2018届高考数学二轮复习专题检测卷五空间几何体的三视图表面积与体积理
- 格式:doc
- 大小:352.00 KB
- 文档页数:6
专题五第一讲A组1.(文)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是导学号 52134577( B )A.三棱锥B.三棱柱C.四棱锥D.四棱柱[解析] 由三视图知该几何体是一个横放的直三棱柱,三棱柱的底面是直角三角形,两直角边长都是6,正对观察者.棱柱高为4.(理)(2017·沈阳高三质量监测一)“牟合方盖”是我国古代数学刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的俯视图可能是导学号 52134578 ( B )[解析] 根据直观图以及图中的辅助四边形分析可知,当正视图和侧视图完全相同时,俯视图为B,故选B.2.(2016·全国卷Ⅱ)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为导学号 52134579( C )A .20πB .24πC .28πD .32π[解析] 该几何体是圆锥与圆柱的组合体,由三视图可知圆柱底面圆的半径r =2,底面圆的周长c =2πr =4π,圆锥的母线长l =22+ 23 2=4,圆柱的高h =4,所以该几何体的表面积S 表=πr 2+ch +12cl =4π+16π+8π=28π,故选C .3.(文)一个几何体的三视图如图所示,则该几何体的体积为导学号 52134580( A )A .12-πB .12-2πC .6-πD .4-π[解析] 由三视图知,该几何体是一个组合体,由一个长方体挖去一个圆柱构成,长方体的长、宽高为4,3,1,圆柱底半径1,高为1,∴体积V =4×3×1-π×12×1=12-π.(理)若某棱锥的三视图(单位:cm)如图所示,则该棱锥的体积等于导学号 52134581( B )A .10 cm 3B .20 cm 3C .30 cm 3D .40 cm 3[解析] 由三视图知该几何体是四棱锥,可视作直三棱柱ABC -A 1B 1C 1沿平面AB 1C 1截去一个三棱锥A -A 1B 1C 1余下的部分.∴VA -BCC 1B 1=VABC -A 1B 1C 1-VA -A 1B 1C 1=12×4×3×5-13×(12×4×3)×5=20cm 3.4.(2017·武昌调研)某几何体的三视图如图所示,则该几何体的表面积为导学号 52134582( B )A .18+2πB .20+πC .20+π2D .16+π[解析] 由三视图可知,这个几何体是一个边长为2的正方体割去了相对边对应的两个半径为1、高为1的14圆柱体,其表面积相当于正方体五个面的面积与两个14圆柱的侧面积的和,即该几何体的表面积S =4×5+2×2π×1×1×14=20+π.故选B .5.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为+++__16__---.导学号 52134583[解析] 利用三棱锥的体积公式直接求解.VD 1-EDF =VF -DD 1E =13SD 1DE ·AB =13×12×1×1×1=16.6.已知E ,F 分别是矩形ABCD 的边BC 与AD 的中点,且BC =2AB =2,现沿EF 将平面ABEF 折起,使平面ABEF ⊥平面EFDC ,则三棱锥A -FEC 外接球的体积为+++__2π__---.导学号 52134584[解析] 如图,平面ABEF ⊥平面EFDC ,AF ⊥EF ,所以AF ⊥平面ECDF ,将三棱锥A -FEC 补成正方体ABC ′D ′-FECD . 依题意,其棱长为1,外接球的半径R =32, 所以外接球的体积V =43πR 3=43π·(32)3=32π.7.如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.导学号 52134585(1)证明:AB ⊥A 1C ;(2)若AB =CB =2,A 1C =6,求三棱柱ABC -A 1B 1C 1的体积. [解析] (1)取AB 的中点O ,连接OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB . 因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)由题设知△ABC 与△AA 1B 都是边长为2的等边三角形,所以OC =OA 1=3. 又A 1C =6,则A 1C 2=OC 2+OA 21,故OA 1⊥OC .因为OC ∩AB =O ,所以OA 1⊥平面ABC ,OA 1为三棱柱ABC -A 1B 1C 1的高. 又△ABC 的面积S △ABC = 3.故三棱柱ABC -A 1B 1C 1的体积V =S △ABC ×OA 1=3.8.(2017·全国卷Ⅱ,18)如图,四棱锥P -ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°.导学号 52134586(1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为27,求四棱锥P -ABCD 的体积.[解析] (1)证明:在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD . 又BC ⊄平面PAD ,AD ⊂平面PAD , 故BC ∥平面PAD .(2)如图,取AD 的中点M ,连接PM ,CM .由AB =BC =12AD 及BC ∥AD ,∠ABC =90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面PAD 为等边三角形且垂直于底面ABCD , 平面PAD ∩平面ABCD =AD , 所以PM ⊥AD ,PM ⊥底面ABCD . 因为CM ⊂底面ABCD , 所以PM ⊥CM .设BC =x ,则CM =x ,CD =2x ,PM =3x ,PC =PD =2x . 如图,取CD 的中点N ,连接PN ,则PN ⊥CD , 所以PN =142x .因为△PCD 的面积为27, 所以12×2x ×142x =27,解得x =-2(舍去)或x =2. 于是AB =BC =2,AD =4,PM =23.所以四棱锥P -ABCD 的体积V =13×2 2+4 2×23=43.B 组1.(2017·河南质检)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是导学号 52134587( B )A .36cm 3B .48cm 3C .60cm 3D .72cm 3[解析] 由三视图可知,该几何体的上面是个长为4,宽为2,高为2的长方体,下面是一个放倒的四棱柱,高为4,底面是个梯形,梯形的上、下底分别为2、6,高为2.长方体的体积为4×2×2=16,四棱柱的体积为4×2+62×2=32,所以该几何体的体积为32+16=48(cm 3),选B .2.(2017·唐山统考)三棱锥P -ABC 中,PA ⊥平面ABC 且PA =2,△ABC 是边长为3的等边三角形,则该三棱锥外接球的表面积为导学号 52134588( C )A .4π3B .4πC .8πD .20π[解析] 由题意得,此三棱锥外接球即为以△ABC 为底面、以PA 为高的正三棱柱的外接球,因为△ABC 的外接圆半径r =32×3×23=1,外接球球心到△ABC 的外接圆圆心的距离d =1,所以外接球的半径R =r 2+d 2=2,所以三棱锥外接球的表面积S =4πR 2=8π,故选C .3.某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中面积最大的为导学号 52134589( B )A .2 2B .2 3C .4D .2 6[解析] 如图,四面体的直观图是棱长为2的正方体ABCD -MNPQ 中的三棱锥Q -BCN ,且QB =22+ 22 2=23,NC =QN =QC =22,四面体Q -BCN 各面的面积分别为S △QBN =S △QBC =12×2×22=22,S △BCN =12×2×2=2,S △QCN =34×(22)2=23,面积最大为23.4.(2017·淄博一模)三棱锥S -ABC 及其三视图中的正视图和侧视图如图所示,则棱SB 的长为导学号 52134590( B )A .211B .4 2C .38D .16 3[解析] 由已知中的三视图可得SC ⊥平面ABC ,且底面△ABC 为等腰三角形, 在△ABC 中AC =4,AC 边上的高为23, 故BC =4,在Rt △SBC 中,由SC =4, 可得SB =42.5.(2017·广西南宁检测)设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2.若它们的侧面积相等且V 1V 2=32,则S 1S 2的值是+++__94__---.导学号 52134591[解析] 设甲、乙两个圆柱的底面半径分别为r 1,r 2,高分别为h 1,h 2,则有2πr 1h 1=2πr 2h 2,即r 1h 1=r 2h 2,又V 1V 2=πr 21h 1πr 22h 2,∴V 1V 2=r 1r 2,∴r 1r 2=32,则S 1S 2=(r 1r 2)2=94.6.(2017·山西太原一模)已知在直角梯形ABCD 中,AB ⊥AD ,CD ⊥AD ,AB =2AD =2CD =2,将直角梯形ABCD 沿AC 折叠成三棱锥D -ABC ,当三棱锥D -ABC 的体积取最大值时,其外接球的体积为+++__43π__---.导学号 52134592[解析] 当平面DAC ⊥平面ABC 时,三棱锥D -ABC 的体积取最大值.此时易知BC ⊥平面DAC ,∴BC ⊥AD ,又AD ⊥DC ,∴AD ⊥平面BCD ,∴AD ⊥BD ,取AB 的中点O ,易得OA =OB =OC =OD =1,故O 为所求外接球的球心,故半径r =1,体积V =43πr 3=43π.7.如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .导学号 52134593(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E -ACD 的体积为63,求该三棱锥的侧面积. [解析] (1)证明:因为四边形ABCD 为菱形,所以AC ⊥BD . 因为BE ⊥平面ABCD ,所以AC ⊥BE . 故AC ⊥平面BED .又AC ⊂平面AEC , 所以平面AEC ⊥平面BED . (2)设AB =x ,在菱形ABCD 中, 由∠ABC =120°,可得AG =GC =32x , GB =GD =x2.因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x . 由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE =22x . 由已知得,三棱锥E ACD 的体积V E ACD =13×12AC ·GD ·BE =624x 3=63. 故x =2.从而可得AE =EC =ED =6.所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为5. 故三棱锥E ACD 的侧面积为3+25.8.如图,在多面体ABCDEF 中,底面ABCD 是边长为2的正方形,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,BF =3,G 和H 分别是CE 和CF 的中点.导学号 52135097(1)求证:AC ⊥平面BDEF ; (2)求证:平面BDGH //平面AEF ; (3)求多面体ABCDEF 的体积.[解析] (1)证明:因为四边形ABCD 是正方形, 所以AC ⊥BD .又因为平面BDEF ⊥平面ABCD ,平面BDEF ∩平面ABCD =BD , 且AC ⊂平面ABCD , 所以AC ⊥平面BDEF .(2)证明:在△CEF 中,因为G 、H 分别是CE 、CF 的中点, 所以GH ∥EF ,又因为GH ⊄平面AEF ,EF ⊂平面AEF , 所以GH ∥平面AEF .设AC ∩BD =O ,连接OH ,在△ACF 中,因为OA =OC ,CH =HF , 所以OH ∥AF ,又因为OH ⊄平面AEF ,AF ⊂平面AEF ,所以OH ∥平面AEF .又因为OH ∩GH =H ,OH ,GH ⊂平面BDGH , 所以平面BDGH ∥平面AEF . (3)解:由(1),得AC ⊥平面BDEF ,又因为AO =2,四边形BDEF 的面积S BDEF =3×22=62, 所以四棱锥A -BDEF 的体积V 1=13×AO ×S BDEF =4.同理,四棱锥C -BDEF 的体积V 2=4. 所以多面体ABCDEF 的体积V =V 1+V 2=8.。
专题7.1 三视图与几何体的体积和表面积(测试时间:120分钟满分:150分)一、选择题(共12小题,每题5分,共60分)1. 一个几何体的正视图、侧视图、和俯视图形状都相同,大小均相等,则这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱【答案】D【解析】D1C1A1B1DCAB考点:三视图2. 【2018云南曲靖一中质检】一个四棱锥的三视图如图所示,关于这个四棱锥,下列说法正确的是()A. 最长的棱长为B. 该四棱锥的体积为C. 侧面四个三角形都是直角三角形D. 侧面三角形中有且仅有一个等腰三角形【答案】B【解析】还原四棱锥,如图所示,由主视图可知,底面计算可知B 正确,故选B .点睛: 思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.3. 一个几何体的三视图如图所示,则该几何体的体积为( )A.3 B.3 C.6【答案】A【解析】22122-23⨯⨯. 考点:空间几何体的体积.4. 【2018江西临川二中一模】一个几何体的三视图如图所示,则该几何体外接球的表面积为( )A. 28πB. 32πC. 1123πD. 1283π 【来源】【全国百强校】江西省临川第二中学2018届高三上学期第四次月考(期中)数学(文)试题【答案】C【解析】如题,该几何体如下:则外接球的半径R =211243S R ππ==,故选C 。
5. 一个空间几何体的三视图如图所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的体积为( )A .64B .32C .643D .323【来源】【百强校】2017届湖南长沙长郡中学高三上周测十二数学(文)试卷(带解析)【答案】B【解析】考点:1、几何体的三视图;2、棱柱的体积公式.【方法点睛】本题主要考查利几何体的三视图、棱柱的体积公式,属于难题.三视图问题是考查学生空间想象能力及抽象思维能力的最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,解题时不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.6. 【2018河南漯河中学三模】已知三棱锥S ABC -的底面是以AB 为斜边的等腰直角三角形, 4,4AB SA SB SC ====,则三棱锥的外接球的球心到平面ABC 的距离为( )B. 2 D. 【答案】A 【解析】由图可知, 222OB OD DB =+,得()224r r =+,解得3r =,3d ∴=,故选A 。
专题11 空间几何体的三视图、表面积及体积1.如图所示是一个物体的三视图,则此三视图所描述物体的直观图是( )【答案】D【解析】先观察俯视图,由俯视图可知选项B 和D 中的一个正确,由正视图和侧视图可知选项D 正确. 2.如图是一个空间几何体的三视图,则该几何体的表面三角形中为直角三角形的个数为( )A .2B .3C .4D .53.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在直线旋转一周而形成的曲面所围成的几何体的体积为( )A.22π3B.42π3C .22πD .42π【解析】选B.旋转体是两个圆锥,其底面半径为直角三角形斜边的高2,高即斜边的长的一半2,故所得几何体的体积V =13π(2)2×2×2=42π3.4.如图,在棱长为1的正方体ABCD A 1B 1C 1D 1中,E 是棱BC 上的一点,则三棱锥D 1B 1C 1E 的体积等于( )A.13 B.512C.36D.16【解析】选D.V D 1B 1C 1E =V E B 1C 1D 1=13S △B 1C 1D 1·CC 1=13×12×12×1=16,故选D.5.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P ABC 为鳖臑,PA ⊥平面ABC ,PA =AB =2,AC =4,三棱锥P ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( )A .8πB .12πC .20πD .24π6.某几何体的三视图如图所示,若该几何体的体积为37,则侧 (左)视图中线段的长度x 的值是( )3A.7 B .27 C .4D .5【解析】选C.分析题意可知,该几何体为如图所示的四棱锥P ABCD ,故其体积V =13×32+32×4×CP =37,所以CP =7,所以x =32+72=4.7.如图,正四棱锥P ABCD 的底面边长为6 cm ,侧棱长为5 cm ,则它的侧(左)视图的周长等于( )A .17 cmB .(119+5)cmC .16 cmD .14 cm8.已知直三棱柱ABC A 1B 1C 1的6个顶点都在球O 的球面上.若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210 C.132D .3109.如下图所示,某空间几何体的正视图与侧视图相同,则此几何体的表面积为( )A .6π B.23π+ 3 C .4π D .2π+ 3【答案】C【解析】此几何体为一个组合体,上为一个圆锥,下为一个半球拼接而成,表面积为S =4π2+12×2×2π=4π.10.某四面体的三视图如图所示,该四面体的六条棱中,长度最长的棱的长是( )A .2 5B .2 6C .27D .4 2【解析】选C.由三视图可知该四面体的直观图如图所示,其中AC =2,PA =2,△ABC 中,边AC 上的高为23,所以BC =42+32=27,而P B =PA 2+AB 2=22+42=25,PC =PA 2+AC 2=22,因此在四面体的六条棱中,长度最长的棱是BC ,其长为27,选C.511.某四棱锥的三视图如图所示,则该几何体的表面积为()A .17B .22C .14+213D .22+21312.一个空间几何体的三视图如图所示,则该几何体的外接球的表面积为()A .24πB .6πC .4πD .2π【解析】选B.题中的几何体是三棱锥A BCD ,如图所示,其中底面△BCD 是等腰直角三角形,BC =CD =2,AB ⊥平面BCD ,BC ⊥CD ,AB =2,BD =2,AC ⊥CD .取AD 的中点M ,连接BM ,CM ,则有BM =CM =12AD=1222+22=62.从而可知该几何体的外接球的半径是62.故该几何体的外接球的表面积为4π×⎝⎛⎭⎪⎫622=6π,应选B.13.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.【答案】7【解析】利用圆锥、圆柱的体积公式,列方程求解. 设新的底面半径为r ,由题意得13×π×52×4+π×22×8=13×π×r 2×4+π×r 2×8, ∴r 2=7,∴r =7.14.三棱锥P ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥 D ABE 的体积为V 1,P ABC 的体积为V 2,则V 1V 2=________.【答案】1415.某几何体的三视图如图所示,则该几何体的体积为________.7【答案】16+8π【解析】根据三视图可以判断该几何体由上、下两部分组成,其中上面部分为长方体,下面部分为半个圆柱,所以组合体的体积为2×2×4+12×22×π×4=16+8π.16.在三棱柱ABC A 1B 1C 1中,侧面AA 1C 1C ⊥底面ABC ,AA 1=A 1C =AC =AB =BC =2,且点O 为AC 中点.(1)证明:A 1O ⊥平面ABC ; (2)求三棱锥C 1ABC 的体积.17.如图,四边形ABCD 为菱形,G 是AC 与BD 的交点,BE ⊥平面ABCD.(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E ACD 的体积为63,求该三棱锥的侧面积. (1)证明:因为四边形ABCD 为菱形,。
【知识归纳梳理】一、空间几何体的结构特征 多面体的结构特征☎✆棱柱⎩⎪⎨⎪⎧底面:互相平行侧面:都是四边形,且每相邻两个面的交线都平行且相等☎✆棱锥⎩⎪⎨⎪⎧底面:是多边形侧面:都是有一个公共顶点的三角形☎✆棱台 棱锥被平行于棱锥底面的平面所截 截面与底面之间的部分 旋转体的结构特征☎✆圆柱可以由矩形绕其任一边旋转得到 ☎✆圆锥可以由直角三角形绕其一条直角边旋转得到☎✆圆台可以由直角梯形绕直角腰或等腰梯形绕上下底中点连线旋转得到 也可由平行于圆锥底面的平面截圆锥得到☎✆球可以由半圆面或圆面绕直径旋转得到☯注意 ☎✆认识棱柱、棱锥、棱台、圆柱、圆锥、圆台的结构特征时 易忽视定义 可借助于几何模型强化对空间几何体的结构特征的认识 ☎✆台体可以看成是由锥体截得的 但一定强调截面与底面平行二、空间几何体的三视图与直观图 空间几何体的三视图☎✆空间几何体的三视图包括正☎主✆视图、侧☎左✆视图、俯视图 分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线☎✆三视图的画法♊基本要求:长对正 高平齐 宽相等♋画法规则:正侧一样高 正俯一样长 侧俯一样宽; ♌看不到的线画虚线☯注意 若相邻两物体的表面相交 则表面的交线是它们的分界线 在三视图中 要注意实、虚线的区别空间几何体的直观图画空间几何体的直观图常用 斜二测♉画法 基本步骤是:☎✆在已知图形中取互相垂直的⌧轴、⍓轴 两轴相交于点 画直观图时 把它们画成对应的⌧ 轴、⍓ 轴 两轴相交于点 且使 ⌧ ⍓ = ☎或 ✆ ☎✆已知图形中平行于⌧轴、⍓轴的线段 在直观图中分别平行于 ⌧ 轴、⍓ 轴 ☎✆已知图形中平行于⌧轴的线段 在直观图中长度 保持不变 平行于⍓轴的线段 长度变为 原来的一半 ☎✆在已知图形中过 点作 轴垂直于⌧⍓平面 在直观图中对应的 轴也垂直于⌧ ⍓ 平面 已知图形中平行于 轴的线段 在直观图中仍平行于 轴且长度 不变 ☯注意 按照斜二测画法得到的平面图形的直观图 其面积与原图形的面积有以下关系:直观图=原图形 原图形= 直观图三、空间几何体的表面积和体积 空间几何体的表面积当圆台的上底面半径与下底面半径相等时 得到圆柱;当圆台的上底面半径为零时 得到圆锥 由此可得:圆柱侧= ⇨❒● ❼❒ =❒ 圆台侧=⇨☎❒+❒ ✆● ❼❒ =圆锥侧=⇨❒●[注意] 组合体的表面积应注意重合部分的处理. 2.空间几何体的体积(1)柱体:V 柱体=Sh ;V 圆柱=πr 2h .(2)锥体:V 锥体=13Sh ;V 圆锥=13πr 2h .(3)台体:V 台体=13(S +SS ′+S ′)h ;V 圆台=13πh (r 2+rr ′+r ′2).3.球体(1)球的表面积公式:S =4πR 2;球的体积公式V =43πR 3(2)正方体与球:①正方体的内切球:截面图为正方形EFHG 的内切圆,如图所示.设正方体的棱长为a ,则|OJ |=r =a2(r 为内切球半径).②与正方体各棱相切的球:截面图为正方形EFHG 的外接圆,则|GO |=R =22a .③正方体的外接球:截面图为正方形ACC 1A 1的外接圆,则|A 1O |=R ′=32a .(3)正四面体与球:如图,设正四面体的棱长为a ,内切球的半径为r ,外接球的半径为R ,取AB 的中点为D ,连接CD ,SE 为正四面体的高,在截面三角形SDC 内作一个与边SD 和DC 相切,圆心在高SE 上的圆.因为正四面体本身的对称性,内切球和外接球的球心同为O .此时,CO =OS =R ,OE =r ,SE = 23a ,CE =33a ,则有R +r = 23a ,R 2-r 2=|CE |2=a 23,解得R =64a ,r =612a .【第1讲:空间几何体的结构特征及三视图】题型1:空间几何体的结构特征【典型例题】[例1](1)设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体; ②底面是矩形的平行六面体是长方体; ③四棱锥的四个侧面都可以是直角三角形; ④棱台的相对侧棱延长后必交于一点;⑤直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥.解析:命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;③正确,如图1,PD⊥平面ABCD,其中底面ABCD为矩形,可证明∠P AB,∠PCB为直角,这样四个侧面都是直角三角形;命题④由棱台的定义知是正确的;⑤错误,当以斜边为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥.如图2所示,它是由两个同底圆锥形成的.答案:①③④(2)以下命题:①直角三角形绕一边所在直线旋转得到的旋转体是圆锥;②夹在圆柱的两个平行截面间的几何体还是圆柱;③圆锥截去一个小圆锥后剩余部分是圆台;④棱锥截去一个小棱锥后剩余部分是棱台.其中正确的命题序号是________.【答案】③[例2](1)用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体解析:选C截面是任意的且都是圆面,则该几何体为球体.(2)下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选DA错误,如图1是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥;B错误,如图2,若△ABC不是直角三角形,或△ABC是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥;C错误,若该棱锥是六棱锥,由题设知,它是正六棱锥.易证正六棱锥的侧棱长必大于底面边长,这与题设矛盾.图1图2【变式训练】1.判断正误(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱()(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥()(3)用一个平面去截一个球,截面是一个圆面()答案:(1)×(2)×(3)√2.下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若过两个相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱.【答案】②④3.给出四个命题:①各侧面都是全等四边形的棱柱一定是正棱柱;②对角面是全等矩形的六面体一定是长方体;③有两侧面垂直于底面的棱柱一定是直棱柱;④长方体一定是正四棱柱.其中正确的命题个数是()A.0B.1C.2D.3【答案】A题型2:空间几何体的三视图与直观图【典型例题】[例1](1)一个长方体去掉一个小长方体,所得几何体的正视图与侧视图分别如图所示,则该几何体的俯视图为()【答案】 C(2)如图由若干个相同的小立方体组成的几何体的俯视图,其中小立方体中的数字表示相应位置的小立方体的个数,则该几何体的侧视图为()解析:选C由俯视图知侧视图从左到右能看到的小立方体个数分别为2,3,1.(3)已知三棱锥的正视图与俯视图如图所示,俯视图是边长为2的正三角形,则该三棱锥的侧视图可能为 ()【答案】B(4)一个正方体截去两个角后所得几何体的正视图、侧视图如图所示,则其俯视图为()【答案】C(5)如图所示,E、F分别为正方体ABCD—A1B1C1D1的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面DCC1D1上的投影是______.(填序号)【答案】②[例2](1)(2014·福建)某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱【答案】A[考向1]因为圆锥、四面体、三棱柱的正视图均可以是三角形,而圆柱无论从哪个方向看均不可能是三角形,故选A.(2)(2014·课标Ⅰ)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱[解析] B[由题知,该几何体的三视图为一个三角形,两个四边形,分析可知该几何体为三棱柱,故选B.](3)(教材例题改编)已知空间几何体的三视图如图,则该几何体是由__________________组合而成.答案:圆柱和正四棱柱(4)(教材习题改编)如图,长方体ABCD-A′B′C′D′被截去一部分,其中EH∥A′D′,则剩下的几何体是________,截去的几何体是________.答案:五棱柱三棱柱(5)(2015·北京朝阳期末)一个四棱锥的三视图如图所示,则该四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4[解析] D[满足条件的四棱锥的底面为矩形,且一条侧棱与底面垂直,如图所示,易知该四棱锥四个侧面均为直角三角形.][例3](1)利用斜二测画法得到的以下结论,正确的是__________.(写出所有正确的序号)①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④圆的直观图是椭圆;⑤菱形的直观图是菱形.【答案】①②④(2)用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD平行于x轴.已知四边形ABCD的面积为2 2 cm2,则原平面图形的面积为()A.4 cm2B.4 2 cm2C.8 cm2D.8 2 cm2解析:选C依题意可知∠BAD=45°,则原平面图形为直角梯形,上下底面的长与BC,AD相等,高为梯形ABCD的高的22倍,所以原平面图形的面积为8 cm2.(3)(2014·湖北)在如图所示的空间直角坐标系O-xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号①②③④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②解析:选D在空间直角坐标系O-xyz中作出棱长为2的正方体,在该正方体中作出四面体,如图所示,由图可知,该四面体的正视图为④,俯视图为②.选D.【变式训练】1.(2011·课标全国)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()【答案】D2.(2015·成都一诊)若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是()[解析]C[由题意知,俯视图的长度和宽度相等,故C不可能.]3.(2015·南阳三模)已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为()解析:选C当正视图为等腰三角形时,则高应为2,且应为虚线,排除A,D;当正视图是直角三角形,由条件得一个直观图如图所示,中间的线是看不见的线P A形成的投影,应为虚线,故答案为C.4.(2015·桂林一调)已知底面为正方形的四棱锥,其一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的()[解析]C[选项A,B,D中的俯视图,正方形内的线应该为另一条对角线,当四棱锥的直观图为右图时,它的三视图是C.]5.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆;④椭圆.其中正确的是________.答案:②③6.(2016天津文)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )A B C D【答案】B7.(2015·东北三校联考)利用斜二测画法可以得到:②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是________.答案:①②8.(2015·福州模拟)用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()解析:选A由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y轴上的对角线长为2 2.9.(2013·四川)一个几何体的三视图如图所示,则该几何体的直观图可以是()【答案】D[考向1]由三视图可知该几何体为一个上部为圆台、下部为圆柱的组合体,圆台的下底面和圆柱的底面恰好重合.10.(2014·江西)一个几何体的直观图如图,下列给出的四个俯视图中正确的是()【答案】B俯视图为在水平投射面上的正投影,结合几何体可知选B.【第2讲:空间几何体的三视图与表面积和体积】题型3:空间几何体的三视图与表面积【典型例题】[例1](1)(2015·北京石景山一模)正三棱柱的侧(左)视图如图所示,则该正三棱柱的侧面积为________.解析:由侧(左)视图知:正三棱柱的高(侧棱长)为2,底边上的高为3,所以底边边长为2,侧面积为3×2×2=12.答案:12(2)(2014·日照一模)如图是一个几何体的正视图和侧视图,其俯视图是面积为82的矩形.则该几何体的表面积是( ).A.8B.20+8 2C.16D.24+8 2解析 由已知俯视图是矩形,则该几何体为一个三棱柱,根据三视图的性质,俯视图的矩形宽为22,由面积82,得长为4,则该几何体的表面积为S =2×12×2×2+22×4+2×2×4=20+8 2.答案 B (3)(2014·许昌模拟)如图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为( ).A.4πB.32π C .3π D .2π解析 由三视图可知,该几何体是一个圆柱,S 表=2×π×⎝⎛⎭⎫122+π×1×1=3π2. 答案 B (4)(2016·湖南长沙联考)已知某几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的表面积是________.【解析】 由题意知,该几何体是一个侧放的圆锥,圆锥底面位于右侧,底面圆的半径为1,圆锥的高为2,易知其母线长为5,所以其表面积为S =π·1×(1+5)=5π+π. 【答案】 5π+π (5)(2016·课标III)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A.18+36 5B.54+185C.90D.81=2×32+2×3×6+2×3×32+62 =18+36+185=54+18 5.[例2](1)已知棱长为a ,各面均为等边三角形的四面体S -ABC ,则它的表面积为________.解析:过S 作SD ⊥BC ,∵BC =a ,∴SD =32a∴S △SBC =34a 2,∴表面积S =4×34a 2=3a 2.答案:3a 2 (2)(2015·北京)某三棱锥的三视图如图所示,则该三棱锥的表面积是( ) A.2+ 5 B.4+ 5 C.2+2 5 D.5【解析】作出三棱锥的示意图如图①,在△ABC 中,作AB 边上的高CD ,连接SD . 在三棱锥S -ABC 中,SC ⊥底面ABC ,SC =1,底面三角形ABC 是等腰三角形,AC =BC ,AB 边上的高CD =2,AD =BD =1,斜高SD =5,AC =BC = 5.∴S 表=S △ABC +S △SAC +S △SBC +S △SAB =12×2×2+12×1×5+12×1×5+12×2×5=2+2 5.(3)(2015·遵义模拟)一个几何体的三视图如图所示,其中俯视图是菱形,则该几何体的侧面积为( ) A.3+ 6 B.3+ 5 C.2+ 6 D.2+ 5= 2.解析:选C 由三视图还原为空间几何体,如图所示,则有OA =OB =1,AB 又PB ⊥平面ABCD , ∴PB ⊥BD ,PB ⊥AB ,∴PD =22+1=5,P A =2+12=3, 从而有P A 2+DA 2=PD 2,∴P A ⊥DA ,∴该几何体的侧面积S =2×12×2×1+2×12×2×3=2+ 6.A. 2B. 3C. 5D. 63.C[考向1]由三视图可知,该几何体是一个底面为直角梯形,且有一条侧棱垂直于底面的四棱锥,直观图如图所示,其中P A⊥面ABCD,P A=1,AD=1,CD=1,AB=2,PD=2,PC=3,而在Rt△P AB中,PB=P A2+AB2=12+22=5>3,故最长的侧棱为PB,其长度为5,故选C.(5)(2014·课标Ⅰ)如图所示,网络纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6 2B.4 2C.6D.4【解析】由三视图可知该几何体为图中棱长为4的正方体中的三棱锥P-ABC.由图②可知,最长棱为PC=42+42+22=6.[例3](1)已知某几何体的三视图的正视图和侧视图是全等的等腰梯形,俯视图是两个同心圆,如图所示,则该几何体的表面积为________.解析由三视图知该几何体为上底直径为2,下底直径为6,高为23的圆台,则几何体的表面积S=π×1+π×9+π×(1+3)×232+22=26π.答案:26π(2)一个几何体的三视图如图所示,则该几何体的表面积为________.解析 如图所示:该几何体为长为4,宽为3,高为1的长方体内部挖去一个底面半径为1,高为1的圆柱后剩下的部分.∴S 表=(4×1+3×4+3×1)×2+2π×1×1-2π×12=38. 答案 38 (3)(2015·课标Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( ) A.1 B.2 C.4 D.8解析 B 由题意知,该几何体是由半个圆柱与半个球组合得到的.则表面积S =2πr 2+2×12πr 2+4r 2+2πr 2=5πr 2+4r 2=20π+16,∴r =2.(4)[2014重庆理]某几何体的三视图如下图所示,则该几何体的表面积为( ) A.54 B.60 C.66 D.72俯视图左视图正视图3245【答案】B【解析】在长方体中构造几何体'''ABC A B C -,如右图所示, 4,'5,'2,3AB A A B B AC ====,经检验该几何体的三视图满足 题设条件.其表面积'''''''''ABC ACC A ABB A BCC B A B C S S S S S S ∆∆=++++,3515615146022=++++=,故选择BC'B'A'CBA(5)(2014·安徽)一个多面体的三视图如图所示,则该多面体的表面积为()A.21+ 3B.18+ 3C.21D.18解析A由三视图知,该多面体是由正方体割去两个角后剩下的部分,如图所示,则S=S正方体-2S三棱锥侧+2S三棱锥底=24-2×3×12×1×1+2×34×(2)2=21+ 3.【变式训练】1.(2015·北京西城期末)已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为________.解析:由正三棱柱三视图还原直观图可得正(主)视图是一个矩形,其中一边的长是侧(左)视图中三角形的高,另一边是棱长.因为侧(左)视图中三角形的边长为2,所以高为3,所以正视图的面积为2 3.答案:2 32.(2015·云南一检)如果一个空间几何体的正视图、侧视图、俯视图都是半径等于5的圆,那么这个空间几何体的表面积等于()A.100πB.100π3 C.25π D.25π3解析:选A易知该几何体为球,其半径为5,则表面积为S=4πR2=100π.3.(2013·湖南)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于().A.1B. 2C.2-12 D.2+12解析 由俯视图的面积为1可知,该正方体的放置如图所示,当正视图的方向与正方体的侧面垂直时,正视图的面积最小,其值为1,当正视图的方向与正方体的对角面BDD 1B 1或ACC 1A 1垂直时,正视图的面积最大,其值为2,由于正视图的方向不同,因此正视图的面积S ∈[1,2].故选C. 答案 C 4.(2014·陕西)将边长为1的正方形以其一边所在的直线为旋转轴旋转一周,所得几何体的侧面积是( ) A.4π B.3π C.2π D .π解析:选C 由几何体的形成过程知所得几何体为圆柱,底面半径为1,高为1,其侧面积S =2πrh =2π×1×1=2π. 5.(2013·临沂一模)具有如图所示的正视图和俯视图的几何体中,体积最大的几何体的表面积为( ).A.3B.7+3 2C.72π D .14解析 由正视图和俯视图可知,该几何体可能是四棱柱或者是水平放置的三棱柱,或水平放置的圆柱.由图可知四棱柱的体积最大.四棱柱的高为1,底面边长分别为1,3,所以表面积为2(1×3+1×1+3×1)=14. 答案 D 6.(2015·山东淄博模拟)把边长为1的正方形ABCD 沿对角线BD 折起,形成的三棱锥A -BCD 的正(主)视图与俯视图如图所示,则其侧(左)视图的面积为( )A.22B.12C.24D.14解析 D 由正(主)视图与俯视图可得三棱锥A -BCD 的一个侧面与底面垂直,其侧(左)视图是直角三角形,且直角边长均为22,所以侧(左)视图的面积为S =12×22×22=14.7.(2016·西安一模)如图,网格纸中的小正方形的边长均为1,图中粗线画出的是一个几何体的三视图,则这个几何体的表面积为( ) A.12(22+32+4) B.12(22+32+8) C.12(22+2+8) D.12(22+22+8)解析 B 根据三视图可知该几何体是底面为直角三角形的三棱锥,其表面积S =12×2×2+12×2×3+12×2×3+12×2×11=12(22+32+8),故选B.8.(2016·课标Ⅱ)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π解析C S表=πr2+2πr×4+12×2πr×R=4π+16π+2π22+(23)2=28π.9 .(2013重庆文)某几何体的三视图如图所示,则该几何体的表面积为()A.180B.200C.220D.240【答案】D10.(2014浙江理)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )A.90cm2B.129cm2C.132cm2D.138cm2【答案】D【解析】由三视图知:几何体是直三棱柱与直四棱柱的组合体,其中直三棱柱的侧棱长为3,底面是直角边长分别为3、4的直角三角形,四棱柱的高为6,底面为矩形,矩形的两相邻边长为3和4, ∴几何体的表面积S=2×4×6+3×6+3×3+2×3×4+2××3×4+(4+5)×3=48+18+9+24+12+27=138(cm2).11.(2017北京理)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( ).A.3 2B.2 3C.2 2D.2解析几何体四棱锥如图所示,最长棱为正方体的体对角线,即22222223l++=故选B.12.(2017全国1理)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( ). A.10 B.12 C.14 D.16解析 由三视图可画出立体图,如图所示,该多面体只有两个相同的梯形的面, ()24226S =+⨯÷=梯,6212S =⨯=全梯.故选B.题型4:空间几何体的三视图与体积 【典型例题】 [例1](1)(2013·陕西)某几何体的三视图如图所示,则其体积为________.解析 该几何体为一个半圆锥,故其体积为V =13×12×π×12×22=π3.答案 π3(2)(2015·惠州二调)一个几何体的三视图如图所示,其中俯视图与左(侧)视图均为半径是2的圆,则这个几何体的体积是( )A.16πB.14πC.12πD.8π解析:选D 由三视图可知,该几何体为一个球切去四分之一个球后剩余的部分,由于球的 (3)(2013·广东)某四棱台的三视图如图所示,则四棱台的体积是( ).A.4B.143C.163D.6解析 由四棱台的三视图可知该四棱台的上底面是边长为1的正方形;下底面是边长为2的正方形,高为2.由棱台的体积公式可知该四棱台的体积V =13(12+12×22+22)×2=143,故选B.答案 B (4)(2016·四川)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是________.解析 [考向3]【解析】 由题可知锥体的高为1,底面积为12×23×1=3,∴V 锥=13×3×1=33.【答案】 33[例2](1)(2015·浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A.8 cm 3B.12 cm 3C.323 cm 3D.403cm 3解析 C 由题意得,该几何体由一个正方体与一个正四棱锥组合而成,所以体积V =23+13×22×2=323.(2)(2017山东理)由一个长方体和两个14圆柱体构成的几何体的三视图如图所示,则该几何体的体积为 .解析 该几何体的体积为21112211242V π=π⨯⨯⨯+⨯⨯=+.(3)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( ). A.π2+1 B.π2+3 C.3π2+1 D.3π2+3解析 由三视图可知,直观图是由半个圆锥与一个三棱锥构成,半圆锥体积为()2111=13232S π⨯π⨯⨯=,三棱锥体积为211=213=132S ⎛⎫⨯⨯⨯ ⎪⎝⎭,所以几何体体积1212S S S π=+=+.故选A.(4)(2013·课标Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( ). A.16+8π B .8+8π C.16+16π D .8+16π解析 由三视图可知该几何体由长方体和圆柱的一半组成.其中长方体的长、宽、高分别为4,2,2,圆柱的底面半径为2、高为4.所以V =2×2×4+12×22×π×4=16+8π.故选A.(5)(2015·广东中山模拟)已知一个几何体的三视图如图所示,则该几何体的体积(单位:cm 3)为________.解析 π+33[由三视图,该组合体上部是一个三棱锥,下部是一圆柱由图中数据知V 圆柱=π×12×1=π三棱锥垂直于底面的侧面是边长为2的等边三角形,且边长是2,故其高即为三棱锥的高,高为3,故棱锥高为3由于棱锥底面为一等腰直角三角形,且斜边长为2,故两直角边长都是2,底面三角形的面积是12×2×2=1, 故V 棱锥=13×1×3=33,故该几何体的体积是π+33.][例3](1)(2015·山东实验模拟)设下图是某几何体的三视图,则该几何体的体积为( ) A.2π3 B.8-π3 C.8-2π D . 8-2π3解析D[由三视图可知,几何体为正方体内挖去一个圆锥,所以该几何体的体积为V 正方体-V 锥=23-13(π×12×2)=8-23π.](2)(2013·辽宁)某几何体的三视图如图所示,则该几何体的体积是________.解析 由三视图可知该几何体是一个圆柱内部挖去一个正四棱柱,圆柱底面圆半径为2,高为4,故体积为16π;正四棱柱底面边长为2,高为4,故体积为16,所以几何体的体积为16π-16. (3)(2015·河南天一联考)某几何体的三视图如图所示,则该几何体的体积为( ) A.12+π B .8+π C .12-π D .6-π解析 C [由三视图可知,原几何体是底面边长为2的正方形,高为3的棱柱,里面挖去一个半径为1的球,所以所求几何体的体积为12-π,故选C.](4)(2017全国2理)如图所示,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( ). A.90π B .63π C.42π D.36π解析 该几何体可视为一个完整的圆柱减去一个高为6的圆柱的一半,如图所示.2211π310π3663π22=-=⋅⋅-⋅⋅⋅=V V V 总上.故选B.466(5)(2015·唐山统考)某几何体的三视图如图所示,则该几何体的体积为()A.8π+16B.8π-16C.8π+8D.16π-8解析:选B由三视图可知:几何体为一个半圆柱去掉一个直三棱柱.半圆柱的高为4,底面半圆的半径为2,直三棱柱的底面为斜边是4的等腰直角三角形,高为4,故几何体的体积V=12π×22×4-12×4×2×4=8π-16.[例4](1)(2014·福州模拟)如图所示,已知三棱柱ABC-A1B1C1的所有棱长均为1,且AA1⊥底面ABC,则三棱锥B1-ABC1的体积为().A.312 B.34 C.612 D.64解析三棱锥B1-ABC1的体积等于三棱锥A-B1BC1的体积,三棱锥A-B1BC1的高为32,底面积为12,故其体积为13×12×32=312.(2)(2012·山东)如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1-EDF的体积为________.[一般解法] 三棱锥D1-EDF的体积即为三棱锥F-DD1E的体积.因为E,F分别为AA1,B1C上的点,所以在正方体ABCD-A1B1C1D1中△EDD1的面积为定值12,F到平面AA1D1D的距离为定值1,所以=13×12×1=16. [优美解法] E点移到A点,F点移到C点,则==13×12×1×1×1=16.[答案]16(3)(2014·安徽)一个多面体的三视图如图所示,则该多面体的体积为()A.233 B.476 C.6 D.7。
专题检测(五) 空间几何体的三视图、表面积与体积一、选择题1.如图所示是一个物体的三视图,则此三视图所描述物体的直观图是( )解析:选D 先观察俯视图,由俯视图可知选项B 和D 中的一个正确,由正视图和侧视图可知选项D 正确.2.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是( )A .2B .92C.32D .3解析:选D 由三视图判断该几何体为四棱锥,且底面为梯形,高为x ,故该几何体的体积V =13×12×(1+2)×2×x =3,解得x =3.3.(2017·广州综合测试)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )解析:选D 由题意可得该几何体可能为四棱锥,如图所示,其高为2,其底面为正方形,面积为2×2=4,因为该几何体的体积为13×4×2=83,满足条件,所以俯视图可以为一个直角三角形.选D.4.(2017·新疆第二次适应性检测)球的体积为43π,平面α截球O 的球面所得圆的半径为1,则球心O 到平面α的距离为( )A .1 B. 2 C.3D. 6解析:选B 依题意,设该球的半径为R ,则有4π3R 3=43π,由此解得R =3,因此球心O 到平面α的距离d =R 2-12= 2.5.(2018届高三·湖南十校联考)如图,小方格是边长为1的正方形,一个几何体的三视图如图所示,则几何体的表面积为( )A .45π+96B .(25+6)π+96C .(45+4)π+64D .(45+4)π+96解析:选D 几何体为一个圆锥和一个正方体的组合体,正方体的棱长为4,圆锥的高为4,底面半径为2,几何体的表面积为S =6×42+π×22+π×2×42+22=(45+4)π+96.6.(2018届高三·西安八校联考)某几何体是直三棱柱与圆锥的组合体,其直观图和三视图如图所示,正视图为正方形,其中俯视图中椭圆的离心率为( )A.12B.24 C.22D.32解析:选C 依题意得,题中的直三棱柱的底面是等腰直角三角形,设其直角边长为a ,则斜边长为2a ,圆锥的底面半径为22a 、母线长为a ,因此其俯视图中椭圆的长轴长为2a 、短轴长为a ,其离心率e =1-⎝⎛⎭⎪⎫a 2a 2=22. 7.在棱长为3的正方体ABCD A 1B 1C 1D 1中,P 在线段BD 1上,且BP PD 1=12,M 为线段B 1C 1上的动点,则三棱锥M PBC 的体积为( )A .1B .32C.92D .与M 点的位置有关解析:选B ∵BP PD 1=12,∴点P 到平面BC 1的距离是D 1到平面BC 1距离的13,即为D 1C 13=1.M 为线段B 1C 1上的点,∴S △MBC =12×3×3=92,∴V M PBC =V P MBC =13×92×1=32.8.(2017·贵州适应性考试)如图,在正方体ABCD A 1B 1C 1D 1中,点P是线段A 1C 1上的动点,则三棱锥P BCD 的俯视图与正视图面积之比的最大值为( )A .1B . 2C . 3D .2解析:选D 正视图,底面B ,C ,D 三点,其中D 与C 重合,随着点P 的变化,其正视图均是三角形且点P 在正视图中的位置在边B 1C 1上移动,由此可知,设正方体的棱长为a ,则S正视图=12a 2;设A 1C 1的中点为O ,随着点P 的移动,在俯视图中,易知当点P 在OC 1上移动时,S 俯视图就是底面三角形BCD 的面积,当点P 在OA 1上移动时,点P 越靠近A 1,俯视图的面积越大,当到达A 1的位置时,俯视图为正方形,此时俯视图的面积最大,S俯视图=a 2,所以S 俯视图S 正视图的最大值为a 212a2=2. 9.(2017·石家庄一模)祖暅是南北朝时期的伟大数学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖去一个圆锥所得的几何体,图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为( )A .①②B .①③C .②④D .①④解析:选D 设截面与底面的距离为h ,则①中截面内圆的半径为h ,则截面圆环的面积为π(R 2-h 2);②中截面圆的半径为R -h ,则截面圆的面积为π(R -h )2;③中截面圆的半径为R -h2,则截面圆的面积为π⎝ ⎛⎭⎪⎫R -h 22;④中截面圆的半径为R 2-h 2,则截面圆的面积为π(R 2-h 2).所以①④中截面的面积相等,故其体积相等,选D.10.等腰△ABC 中,AB =AC =5,BC =6,将△ABC 沿BC 边上的高AD 折成直二面角B AD C ,则三棱锥B ACD 的外接球的表面积为( )A .5πB .203πC .10πD .34π解析:选D 依题意,在三棱锥B ACD 中,AD ,BD ,CD 两两垂直,且AD =4,BD =CD =3,因此可将三棱锥B ACD 补形成一个长方体,该长方体的长、宽、高分别为3,3,4,且其外接球的直径2R =32+32+42=34,故三棱锥B ACD 的外接球的表面积为4πR 2=34π.11.(2017·郑州第二次质量预测)将一个底面半径为1,高为2的圆锥形工件切割成一个圆柱体,能切割出的圆柱的最大体积为( )A.π27B.8π27C.π3D.2π9解析:选B 如图所示,设圆柱的半径为r ,高为x ,体积为V ,由题意可得r 1=2-x 2,所以x =2-2r ,所以圆柱的体积V =πr 2(2-2r )=2π(r2-r 3)(0<r <1),则V ′=2π(2r -3r 2),由2π(2r -3r 2)=0,得r =23,所以圆柱的最大体积V max =2π⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫232-⎝ ⎛⎭⎪⎫233=8π27.12.已知三棱锥S ABC 的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA =23,AB =1,AC =2,∠BAC =60°,则球O 的表面积为( )A .4πB .12πC .16πD .64π解析:选 C 取SC 的中点E ,连接AE ,BE ,依题意,BC 2=AB 2+AC 2-2AB ·AC cos 60°=3,∴AC 2=AB 2+BC 2,即AB ⊥BC .又SA ⊥平面ABC ,∴SA ⊥BC ,又SA ∩AB =A ,∴BC ⊥平面SAB ,BC ⊥SB ,AE =12SC =BE ,∴点E 是三棱锥S ABC 的外接球的球心,即点E 与点O 重合,OA =12SC =12SA 2+AC 2=2,故球O 的表面积为4π×OA 2=16π.二、填空题13.(2016·四川高考)已知某三棱锥的三视图如图所示,则该三棱锥的体积是________.解析:由三视图可得三棱锥如图所示,则V =13×⎝ ⎛⎭⎪⎫12×23×1×1=33. 答案:3314.(2017·山东高考)由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为________.解析:该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的四分之一圆柱体构成,∴V =2×1×1+2×14×π×12×1=2+π2.答案:2+π215.(2017·全国卷Ⅰ)已知三棱锥S ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ABC 的体积为9,则球O 的表面积为________.解析:如图,连接AO ,OB ,设球O 的半径为R ,∵SC 为球O 的直径, ∴点O 为SC 的中点, ∵SA =AC ,SB =BC , ∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC , ∴AO ⊥平面SCB ,∴V S ABC =V A SBC =13×S △SBC ×AO=13×⎝ ⎛⎭⎪⎫12×SC ×OB ×AO , 即9=13×⎝ ⎛⎭⎪⎫12×2R ×R ×R ,解得 R =3,∴球O 的表面积为S =4πR 2=4π×32=36π. 答案:36π16.某几何体的三视图如图所示,当xy 取得最大值时,该几何体的体积是________.解析:由题意可知,该几何体为如图所示的四棱锥P ABCD ,CD =y2,AB=y ,AC =5,CP =7,BP =x ,∴BP 2=BC 2+CP 2,即x 2=25-y 2+7,x 2+y 2=32≥2xy , 则xy ≤16,当且仅当x =y =4时,等号成立. 此时该几何体的体积V =13×2+42×3×7=37.答案:37。
【高考真题解读】1、【2016高考新课标1卷】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )17π (B )18π (C )20π (D )28π【答案】A【解析】该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R ,则37428V R 833ππ=⨯=,解得R 2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 2.【2016高考新课标2理数】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A )20π (B )24π (C )28π (D )32π【答案】C3.【2016年高考北京理数】某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.12D.1 【答案】A【解析】分析三视图可知,该几何体为一三棱锥P ABC -,其体积111111326V =⋅⋅⋅⋅=,故选A.4.【2016高考新课标3理数】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A )18+ (B )54+ (C )90 (D )81 【答案】B【解析】由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积2362332354S =⨯⨯+⨯⨯+⨯⨯=+,故选B .5.【2016高考山东理数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )1233+π (B )13+ (C )13+ (D )1+【答案】C6.【2016高考浙江理数】已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥,则( ) A .m ∥l B .m ∥n C .n ⊥l D .m ⊥n 【答案】C【解析】由题意知,l l αββ=∴⊂ ,,n n l β⊥∴⊥ .故选C .7.【2016年高考四川理数】已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是 .正视图331【解析】由三棱锥的正视图知,三棱锥的高为1,底面边长为2,2,所以,该三棱锥的体积为1122132V =⨯⨯⨯=. 8.【2016高考浙江理数】某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3.【答案】72 32【解析】几何体为两个相同长方体组合,长方体的长宽高分别为4,2,2,所以体积为2(224)32⨯⨯⨯=,由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为2(222244)2(22)72⨯⨯+⨯⨯-⨯=检测卷1.(2015·广东,8)若空间中n 个不同的点两两距离都相等,则正整数n 的取值( ) A .大于5B .等于5C .至多等于4D .至多等于3解析 当n =3时显然成立,故排除A ,B ;由正四面体的四个顶点,两两距离相等,得n =4时成立,故选C. 答案 C2.(2015·浙江,2)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3 C.323 cm 3 D.403 cm 33.(2015·新课标全国Ⅰ,11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8解析 由题意知,2r ·2r +12·2πr ·2r +12πr 2+12πr 2+12·4πr 2=4r 2+5πr 2=16+20π,解得r =2. 答案 B4.(2015·天津,10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.解析 由三视图可知,该几何体由相同底面的两圆锥和圆柱组成,底面半径为1,圆锥的高为1,圆柱的高为2,所以该几何体的体积V =2×13π×12×1+π×12×2=83π m 3. 答案 83π5.(2015·陕西,5)一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+46.(2015·安徽,7)一个四面体的三视图如图所示,则该四面体的表面积是( )A .1+ 3B .2+ 3C .1+2 2D .2 2解析 由空间几何体的三视图可得该空间几何体的直观图,如图,∴该四面体的表面积为S表=2×12×2×1+2×34×(2)2=2+3,故选B.答案 B7.(2015·新课标全国Ⅱ,9)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A .36πB .64πC .144πD .256π答案 C8.(2015·山东,7)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3 C.5π3 D .2π解析 如图,由题意,得BC =2,AD =AB =1.绕AD 所在直线旋转一周后所得几何体为一个圆柱挖去一个圆锥的组合体.所求体积V =π×12×2-13π×12×1=53π.答案 C9.(2015·重庆,5)某几何体的三视图如图所示,则该几何体的体积为( )A.13+πB.23+πC.13+2πD.23+2π解析 这是一个三棱锥与半个圆柱的组合体,V =12π×12×2+13×⎝⎛⎭⎫12×1×2×1=π+13,选A. 答案 A10.(2015·新课标全国Ⅱ,6)一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为()A.18B.17C.16D.15解析 如图,由题意知,该几何体是正方体ABCD -A 1B 1C 1D 1被过三点A 、B 1、D 1的平面所截剩余部分,截去的部分为三棱锥A -A 1B 1D 1,设正方体的棱长为1,则截去部分体积与剩余部分体积的比值为111111A A B D B C D ABCD V V --=1111111111A AB D A BCD ABCD A A B D V V V ----=13×12×12×113-13×12×12×1=15,选D.答案 D11.(2015·湖南,10)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)()A.89πB.169πC.4(2-1)3πD.12(2-1)3π∴V 长方体V 1=16272π3=89π.故选A.答案 A。
限时规范训练空间几何体的三视图、表面积及体积限时45分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分)1.(2017·山东烟台模拟)一个三棱锥的正(主)视图和俯视图如图所示,则该三棱锥的侧(左)视图可能为( )解析:选D.分析三视图可知,该几何体为如图所示的三棱锥,其中平面ACD⊥平面BCD,故其侧(左)视图应为D.2.如图是一个空间几何体的三视图,则该几何体的表面三角形中为直角三角形的个数为( )A.2 B.3C.4 D.5解析:选C.作出三棱锥的直观图如图所示,由三视图可知AB=BD=2,BC=CD=2,AD=22,AC=6,故△ABC,△ACD,△ABD,△BCD均为直角三角形,故选C.3.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在直线旋转一周而形成的曲面所围成的几何体的体积为( )A.22π3B.42π3C .22πD .42π解析:选B.旋转体是两个圆锥,其底面半径为直角三角形斜边的高2,高即斜边的长的一半2,故所得几何体的体积V =13π(2)2×2×2=42π3.4.(2017·厦门质检)如图,在棱长为1的正方体ABCD A 1B 1C 1D 1中,E 是棱BC 上的一点,则三棱锥D 1B 1C 1E 的体积等于( )A.13 B.512C.36D.16解析:选D.VD 1B 1C 1E=VE B 1C 1D 1=13S △B 1C 1D 1·CC 1=13×12×12×1=16,故选D.5.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P ABC 为鳖臑,PA ⊥平面ABC ,PA =AB =2,AC =4,三棱锥P ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( )A .8πB .12πC .20πD .24π解析:选C.将三棱锥P ABC 放入长方体中,如图,三棱锥P ABC 的外接球就是长方体的外接球.因为PA =AB =2,AC =4,△ABC 为直角三角形,所以BC =42-22=2 3.设外接球的半径为R ,依题意可得(2R )2=22+22+(23)2=20,故R 2=5,则球O 的表面积为4πR 2=20π.故选C.6.某几何体的三视图如图所示,若该几何体的体积为37,则侧(左)视图中线段的长度x 的值是()A.7 B .27 C .4D .5解析:选 C.分析题意可知,该几何体为如图所示的四棱锥P ABCD ,故其体积V =13×32+32×4×CP =37,所以CP =7,所以x =32+72=4.7.(2017·山东青岛二模)如图,正四棱锥P ABCD 的底面边长为6 cm ,侧棱长为5 cm ,则它的侧(左)视图的周长等于( )A .17 cmB .(119+5)cmC .16 cmD .14 cm解析:选D.由题意可知,侧(左)视图是一个三角形,底边长等于正四棱锥底面正方形的边长,高为正四棱锥的高的一个等腰三角形.因为侧棱长5 cm ,所以斜高h =52-32=4(cm),又正四棱锥底面正方形的边长为6 cm ,所以侧(左)视图的周长为6+4+4=14(cm).8.已知直三棱柱ABC A 1B 1C 1的6个顶点都在球O 的球面上.若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210 C.132D .310解析:选C.因为在直三棱柱中AB =3,AC =4,AA 1=12,AB ⊥AC ,所以BC =5,且BC 为过底面ABC 的截面圆的直径.取BC 中点D ,则OD ⊥底面ABC ,则O 在侧面BCC 1B 1内,矩形BCC 1B 1的对角线长即为球直径,所以2R =122+52=13,即R =132.9.(2016·高考山东卷)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23πB.13+23πC.13+26π D .1+26π 解析:选C.由三视图可知,半球的半径为22,四棱锥底面正方形边长为1,高为1, 所以该组合体的体积=43π·⎝ ⎛⎭⎪⎫223×12+13×1×1×1=13+26π.10.(2017·吉林长春模拟)某四面体的三视图如图所示,该四面体的六条棱中,长度最长的棱的长是( )A .2 5B .2 6解析:选C.由三视图可知该四面体的直观图如图所示,其中AC =2,PA =2,△ABC 中,边AC 上的高为23,所以BC =42+32=27,而PB =PA 2+AB 2=22+42=25,PC =PA 2+AC 2=22,因此在四面体的六条棱中,长度最长的棱是BC ,其长为27,选C.11.(2017·甘肃兰州三模)某四棱锥的三视图如图所示,则该几何体的表面积为( )A .17B .22C .14+213D .22+213解析:选D.可借助长方体,作出该四棱锥的直观图,如图中的四棱锥V ABCD 所示.则BC ⊥平面VAB ,AB ⊥平面VAD ,CD ⊥平面VAD ,VD =5,VB =13,所以四棱锥V ABCD 的表面积S 表=S △VAB +S △VBC +S △VCD +S △VAD +S 四边形ABCD =12×(2×3+4×13+2×5+3×4)+2×4=22+213.故选D.12.(2017·河北衡水模拟)一个空间几何体的三视图如图所示,则该几何体的外接球的表面积为( )A .24πB .6π解析:选B.题中的几何体是三棱锥A BCD ,如图所示,其中底面△BCD 是等腰直角三角形,BC =CD =2,AB ⊥平面BCD ,BC ⊥CD ,AB =2,BD =2,AC ⊥CD .取AD 的中点M ,连接BM ,CM ,则有BM =CM =12AD =1222+22=62.从而可知该几何体的外接球的半径是62.故该几何体的外接球的表面积为4π×⎝⎛⎭⎪⎫622=6π,应选B. 二、填空题(本题共4小题,每小题5分,共20分)13.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.解析:利用圆锥、圆柱的体积公式,列方程求解. 设新的底面半径为r ,由题意得13×π×52×4+π×22×8=13×π×r 2×4+π×r 2×8, ∴r 2=7,∴r =7. 答案:714.三棱锥P ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE 的体积为V 1,P ABC 的体积为V 2,则V 1V 2=________.解析:如图,设点C 到平面PAB 的距离为h ,△PAB 的面积为S ,则V 2=13Sh ,V 1=V E ADB =13×12S ×12h =112Sh ,所以V 1V 2=14.答案:1415.(2017·山东临沂模拟)某几何体的三视图如图所示,则该几何体的体积为________.解析:根据三视图可以判断该几何体由上、下两部分组成,其中上面部分为长方体,下面部分为半个圆柱,所以组合体的体积为2×2×4+12×22×π×4=16+8π.答案:16+8π16.(2017·高考全国卷Ⅰ)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为________.解析:如图,连接OD ,交BC 于点G , 由题意,知OD ⊥BC ,OG =36BC . 设OG =x ,则BC =23x ,DG =5-x , 三棱锥的高h =DG 2-OG 2=25-10x +x 2-x 2=25-10x ,S △ABC =12×23x ×3x =33x 2,则三棱锥的体积 V =13S △ABC ·h =3x 2·25-10x=3·25x 4-10x 5.令f (x )=25x 4-10x 5,x ∈⎝ ⎛⎭⎪⎫0,52,则f ′(x )=100x 3-50x 4.令f ′(x )=0得x =2.当x ∈(0,2)时,f ′(x )>0,f (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫2,52时,f ′(x )<0,f (x )单调递减,故当x =2时,f (x )取得最大值80,则V ≤3×80=415.∴三棱锥体积的最大值为415 cm 3. 答案:415。
专题八 立体几何初步第二十二讲 空间几何体的三视图、表面积和体积一、选择题1.(2018北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A .1B .2C .3D .42.(2018全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .172B .52C .3D .23.(2018全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是俯视图侧(左)视图正(主)视图BA4.(2018全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为,则三棱锥D ABC -体积的最大值为 A.B.C.D.5.(2018上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设1AA 是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以1AA 为底面矩形的一边,则这样的阳马的个数是( )A .4B .8C .12D .166.(2018浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是A .2B .4C .6D .87.(2017新课标Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A 1A俯视图正视图A.10 B.12 C.14 D.168.(2017新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为A.90πB.63πC.42πD.36π9.(2017新课标Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.πB.34πC.2πD.4π10.(2017浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:3cm)是A .12π+ B .32π+ C .312π+ D . 332π+ 11.(2017北京)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为A .B .C .D .212.(2016山东)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为俯视图A .B .C .D . 13.(2016全国I )如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,若该几何体的体积是28π3,则它的表面积是A .17πB .18πC .20πD .28π 14.(2016全国II )如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为A .20πB .24πC .28πD .32π15.(2016年全国III )如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A.18+ B.54+ C .90 D .8116.(2015浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积是1233+π13+13+1+A .38cm B .312cm C .3323cm D .3403cm 17.(2015陕西)一个几何体的三视图如图所示,则该几何体的表面积为A .3πB .4πC .24π+D .34π+ 18.(2015重庆)某几何体的三视图如图所示,则该几何体的体积为A .13π+ B .23π+ C .123π+ D .223π+ 19.(2015新课标)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为A .81 B .71 C .61 D .51 20.(2015安徽)一个四面体的三视图如图所示,则该四面体的表面积是A .1+B .2C .1+D .21.(2015湖南)某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)A .89πB .169πC .31)πD .31)π22.(2015新课标Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r =A.1 B.2 C.4 D.823.(2014新课标Ⅰ)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A.B.6 C.D.424.(2014新课标Ⅱ)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为A.1727B.59C.1027D.1325.(2014安徽)一个多面体的三视图如图所示,则该多面体的表面积为A.21 B.18+ C .21 D .1826.(2014福建)某空间几何体的正视图是三角形,则该几何体不可能是A .圆柱B .圆锥C .四面体D .三棱柱27.(2014浙江)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是A . 90B . 129C . 132D . 13828.(2014新课标Ⅱ)正三棱柱111ABC A B C -的底面边长为2D 为BC 中点,则三棱锥11A B DC -的体积为A .3B .32C .1 D29.(2014福建)以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于A .2πB .πC .2D .130.(2014辽宁)某几何体三视图如图所示,则该几何体的体积为俯视图侧视图正视图2cm 2cm 2cm 2cm俯视A .82π-B .8π-C .82π-D .84π- 31.(2014陕西)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积为A .4πB .3πC .2πD .π32.(2014江西)一几何体的直观图如右图,下列给出的四个俯视图中正确的是33.(2013新课标Ⅰ)某几何体的三视图如图所示,则该几何体的体积为A .B .C .D . 34.(2013江西)一几何体的三视图如右所示,则该几何体的体积为俯视图左视图主视图ABCD168π+88π+1616π+816π+A .200+9πB .200+18πC .140+9πD .140+18π 35.(2012广东)某几何体的三视图如图所示,它的体积为A .12πB .45πC .57πD .81π36.(2012湖北)已知某几何体的三视图如图所示,则该几何体的体积为A .B .C .D . 37.(2011新课标)在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为俯视图侧视图正视图俯视图正视图8π33π10π36π38.(2011安徽)一个空间几何体的三视图如图所示,则该几何体的表面积为A .48B .C .D .8039.(2011辽宁)如图,四棱锥S —ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确...的是A .AC ⊥SB B .AB ∥平面SCDC .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角 D .AB 与SC 所成的角等于DC 与SA 所成的角40.(2010安徽)一个几何体的三视图如图,该几何体的表面积为俯视图正视图DCBA侧视图BCASDA .280B .292C .360D .37241.(2010浙江)若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是A .3523cm 3 B .3203cm 3 C .2243cm 3D .1603cm 3 二、填空题42.(2018天津)已知正方体1111ABCD A B C D -的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M EFGH -的体积为 .侧视图正视图1A C43.(2018江苏)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 .44.(2017新课标Ⅰ)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,DBC ∆,ECA ∆,FAB ∆分别是以BC ,CA ,AB 为底边的等腰三角形。
92.空间几何体的表面积和体积【典例】(2018年高考浙江卷)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是 A .2 B .4 C .6D .8【例】1.一个几何体的三视图如图所示,其中正视图是半径为1的半圆,则该几何体的表面积为 A .()251π++B .521π2⎛⎫++ ⎪ ⎪⎝⎭C .512π22⎛⎫++⎪ ⎪⎝⎭D .51π22⎛⎫+⎪ ⎪⎝⎭2.一个几何体的三视图如图所示,则其表面积是A .20B .18C .1423+D .1422+【参考答案】C俯视图正视图2211【解题必备】(1)在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.学%科网(2)求组合体的表面积与体积,关键是弄清楚组合体是由哪几种简单几何体组合而成的,然后由相应几何体的表面积或体积得出.需要注意,组合体的表面积,并不是简单几何体的表面积的和,因其接合部分并不裸露在表面.(3)组合体的表面积是组成它的简单几何体的表面积之和减去公共部分的面积,其体积是各简单几何体的体积之和(若是“挖去”,则是体积之差).1.【答案】C【解析】由三视图可知,其对应的几何体是半个圆锥,圆锥的底面半径为1r =,圆锥的高2h =,其母线长22125l =+=,则该几何体的表面积为211151π1π15222π2222S ⎛⎫=⨯⨯+⨯⨯⨯+⨯⨯=++ ⎪ ⎪⎝⎭. 本题选择C 选项.学&科网 2.【答案】A【解析】由三视图知该几何体是一个正方体截去四个三棱锥,如图所示:。
专题检测(五) 空间几何体的三视图、表面积与体积一、选择题1.如图所示是一个物体的三视图,则此三视图所描述物体的直观图是( )解析:选D 先观察俯视图,由俯视图可知选项B 和D 中的一个正确,由正视图和侧视图可知选项D 正确.2.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是( )A .2B .92 C.32D .3解析:选D 由三视图判断该几何体为四棱锥,且底面为梯形,高为x ,故该几何体的体积V =13×12×(1+2)×2×x =3,解得x =3.3.(2017·广州综合测试)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )解析:选D 由题意可得该几何体可能为四棱锥,如图所示,其高为2,其底面为正方形,面积为2×2=4,因为该几何体的体积为13×4×2=83,满足条件,所以俯视图可以为一个直角三角形.选D.4.(2017·新疆第二次适应性检测)球的体积为43π,平面α截球O 的球面所得圆的半径为1,则球心O 到平面α的距离为( )A .1 B. 2 C. 3D. 6解析:选B 依题意,设该球的半径为R ,则有4π3R 3=43π,由此解得R =3,因此球心O 到平面α的距离d =R 2-12= 2.5.(2018届高三·湖南十校联考)如图,小方格是边长为1的正方形,一个几何体的三视图如图所示,则几何体的表面积为( )A .45π+96B .(25+6)π+96C .(45+4)π+64D .(45+4)π+96解析:选D 几何体为一个圆锥和一个正方体的组合体,正方体的棱长为4,圆锥的高为4,底面半径为2,几何体的表面积为S =6×42+π×22+π×2×42+22=(45+4)π+96.6.(2018届高三·西安八校联考)某几何体是直三棱柱与圆锥的组合体,其直观图和三视图如图所示,正视图为正方形,其中俯视图中椭圆的离心率为( )A.12 B.24 C.22D.32解析:选C 依题意得,题中的直三棱柱的底面是等腰直角三角形,设其直角边长为a ,则斜边长为2a ,圆锥的底面半径为22a 、母线长为a ,因此其俯视图中椭圆的长轴长为2a 、短轴长为a ,其离心率e =1-⎝⎛⎭⎪⎫a 2a 2=22. 7.在棱长为3的正方体ABCD A 1B 1C 1D 1中,P 在线段BD 1上,且BP PD 1=12,M 为线段B 1C 1上的动点,则三棱锥M PBC 的体积为( )A .1B .32C.92D .与M 点的位置有关解析:选B ∵BP PD 1=12,∴点P 到平面BC 1的距离是D 1到平面BC 1距离的13,即为D 1C 13=1.M 为线段B 1C 1上的点,∴S △MBC =12×3×3=92,∴V M PBC =V P MBC =13×92×1=32.8.(2017·贵州适应性考试)如图,在正方体ABCD A 1B 1C 1D 1中,点P是线段A 1C 1上的动点,则三棱锥P BCD 的俯视图与正视图面积之比的最大值为( )A .1B . 2C . 3D .2解析:选D 正视图,底面B ,C ,D 三点,其中D 与C 重合,随着点P 的变化,其正视图均是三角形且点P 在正视图中的位置在边B 1C 1上移动,由此可知,设正方体的棱长为a ,则S正视图=12a 2;设A 1C 1的中点为O ,随着点P 的移动,在俯视图中,易知当点P 在OC 1上移动时,S 俯视图就是底面三角形BCD 的面积,当点P 在OA 1上移动时,点P 越靠近A 1,俯视图的面积越大,当到达A 1的位置时,俯视图为正方形,此时俯视图的面积最大,S俯视图=a 2,所以S 俯视图S 正视图的最大值为a 212a2=2. 9.(2017·石家庄一模)祖暅是南北朝时期的伟大数学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖去一个圆锥所得的几何体,图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为( )A .①②B .①③C .②④D .①④解析:选D 设截面与底面的距离为h ,则①中截面内圆的半径为h ,则截面圆环的面积为π(R 2-h 2);②中截面圆的半径为R -h ,则截面圆的面积为π(R -h )2;③中截面圆的半径为R -h2,则截面圆的面积为π⎝ ⎛⎭⎪⎫R -h 22;④中截面圆的半径为R 2-h 2,则截面圆的面积为π(R 2-h 2).所以①④中截面的面积相等,故其体积相等,选D.10.等腰△ABC 中,AB =AC =5,BC =6,将△ABC 沿BC 边上的高AD 折成直二面角B AD C ,则三棱锥B ACD 的外接球的表面积为( )A .5πB .203πC .10πD .34π解析:选D 依题意,在三棱锥B ACD 中,AD ,BD ,CD 两两垂直,且AD =4,BD =CD =3,因此可将三棱锥B ACD 补形成一个长方体,该长方体的长、宽、高分别为3,3,4,且其外接球的直径2R =32+32+42=34,故三棱锥B ACD 的外接球的表面积为4πR 2=34π.11.(2017·郑州第二次质量预测)将一个底面半径为1,高为2的圆锥形工件切割成一个圆柱体,能切割出的圆柱的最大体积为( )A.π27B.8π27C.π3D.2π9解析:选B 如图所示,设圆柱的半径为r ,高为x ,体积为V ,由题意可得r 1=2-x 2,所以x =2-2r ,所以圆柱的体积V =πr 2(2-2r )=2π(r2-r 3)(0<r <1),则V ′=2π(2r -3r 2),由2π(2r -3r 2)=0,得r =23,所以圆柱的最大体积V max =2π⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫232-⎝ ⎛⎭⎪⎫233=8π27.12.已知三棱锥S ABC 的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA =23,AB =1,AC =2,∠BAC =60°,则球O 的表面积为( )A .4πB .12πC .16πD .64π解析:选 C 取SC 的中点E ,连接AE ,BE ,依题意,BC 2=AB 2+AC 2-2AB ·AC cos 60°=3,∴AC 2=AB 2+BC 2,即AB ⊥BC .又SA ⊥平面ABC ,∴SA ⊥BC ,又SA ∩AB =A ,∴BC ⊥平面SAB ,BC ⊥SB ,AE =12SC =BE ,∴点E 是三棱锥S ABC 的外接球的球心,即点E 与点O 重合,OA =12SC =12SA 2+AC 2=2,故球O 的表面积为4π×OA 2=16π.二、填空题13.(2016·四川高考)已知某三棱锥的三视图如图所示,则该三棱锥的体积是________.解析:由三视图可得三棱锥如图所示,则V =13×⎝ ⎛⎭⎪⎫12×23×1×1=33. 答案:3314.(2017·山东高考)由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为________.解析:该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的四分之一圆柱体构成,∴V =2×1×1+2×14×π×12×1=2+π2.答案:2+π215.(2017·全国卷Ⅰ)已知三棱锥S ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ABC 的体积为9,则球O 的表面积为________.解析:如图,连接AO ,OB ,设球O 的半径为R ,∵SC 为球O 的直径, ∴点O 为SC 的中点, ∵SA =AC ,SB =BC , ∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC , ∴AO ⊥平面SCB ,∴V S ABC =V A SBC =13×S △SBC ×AO=13×⎝ ⎛⎭⎪⎫12×SC ×OB ×AO , 即9=13×⎝ ⎛⎭⎪⎫12×2R ×R ×R ,解得 R =3,∴球O 的表面积为S =4πR 2=4π×32=36π. 答案:36π16.某几何体的三视图如图所示,当xy 取得最大值时,该几何体的体积是________.解析:由题意可知,该几何体为如图所示的四棱锥P ABCD ,CD =y2,AB=y ,AC =5,CP =7,BP =x ,∴BP 2=BC 2+CP 2,即x 2=25-y 2+7,x 2+y 2=32≥2xy , 则xy ≤16,当且仅当x =y =4时,等号成立. 此时该几何体的体积V =13×2+42×3×7=37.答案:37。