n 为奇数时(-1)n=-1;当n 为偶数时(-1)n=1找到此规律就不难得到答案6【详解】∵当n 为奇数时此时;当n 为偶数时(-1)n=1此时∴故填:6【点睛】本题乘方符号的解析:【分析】利用乘方符号的规律,当n 为奇数时,(-1)n =-1;当n 为偶数时,(-1)n =1.找到此规律就不难得到答案6.【详解】∵当n 为奇数时,(1)1n -=-,此时110n a =-+=;当n 为偶数时,(-1)n =1,此时112n a =+=.∴1234560202026a a a a a a +++++=+++++=.故填:6.【点睛】本题乘方符号的规律,解题的关键是找出(1)n-的符号规律.1.如图,某市有一块长为(3a+b )米,宽为(2a+b )米的长方形地块,中间是边长为(a+b )米的正方形,规划部门计划将在中间的正方形修建一座雕像,四周的阴影部分进行绿化,(1)绿化的面积是多少平方米?(用含字母a 、b 的式子表示)(2)求出当a =20,b =12时的绿化面积.解析:(1)(5a 2+3ab )平方米;(2)2720平方米【分析】(1)根据割补法,用含有a,b 的式子表示出整个长方形的面积,然后用含有a,b 的式子表示出中间空白处正方形的面积,然后两者相减,即可求出绿化部分的面积.(2)将a =20,b =12分别代入(1)问中求出的关系式即可解决.【详解】解:(1)(3a+b )(2a+b )﹣(a+b )2=6a 2+3ab+2ab+b 2﹣(a 2+2ab+b 2)=6a 2+3ab+2ab+b 2﹣a 2﹣2ab ﹣b 2=5a 2+3ab ,答:绿化的面积是(5a 2+3ab )平方米;(2)当a =20,b =12时5a 2+3ab =5×202+3×20×12=2000+720=2720,答:当a =20,b =12时的绿化面积是2720平方米.【点睛】(1)本题考查了割补法,多项式乘多项式和完全平方式的运算法则,解决本题的关键是正确理解题意,能够熟练掌握多项式乘多项式的运算法则.(2)本题考查了整式的化简求值,解决本题的关键是熟练掌握整式的运算法则和步骤. 2.数学课上,老师出示了这样一道题目:“当1,22a b ==-时,求多项式3233233733631061a a b a a b a b a a b +++----的值”.解完这道题后,张恒同学指出:“1,22a b ==-是多余的条件”师生讨论后,一致认为这种说法是正确的,老师及时给予表扬,同学们对张恒同学敢于提出自己的见解投去了赞赏的目光.(1)请你说明正确的理由;(2)受此启发,老师又出示了一道题目,“无论x 取任何值,多项式2233x mx nx x -++-+的值都不变,求系数m 、n 的值”.请你解决这个问题. 解析:(1)见解析;(2)3n =,1m =.【分析】(1)将原式进行合并同类项,然后进一步证明即可;(2)将原式进行合并同类项,根据“无论x 取任何值,多项式值不变”进一步求解即可.【详解】(1)3233233733631061a a b a a b a b a a b +++----=3332233731033661a a a a b a b a b a b +-+-+--=1-,∴该多项式的值与a 、b 的取值无关, ∴1,22a b ==-是多余的条件. (2)2233x mx nx x -++-+=2233x nx mx x -++-+=2(3n)(1)3x m x -++-+∵无论x 取任何值,多项式值不变,∴30n -+=,10m -=,∴3n =,1m =.【点睛】本题主要考查了多项式运算中的无关类问题,熟练掌握相关方法是解题关键.3.已知多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同,求m ,n 的值.解析:m =1,n =4.【分析】根据多项式的次数是多项式中次数最高的单项式的次数,可得m 的值,根据单项式的次数是单项式中所有字母指数和,可得n 的值.【详解】∵多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同, ∴2+2m +1=5,n +4m ﹣3=5,解得m =1,n =4.【点睛】本题考查了多项式,利用多项式的次数是多项式中次数最高的单项式的次数,单项式的次数是单项式中所有字母指数和得出m 、n 的值是解题关键.4.如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD .(1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDE ACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABDa b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABD b a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】 本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简.。
云南大学数学与统计学实验教学中心
实 验 报 告 课程名称:数学实验
学期:大二下 成绩: 指导教师:
学生姓名: 学生学号: 实验名称:M 文件编写
实验要求: 实验学时: 实验编号:2 实验日期: 完成日期: 学院: 数学与统计学院
专业 :数学与应用数学 年级:
一、实验目的
熟悉MATLAB 基本界面,熟悉M 文件的概念和组成,学会一些简单的matlab 语言编写,for 循环,while 循环,if-else-end 结构和switch-case-end 结构,达到对M 文件的熟练掌握!
二、实验环境
Matlab7.0版本
三、实验内容
P31 1.7.3 实验三:编写M 文件
1.建立一个命令M 文件:求所有的“水仙花数”,所谓“水仙花数”是指一个三位数,其各位数字的立方和等于该数本身。
例如,153是一个水仙花数,因为153=13+53+33。
2.编写函数M-文件SQRT.m :用迭代法求a x =的值。
求平方根的迭代公式为: 112n n n a x x x +⎛⎫=+ ⎪⎝⎭
迭代的终止条件为前后两次求出的x 的差的绝对值小于10-5。
四、程序源代码:
1.命令M 文件源程序:
法(1) %M-file,qiushuixianhuashu.m % 函数名必须与文件名相同
for k=1:1:9 % 循环变量k 从1开始,到9结束,增量为1。
k 表示百位数
for j=0:1:9
for i=0:1:9
if k^3+j^3+i^3==100*k+10*j+i
w=100*k+10*j+i;
fprintf('w=%d\n', w); % fprintf 为matlab 中的输出函数同c 中的printf ,而input ('***')也为输入命令,类似c 中get ()和scanf 。
end % if-end
end % for-end
end % 中for-end
end % 外for-end
实验结果:
w=153
w=370
w=371
w=407
法(2)%M-file,qiushuixianhuashu.m
for m=100:999
m1=fix(m/100); %求m的百位数字,命令fix为取整。
m2=rem(fix(m/10),10); %求m的十位数字,命令rem为求余,具体格式为rem(a,b)表示a 除以b求余
m3=rem(m,10); %求m的个位数字
if m==m1^3+m2^3+m3^3 % 因为是数字,所以用^(幂运算符)
disp(m) % DISP(X) displays the array, without printing the array name.
end % if-end
end % for-end
实验结果:
153
370
371
407
2.编写函数M文件源程序:
function x=SQRT(a) % M文件必须包含function,指定函数名为SQRT,输入一个参数为a的值xn=1;xn1=2; % 初始值
i=0; % 记录迭代次数
while abs(xn1-xn)>1e-5 % 循环条件
xn1=(xn+a/xn)/2;
xn=(xn1+a/xn1)/2;
i=i+1;
end% while-end
x=xn;
i % 输出循环次数和所求结果
实验结果:
输入a=10;x=SQRT(a) 后回车
运行结果:
i =
3
x =
3.1623
五、实验过程
1.命令M文件的编写及调用:
1)在Matlab主菜单上选择菜单命令File→New→M-File;
2)在弹出的编辑框中编写源代码如上;
3)保存:编辑框中的菜单命令File→Save as ,文件名必须与源代码中函数名相同。
4)调用命令M文件:在command 对话框中直接输入源代码中函数名,然后回车即可得到答案。
2.函数M文件的编写及调用:
1)在Matlab主菜单上选择菜单命令File→New→M-File;
2)在弹出的编辑框中编写源代码如上;
3)保存:编辑框中的菜单命令File→Save ,或者直接点击保存按钮即可
六、实验总结
初步掌握函数M文件的应用,但还不能熟练应用。