高等代数(第三版)4-习题课
- 格式:ppt
- 大小:2.70 MB
- 文档页数:57
第9章欧几里得空间9.1复习笔记一、定义与基本性质1.欧几里得空间定义设V是实数域R上一线性空间,在V上定义了一个二元实函数,称为内积,记作(α,β),它具有以下性质:(1)(α,β)=(β,α);(2)(kα,β)=k(α,β);(3)(α+β,γ)=(α,γ)+(β,γ);(4)(α,α)≥0,当且仅当α=0时(α,α)=0.这里α,β,r是V中任意的向量,k是任意实数,这样的线性空间V称为欧几里得空间.2.长度(1)定义非负实数称为向量α的长度,记为|α|.(2)关于长度的性质①零向量的长度是零,②|kα|=|k||α|,③长度为1的向量称为单位向量.如果α≠0,向量1αα就是一个单位向量,通常称此为把α单位化.3.向量的夹角(1)柯西-布涅柯夫斯基不等式,即对于任意的向量α,β有|(α,β)|≤|α||β|当且仅当α,β线性相关时,等号才成立.(2)非零向量α,β的夹角<α,β>规定为(3)如果向量α,β的内积为零,即(α,β)=0,那么α,β称为正交或互相垂直,记为α⊥β.零向量才与自己正交.(4)勾股定理,即当α,β正交时,|α+β|2=|α|2+|β|2.4.有限维空间的讨论(1)度量矩阵设V是一个n维欧几里得空间,在V中取一组基ε1,ε2,…,εn,对V中任意两个向量α=x1ε1+x2ε2+…+x nεn,β=y1ε1+y2ε2+…+y nεn,由内积的性质得a ij=(εi,εj)(i,j=1,2,…,n),显然a ij=a ji,于是利用矩阵,(α,β)还可以写成(α,β)=X'AY,其中分别是α,β的坐标,而矩阵A=(a ij)nn称为基ε1,ε2,…,εn的度量矩阵.(2)性质①设η1,η2,…,ηn是空间V的另外一组基,而由ε1,ε2,…,εn到η1,η2,…,ηn的过渡矩阵为C,即(η1,η2,…,ηn)=(ε1,ε2,…,εn)C,于是基η1,η2,…,ηn的度量矩阵B=(b ij)=(ηi,ηj)=C'AC;表明不同基的度量矩阵是合同的.②对于非零向量α,即有(α,α)=X'AX>0.因此,度量矩阵是正定的.二、标准正交基1.正交向量组欧式空间V中一组非零的向量,如果它们两两正交,就称为一正交向量组.按定义,由单个非零向量所成的向量组也是正交向量组.2.标准正交基(1)定义在n维欧氏空间中,由n个向量组成的正交向量组称为正交基;由单位向量组成的正交基称为标准正交基.说明:①对一组正交基进行单位化就得到一组标准正交基.②一组基为标准正交基的充分必要条件是:它的度量矩阵为单位矩阵.(2)标准正交基的求法①定理1n维欧氏空间中任一个正交向量组都能扩充成一组正交基.②定理2对于n维欧氏空间中任意一组基ε1,ε2,…,εn,都可以找到一组标准正交基η1,η2,…,ηn,使L(ε1,ε2,…,εi)=L(η1,η2,…,ηi),i=1,2,…,n.定理2中把一组线性无关的向量变成一单位正交向量组的方法称做施密特正交化过程.例:把α1=(1,1,0,0),α3=(-1,0,0,1),α2=(1,0,1,0),α4=(1,-1,-1,1)变成单位正交的向量组.解:①先把它们正交化,得β1=α1=(1,1,0,0),②再单位化,得3.基变换公式设ε1,ε2,…,εn与η1,η2,…,ηn是欧氏空间V中的两组标准正交基,它们之间的过渡矩阵是A=(a ij),即因为η1,η2,…,ηn是标准正交基,所以矩阵A的各列就是η1,η2,…,ηn在标准正交基ε1,ε2,…,εn下的坐标.4.正交矩阵n级实数矩阵A称为正交矩阵,如果A'A=E.由标准正交基到标准正交基的过渡矩阵是正交矩阵;反过来,如果第一组基是标准正交基,同时过渡矩阵是正交矩阵,那么第二组基一定也是标准正交基.三、同构1.同构定义实数域R上欧式空间V与V'称为同构的,如果由V到V'有一个双射σ,满足(1)σ(α+β)=σ(α)+σ(β),(2)σ(kα)=kσ(α),(3)(σ(α),σ(β))=(α,β),这里α,β∈V,k∈R,这样的映射σ称为V到V'的同构映射.同构的欧氏空间必有相同的维数.每个n维的欧氏空间都与R n同构.2.同构的性质同构作为欧氏空间之间的关系具有(1)反身性;(2)对称性;(3)传递性;(4)两个有限维欧氏空间同构的充分必要条件是它们的维数相同..四、正交变换1.定义欧氏空间V的线性变换A称为正交变换,如果它保持向量的内积不变,即对于任意的α,β∈V,都有(Aα,Aβ)=(α,β).2.性质。
高等代数习题课_厦门大学中国大学mooc课后章节答案期末考试题库2023年1.特征值全为0且秩为3的10阶方阵, 互不相似的Jordan有____种.参考答案:32.设A是n阶矩阵,且A的有理标准型只包含一个Frobenius块,下列命题中错误的是____.参考答案:A的特征值两两互异3.设n阶复方阵A的相似于对角矩阵, 则下列叙述中错误的是____.参考答案:A的任一行列式因子没有重根4.以下映射的合成的命题中,正确的有____个。
A 单射的合成还是单射 B 满射的合成还是满射C 可逆映射的合成还是可逆映射D 线性映射的合成还是线性映射参考答案:45.设A是n阶实对称矩阵,若____,则A必为正定矩阵.参考答案:A的特征值全大于零6.设φ是线性空间V到W的线性映射, 则____.参考答案:φ把V中线性相关向量组变成W中线性相关向量组7.设U, W是n维线性空间V的真子空间, 且V等于U直和W. 又设V中向量α∉U,且α∉W,记S为α生成的子空间. 则dim((U+S)∩(W+S))=____参考答案:2##%_YZPRLFH_%##28.设φ是三维行空间的变换, 下列变换中____不是线性变换.参考答案:φ(a, b, c)=(ab, bc, ac)9.设f(x), g(x)是有理系数多项式, 下列命题成立的有____个.(1) 在有理数域上f(x), g(x)互素的充要条件是在复数域上f(x), g(x)互素(2) 在有理数域上f(x)整除g(x)的充要条件是在复数域上f(x)整除g(x)(3) 在有理数域上f(x), g(x)的最大公因式是d(x)的充要条件是在复数域上f(x), g(x)的最大公因式是d(x)(4) 在有理数域上f(x), g(x)的最小公倍式是k(x)的充要条件是在复数域上f(x), g(x)的最小公倍式是k (x)参考答案:410.设A是n阶复方阵, 则____不是A可对角化的充要条件.参考答案:A有n个不变因子11.两个n阶实对称阵正交相似的充要条件是____.参考答案:它们相似12.设φ是n维线性空间V的线性变换, 若φ是单射,则φ一定是满射.参考答案:正确。
第10章双线性函数与辛空间10.1复习笔记一、线性函数1.定义设V是数域P上的一个线性空间,f是V到P的一个映射,如果f满足(1)f(α+β)=f(α)+f(β),(2)f(kα)=kf(α),式中α、β是V中任意元素,k是P中任意数,则称f为V上的一个线性函数.2.性质(1)设f是V上的线性函数,则f(0)=0,f(-α)=-f(α).(2)如果β是α1,α2,…,αs的线性组合:β=k1α1+k2α2+…+k sαs.那么f(β)=k1f(α1)+k2f(α2)+…+k s f(αs).3.矩阵的迹A是数域P上一个n级矩阵.设则A的迹Tr(A)=a11+a22+…+a nn是P上全体n级矩阵构成的线性空间P n×n上的一个线性函数.4.定理设V是P上一个n维线性空间,ε1,ε2,…,εn是V的一组基,a1,a2,…,a n是P中任意n个数,存在唯一的V上线性函数f使f(εi)=a i,i=1,2,…,n.二、对偶空间1.L(V,P)的加法和数量乘法(1)设f,g是V的两个线性函数定义函数f+g如下:(f+g)(α)=f(α)+g(α),α∈V,f+g也是线性函数:f+g称为f与g的和.(2)设f是V上线性函数.对P中任意数k,定义函数kf如下:(kf)(α)=k(f(α)),α∈V,kf称为k与f的数量乘积,易证kf也是线性函数.2.L(V,P)的性质(1)对V中任意向量α,有而对L(V,P)中任意向量f,有(2)L(V,P)的维数等于V的维数,而且f1,f2,…,f n是L(V,P)的一组基.3.对偶空间(1)定义L(P,V)称为V的对偶空间.由决定的L(V,P)的基,称为ε1,ε2,…,εn的对偶基.V的对偶空间记作V*.(2)对偶基的性质(1)设ε1,ε2,…,εn及η1,η2,…,ηn是线性空间V的两组基,它们的对偶基分别为f1,f2,…,f n及g1,g2,…,g n.如果由ε1,ε2,…,εn到η1,η2,…,ηn的过渡矩阵为A,那么由f1,f2,…,f n到g1,g2,…,g n的过渡矩阵为(A')-1.(2)设V是P上一个线性空间,V*是其对偶空间.取定V中一个向量x,定义V*的一个函数x**如下:x**(f)=f(x),f∈V*.则x**是V*上的一个线性函数,因此是V*的对偶空间(V*)*=V**中的一个元素.(3)V是一个线性空间,V**是V的对偶空间的对偶空间.V到V**的映射x→x**是一个同构映射.结论:任一线性空间都可看成某个线性空间的线性函数所成的空间.三、双线性函数1.定义V是数域P上一个线性空间,f(α,β)是V上一个二元函数,即对V中任意两个向量α,β,根据f都唯一地对应于P中一个数f(α,β).如果f(α,β)有下列性质:(1)f(α,k1β1+k2β2)=k1f(α,β1)+k2f(α,β2);(2)f(k1α1+k2α2,β)=k1f(α1,β)+k2f(α2,β).其中α,α1,α2,β,β1,β2是V中任意向量,k1,k2是P中任意数,则称f(α,β)为V 上的一个双线性函数.2.常用结论(1)欧氏空间V的内积是V上双线性函数;(2)设f1(α),f2(α)都是线性空间V上的线性函数,则f(α,β)=f1(α)f2(β),α,β∈V是V上的一个双线性函数.(3)设P n是数域P上n维列向量构成的线性空间X,Y∈P n,再设A是P上一个n 级方阵.令f(X,Y)=X'AY,则f(X,Y)是P n上的一个双线性函数.3.度量矩阵(1)定义设f(α,β)是数域P上n维线性空间V上的一个双线性函数.ε1,ε2,…,εn是V的一组基,则矩阵称为f(α,β)在ε1,ε2,…,εn下的度量矩阵.(2)性质①度量矩阵被双线性函数及基唯一确定.②不同的双线性函数在同一组基下的度量矩阵一定是不同的.③在不同的基下,同一个双线性函数的度量矩阵一般是不同的,但是在不同基下的度量矩阵是合同的.4.非退化设f(α,β)是线性空间V上一个双线性函数,如果f(α,β)=0,对任意β∈V,可推出α=0,f就称为非退化的.双线性函数f(α,β)是非退化的充要条件为其度量矩阵A为非退化矩阵.5.对称双线性函数(1)定义f(α,β)是线性空间V上的一个双线性函数,如果对V中任意两个向量α,β都有f (α,β)=f(β,α),则称f(α,β)为对称双线性函数.如果对V中任意两个向量α,β都有f(α,β)=-f(β,α),则称f(α,β)为反对称双线性函数.这就是说,双线性函数是对称的,当且仅当它在任一组基下的度量矩阵是对称矩阵.同样地,双线性函数是反对称的当且仅当它在任一组基下的度量矩阵是反对称矩阵.(2)性质(1)设V是数域P上n维线性空间,f(α,β)是V上对称双线性函数,则存在V的一组基ε1,ε2,…,εn,使f(α,β)在这组基下的度量矩阵为对角矩阵.(2)设V是复数域上n维线性空间,f(α,β)是V上对称双线性函数,则存在V的一组基ε1,ε2,…,εn,对V中任意向量,有(3)设V是实数域上n维线性空间.f(α,β)是V上对称双线性函数.则存在V的一组基ε1,ε2,…,εn,对V中任意向量,有(4)V上的对称双线性函数f(α,β)如果是非退化的.则有V的一组基ε1,ε2,…,εn满足前面的不等式是非退化条件保证的,这样的基称为V的对于f(α,β)的正交基.6.二次齐次函数对称双线性函数与二次齐次函数是1-1对应的.设V是数域P上线性空间,f(α,β)是V上双线性函数.当α=β时,V上函数f(α,β)称为与f(α,β)对应的二次齐次函数.7.反对称双线性函数性质(1)设f(α,β)是n维线性空间V上的反对称线性函数,则存在V的一组基ε1,ε。
1.2 课后习题详解第1节数域1.举出对加法、乘法及除法封闭但对减法不封闭的例子.解:集合Q+={a∈Q|a>0}对加法、乘法及除法封闭但是对减法不封闭.2.举出对加法、减法封闭,但对乘法不封闭的例子.解:集合对加法、减法都封闭,但是对乘法不封闭.3.举出对加法、减法都不封闭,但对乘法封闭的例子.解:集合与集合{m|p∤m,p素数}对加法、减法都是不封闭的,但是对乘法封闭.4.试证C的子集P若对减法封闭,则必对加法封闭.证:可设P≠∅,于是有a∈P,因此a-a=0∈P.又因为0-a=-a∈P,若有b∈P,则必有a+b=b+a=b-(-a)∈P.故P若对减法封闭,则必对加法封闭.5.试证C的子集P若对除法封闭,则必对乘法封闭.证:设P≠∅,P≠{0},于是有a∈P,a≠0,因此a÷a=1∈P.又因为,故若b∈P成立,则有ab=ba=b÷a-1∈P.因此P若对除法封闭,则必对乘法封闭.6.令试证是一个数域.证:由题目易知,则有即对加法和减法都封闭.又因为则对乘法封闭.下面需证明对除法是封闭的.由于对乘法封闭,故只需证明下面结论:,则成立.下面分为三种情形讨论:(1)b=c=0,此时d=a≠0,.(2)c=0,b≠0,此时可设,于是,且a3+5≠0.因此.(3)c≠0,此时可设,于是因此有由情形(2)及乘法的封闭性可知.故是数域.第2节一元多项式1.设P是数域.f(x),g(x),h(x)∈P[x],且f(x)+g(x)=f(x)+h(x).试证g(x)=h(x).证:由题意知f(x)+g(x)=f(x)+h(x),于是有故结论成立.2.设f(x),g(x),h(x)∈P[x],且f(x)≠0,f(x)g(x)=f(x)h(x).试证g(x)=h(x).证:由题意有f(x)g(x)=f(x)h(x),则f(x)(g(x)-h(x))=0,再由f(x)≠0,因此结论成立.3.设f(x),g(x)∈P[x],f(x)≠0,g(x)≠0,又deg(f(x)g(x))=degg(x).试证f(x)=c∈P.证:因为degf(x)+degg(x)=deg(f(x)g(x))=degg(x),所以degf(x)=0,故f(x)=c∈P.4.设m,n∈N,f(x)∈P[x].归纳定义f1(x)=(f(x))1=f(x),f n(x)=(f(x))n=f(x)f n-1(x),试证这里f0(x),g0(x)定义为1.证:1)对m,n作双重归纳证明.由f n(x)的定义,可知对任何m有f(x)f m(x)=f1+m(x).现设对于n,有f n(x)f m(x)=f n+m(x)成立,则因此结论1)成立.2)当m=1时,结论显然成立.设m时,结论成立,于是由结论1)有则结论2)成立.3)n=1时,结论显然成立.设n时,结论成立,于是有因此结论3)成立.4)n=1时,结论显然成立.设n时,结论成立,于是有因此结论4)成立.第3节带余除法1.求用g(x)除f(x)的商式q(x)与余式r(x):1)f(x)=x3-3x2-x-1,g(x)=3x2-2x+1;2)f(x)=x4-2x+5,g(x)=x2-x+2.解:分别用q(x),r(x)表示所求的商和余式.1)由则可得.2)由则可得q(x)=x2+x-1,r(x)=-5x+7.2.m,p,q适合什么条件时,有1)x2+mx-1|x3+px+q;2)x2+mx+1|x4+px+q.解:1)观察两个多项式的首项与常数项.则有因此q=m,p=-m2-1.2)观察两个多项式的首项与常数项,于是有则有于是可得q=m2-1,p=m(m2-2).。
高等代数课后习题1-5章答案高等代数是大学数学中的一门重要基础课程,对于数学专业的学生来说,掌握这门课程的知识和解题技巧至关重要。
在学习过程中,课后习题是巩固知识、提高能力的重要途径。
下面,我将为大家详细解答高等代数 1-5 章的课后习题。
第一章主要介绍了多项式的基本概念和运算。
在这一章的习题中,我们经常会遇到多项式的整除、最大公因式、因式分解等问题。
例如,有这样一道题:设\(f(x)\)和\(g(x)\)是两个多项式,且\((f(x), g(x))= 1\),证明:对于任意的多项式\(h(x)\),都存在多项式\(u(x)\)和\(v(x)\),使得\(f(x)u(x) + g(x)v(x) =h(x)\)。
解答这道题,我们可以利用辗转相除法来求出\(f(x)\)和\(g(x)\)的最大公因式。
因为\((f(x), g(x))= 1\),所以存在\(u_1(x)\)和\(v_1(x)\),使得\(f(x)u_1(x) + g(x)v_1(x) = 1\)。
然后,将等式两边同时乘以\(h(x)\),得到\(f(x)(u_1(x)h(x))+ g(x)(v_1(x)h(x))= h(x)\),令\(u(x) = u_1(x)h(x)\),\(v(x) =v_1(x)h(x)\),即证明了结论。
第二章是行列式的相关内容。
行列式的计算是这一章的重点和难点。
比如,有一道求行列式值的题目:\(\begin{vmatrix} 2 & 1 & 3 \\ 1 &-1 & 2 \\ 3 & 2 & 1 \end{vmatrix}\)对于这道题,我们可以按照行列式的展开法则进行计算。
先按照第一行展开:\\begin{align}&\begin{vmatrix} 2 & 1 & 3 \\ 1 &-1 & 2 \\ 3 & 2 & 1 \end{vmatrix}\\=&2\times\begin{vmatrix} -1 & 2 \\ 2 & 1 \end{vmatrix}-1\times\begin{vmatrix} 1 & 2 \\ 3 & 1 \end{vmatrix}+3\times\begin{vmatrix} 1 &-1 \\ 3 & 2 \end{vmatrix}\\=&2\times(-1\times1 2\times2) 1\times(1\times1 2\times3) +3\times(1\times2 (-1)\times3)\\=&2\times(-5) 1\times(-5) + 3\times(5)\\=&-10 + 5 + 15\\=&10\end{align}\第三章是线性方程组。
高等代数第三版(王萼芳石生明著)课后答案高等教育出版社:篇一:2013福州大学高等代数大纲福州大学2013年硕士研究生入学考试自命题科目考试大纲一、考试科目名称: 《高等代数》二、招生学院:数学与计算机学院(数学)说明:1、考试基本内容:一般包括基础理论、实际知识、综合分析和论证等几个方面的内容。
有些课程还应有基本运算和实验方法等方面的内容。
2、难易程度:根据大学本科的教学大纲和本学科、专业的基本要求,一般应使大学本科毕业生中优秀学生在规定的三个小时内答完全部考题,略有一些时间进行检查和思考。
3、考试题型:可分填空题、选择题、计算题、简答题、论述题等。
003数学与计算机科学学院Y120M49 数学与计算机科学学院085211 计算机技术数学与计算机科学学院070101 基础数学▲●070104 应用数学 071400 统计学 070102 计算数学 070105 运筹学与控制论 081201 计算机系统结构 070101基础数学①101思想政治理论②201英语一③611数学分析④818高等代数复试科目:①复变函数或②离散数学本专业不招收同等学力考生01非线性分析02代数学03小波分析及其应用04生物信息学 070102计算数学①101思想政治理论②201英语一③611数学分析④818高等代数复试科目:①离散数学或②数值计算本专业不招收同等学力考生01系统建模与仿真02并行计算与分布式处理03海量信息处理与数据挖掘 070104应用数学①101思想政治理论②201英语一③611数学分析④818高等代数复试科目:①复变函数或②离散数学本专业不招收同等学力考生01微分方程及其应用02应用概率统计03信息与计算科学070105运筹学与控制论①101思想政治理论②201英语一③611数学分析④818高等代数复试科目:①离散数学或②复变函数本专业不招收同等学力考生 01运筹学与优化理论02图像处理与模式识别 071400统计学①101思想政治理论②201英语一③611数学分析④818高等代数复试科目:①复变函数或②离散数学本专业不招收同等学力考生 01随机分析及其应用 02应用统计与方法 03统计计算与数据分析04应用概率统计福州大学初试科目参考书目611 数学分析《数学分析》(上、下),复旦大学数学系欧阳光中、朱学炎、金福临、陈传璋编著,高等教育出版社,2007年4月,第三版818 高等代数《高等代数》北京大学数学系编,王萼芳、石生明修订,高等教育出版社,第三版。
第10章 双线性函数与辛空间1.V是数域P上一个3维线性空间,ε1,ε2,ε3是它的一组基,f是V上一个线性函数,已知f(ε1+ε3)=1,f(ε2-2ε3)=-1,f(ε1+ε2)=-3,求f(x1ε1+x2ε2+x3ε3).解:先计算出f(ε1)=4,f(ε2)=-7,f(ε3)=-3,就得到f(x1ε1+x2ε2+x3ε3)=4x1-7x2-3x3.2.V及ε1,ε2,ε3同上题,试找出一个线性函数f,使f(ε1+ε3)=f(ε1-2ε3)=0,f(ε1+ε2)=1.解:可算出f(ε1)=f(ε3)=0,f(ε2)=1,就得到f(x1ε1+x2ε2+x3ε3)=x2.3.设ε1,ε2,ε3是线性空间V的一组基,f1,f2,f3是它的对偶基,a1=ε1-ε3,a2=ε1+ε2+ε3,a3=ε2+ε3.试证a1,a2,a3是V的一组基并求它的对偶基(用f1,f2,f3表出).解:可利用定理3.计算由于右端的矩阵的行列式≠0,故a1,a2,a3是V的一组基.设g1,g2,g3是a1,a2,a3的对偶基,则即g1=f2-f3,g2=f1-f2+f3,g3=-f1+2f2-f3.4.设V是一个线性空间,f1,f2,…,f n是V*中非零向量,试证,存在a∈V,使f(a)≠0,i=1,2, (5)证明:每个f i(a)=0作为V上向量的方程,其全体解向量构成V的一个子空间V,且都不等于V.由第六章补充题第5题的结论及解答后面的注,必有a∈V,a∈,i=1,2,…,s.所以a满足f i(a)≠0,i=1,2,V…,s.5.设a1,a2,…,a s是线性空间V中非零向量,证明有f∈V*使f(a i)≠0,i=1,2,…,s.证明:由于a i**∈(V*)*,a i**(f)=f(a i),f∈V*,a i**是(V*)*上的非零向量.由第四题必有f∈V*使f(a i)=a i**(f)≠0.6.V=P[x]3,对p(x)=c0+c1x+c2x2∈V定义试证f1,f2,f3都是V上线性函数,并找出V的一组基p1(x),p2(x),p3(x)使f1,f2,f3是它的对偶基.证明:易证f1,f2,f3都是V=P[x]3上线性函数.令p1(x)=c0+c1x+c2x2使得f1(p1(x))=1,f2(p1(x))=f3(p1(x))=0,即有解出得同样可算出满足由于p1(x),p2(x),p3(x)是V的一组基,而f1,f2,f3是它的对偶基.7.设V是一个n维欧氏空间,它的内积为(α,β),对V中确定的向量α,定义V 上一个函数α*:α*(β)=(α,β).(1)证明α*是V上线性函数;(2)证明V到V*的映射:α→α*是V到V*的一个同构映射.(在这个同构下,欧氏空间可看成自身的对偶空间)证明:(1)易证α*是V上线性函数,即α*∈v*.(2)现在令映射φ为下面逐步证明φ是线性空间的同构.①φ是单射.即证明当φ(α)=φ(β)时有α=β.对γ∈V,(φ(α))(γ)=α*(γ)=(α,γ),(φ(β))(γ)=(β,γ).故(α,γ)=(β,γ),∨γ∈V.这样(α,α)=(β,α),(α,β)=(β,β).于是(α-β,α-β)=(α,α)-(α,β)-(β,α)-(β,β)=0,即有α-β=0,因此α=β.②φ是满射.取ε1,ε2,…,εn 是V 的一组标准正交基,令f 1,f 2,…,f n 是它们的对偶基,对f =l 1f 1+…+l n f n ∈V*,令a =l 1ε1+l 2ε2+…+l n εn 则对所有εi ,∀故对所有εi ,有φ(α)(εi )=f (εi ),即φ(α)=f .③φ是线性映射.对α,β,γ∈V,k∈R,∀ φ(α+β)(γ)=(α+β,γ)=(α,γ)+(β,γ)=φ(α)(γ)+φ(β)(γ)=[φ(α)+φ(β)](γ).故φ(α+β)=φ(α)+φ(β).又φ(kα)(γ)=(kα,γ)=k (α,γ)=kφ(α)(γ)=(kφ(α))(γ),故φ(kα)=kφ(α).以上证明了φ是线性空间V 到V *的同构.8.设A 是P 上n 维线性空间V 的一个线性变换.(1)证明:对V 上的线性函数f ,fA 仍是V 上线性函数;(2)定义V *到自身的映射A *为f→fA证明A *是V *上的线性变换(3)设ε1,ε2,…,εn 是V 的一组基,f 1,f 2,…,f n 是它的对偶基,并设A 在ε1,ε2,…,εn 下的矩阵为A .证明:A *在f 1,f 2,…,f n 下的矩阵为A'.(因此A *称作A 的转置映射)证明:(1)α,β∈V,k∈P,有∀∀f A (α+β)=f (A (α+β))=f (A α+A β)=f A α+f A β,f A (kα)=f (A (kα))=f (k A α)=kf A α.故f A 是V 上线性函数.(2)由定义A *f =f A ,对f ,g∈V *,k∈P,α∈V 有∀A *(f +g )(α)=[(f +g )A ](α)=(f +g )(A (α))=f A (α)+g A (α)=(f A +g A )(α)=(A *f +A *g )(α)故A *(f +g )=A *(f )+A *(g ).又(A *(kf ))(α)=(kf )A (α)=kf (A (α))=k (A *f )(α),故A *(kf )=k (A *f ).以上证明了A *是V *上的线性变换.(3)由A (ε1,ε2,…,εn )=(ε1,ε2,…,εn )A ,f i A (ε1,ε2,…,εn )=(f i (ε1),…,f i (εn ))A =(a i1,a i2,…,a in ),于是即有。
高等代数习题课指导高等代数习题课是在各章小单元授课基础上,帮助学生疏理相应小单元基础知识而设立的以练为主、讲练结合的教学形式,使学生进一步理解已授知识的重点,帮助学生克服学习中的难点,因而是整个课程教学的基本环节之一。
教学中应明确目的,把握全局,突出练习,以提高习题课的教学质量。
习题课1 矩阵的运算与可逆矩阵〔2学时〕教学目的 通过2学时的习题课教学实践,使学生进一步理解、掌握矩阵运算及其可逆矩阵的基础知识与基本方法,把握矩阵证题的基本技巧。
基础提要 略述〔结合课堂练习题的解释,点述主要概念、相关定理及其基本方法〕。
课堂练习:1 计算AB ,BA ,AB -BA ,其中⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=a c b b c a B a b c c b a A 111,111. 2 设A ,B ,C ∈)(F M n .证明,假设AB =BA ,AC =CA ,则A (B + C ) = (B + C ) A ;A (BC ) = (BC ) A .3 设A = )()(F M a n nn ij ∈,A 的主对角元素nn a a a ,,,2211 的和∑=ni ii a 1叫做A 的迹,记作A Tr .设A ,B )(F M n ∈,证明:1);Tr Tr )(Tr B A B A +=+ 2);,Tr )(Tr F k A k kA ∈=3));(Tr )(Tr BA AB = 4)AB -BA n I ≠.4 设A n M ∈(R ),且A '= A .证明,假设2A = 0,则A = 0.5 设A = B +C 机遇)(F M n ∈,其中C C B B -='=',.证明以下命题彼此等价:1) A A A A '='; 2)BC = CB ; 3)CB 是反对称矩阵.6 设)(F M A n ∈,且A 2+A +I n =0.证明,A 可逆;并求A -17 设)(F M A n ∈是对合矩阵, 即n I A =2,且n I A ±≠.证明:1)A 是可逆矩阵, 并求1-A . 2)A I n +与A I n -都是奇异矩阵.8 设A ,B ,C )(F M n ∈.证明:1)假设A 非奇异,则AB = AC ⇒B = C ;2)假设A 奇异,则1)的结论未必成立(举例说明).9 设)(F M A n ∈可逆,且1-A =nn ij b )(,求,)(1-A P ij ,))((1-A k D i )((k T ij 1)-A .10 设n M A ∈(R ).证明假设以下三命题有两个成立,则其第三个也成立:1) A 是对称矩阵; 2) A 是对合矩阵; 3) A 是正交矩阵.课外建议 结合练习讲评提出相应补缺、复习建议。
《高等代数》课程习题第1章行列式习 题 1.11. 计算下列二阶行列式:(1)2345 (2)2163- (3)x x x x cos sin sin cos - (4)11123++-x x x x (5)2232ab b a a (6)ββααcos sin cos sin (7)3log log 1a b b a2. 计算下列三阶行列式:(1)341123312-- (2)00000d c b a (3)d c e ba 0000 (4)zy y x x 00002121(5)369528741 (6)01110111-- 3. 用定义计算行列式:(1)4106705330200100 (2)114300211321221---(3)500000000400030020001000 (4) dc b a 100110011001---. 4.用方程组求解公式解下列方程组:(1) ⎪⎩⎪⎨⎧=-+=--=--0520322321321321x x x x x x x x x (2)⎪⎩⎪⎨⎧=+-=-+=++232120321321321x x x x x x x x x习 题 1.21. 计算下列行列式:(1)123112101 (2)15810644372---- (3)3610285140 (4)655565556 2.计算行列式(1)2341341241231234(2)12114351212734201----- (3)524222425-----a a a(4)322131399298203123- (5)0532004140013202527102135---- 3.用行列式的性质证明:(1)322)(11122b a b b a ab aba -=+(2)3332221113333332222221111112c b a c b a c b a a c c b b a a c c b b a a c c b b a =+++++++++ 4.试求下列方程的根:(1)022223356=-+--λλλ(2)0913251323221321122=--x x5.计算下列行列式(1)8364213131524273------ (2)efcfbfde cd bdae ac ab---(3)2123548677595133634424355---------- (4)111110000000002211n n a a a a a a ---谢谢观赏(5)xaaa x a a a x(6)abb a b a b a 000000000000习 题 1.31. 解下列方程组(1)⎪⎩⎪⎨⎧-=++=+--=++1024305222325321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x2. k 取何值时,下列齐次线性方程组可能有非零:(1) ⎪⎩⎪⎨⎧=+-=++-=++0200321321321x x x x kx x kx x x (2)⎪⎩⎪⎨⎧=+-=++=++0300321321321x x x x kx x x x kx 习 题 五1.41.计算下列行列式(1)3010002113005004, (2)113352063410201-- (3)222111c b a c b a(4)3351110243152113------, (5)nn n n n b a a a a a b a a a a D ++=+212112111112.用克莱姆法则解线性方程(1)⎪⎩⎪⎨⎧=+-=-+=--114231124342321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=++=+-+=+-+=++3322212543143214321321x x x x x x x x x x x x x x3.当λ为何值时,方程组⎪⎩⎪⎨⎧=+-=+-=++0020321321321x x x x x x x x x λλ可能存在非零解?4.证明下列各等式(1) 222)(11122b a b b a a b ab a -=+(2) ))()((4)2()1()2()1()2()1(222222222c b a c a b c c c b b ba a a ---=++++++ (3) ))()()()()()((111144442222d c b a d c d b c b d a c a b a d c b a d c b a d c b a+++------=5.试求一个2次多项式)(x f ,满足1)2(,1)1(,0)1(-==-=f f f .第2章矩阵 习 题 2.21.设 ⎥⎦⎤⎢⎣⎡=530142A , ⎥⎦⎤⎢⎣⎡-=502131B , ⎥⎦⎤⎢⎣⎡--=313210C , 求3A -2B +C 。
高等代数习题答案(一至四章)第一章 多项式 习题解答1、(1)由带余除法,得17(),39q x x =-262()99r x =--(2)2()1q x x x =+-,()57r x x =-+2、(1)2100p m q m ⎧++=⎨-=⎩ , (2)由22(2)010m p m q p m ⎧--=⎪⎨+--=⎪⎩得01m p q =⎧⎨=+⎩或212q p m =⎧⎨+=⎩。
3、(1)432()261339109,q x x x x x =-+-+()327r x =- (2)q (x )=22(52)x ix i --+,()98r x i =--4、(1)有综合除法:2345()15(1)10(1)10(1)5(1)(1)f x x x x x x =+-+-+-+-+- (2)234()1124(2)22(2)8(2)(2)f x x x x x =-+++-+++(3)234()24(75)5()(1)()2()()f x i x i i x i i x i x i =+-++--+-+++5、(1)x+1 (2)1 (3)21x -- 6、(1)u (x )=-x-1 ,v (x )=x+2 (2)11()33u x x =-+,222()133v x x x =-- (3)u (x )=-x-1, 32()32v x x x x =+--7、02u t =⎧⎨=⎩或23u t =-⎧⎨=⎩8、思路:根具定义证明证:易见d (x )是f (x )与g (x )的公因式。
另设()x ϕ是f (x )与g (x )的任意公因式,下证()()x d x ϕ。
由于d (x )是f (x )与g (x )的一个组合,这就是说存在多项式s (x )与t (x ),使 d (x )=s (x )f (x )+t (x )g (x )。
从而()()x f x ϕ,()()x g x ϕ,可得()()x d x ϕ。
感谢你的观看《高等代数》课程习题第1章行列式习 题 1.11. 计算下列二阶行列式:(1)2345 (2)2163- (3)x x x x cos sin sin cos - (4)11123++-x x x x (5)2232ab b a a (6)ββααcos sin cos sin (7)3log log 1a b b a2. 计算下列三阶行列式:(1)341123312-- (2)00000d c b a (3)d c e ba 0000 (4)zy y x x 00002121(5)369528741 (6)01110111-- 3. 用定义计算行列式:(1)4106705330200100 (2)114300211321221---(3)500000000400030020001000 (4) dc b a 100110011001---. 4.用方程组求解公式解下列方程组:(1) ⎪⎩⎪⎨⎧=-+=--=--0520322321321321x x x x x x x x x (2)⎪⎩⎪⎨⎧=+-=-+=++232120321321321x x x x x x x x x习 题 1.21. 计算下列行列式:感谢你的观看(1)123112101 (2)15810644372---- (3)3610285140 (4)655565556 2.计算行列式(1)2341341241231234(2)12114351212734201----- (3)524222425-----a a a(4)322131399298203123- (5)0532004140013202527102135---- 3.用行列式的性质证明:(1)322)(11122b a b b a a b ab a -=+(2)3332221113333332222221111112c b a c b a c b a a c c b b a a c c b b a a c c b b a =+++++++++ 4.试求下列方程的根:(1)022223356=-+--λλλ(2)0913251323221321122=--x x5.计算下列行列式(1)8364213131524273------ (2)efcfbfde cd bdae ac ab---(3)2123548677595133634424355---------- (4)111110000000002211ΛΛΛΛΛΛΛΛΛΛn n a a a a a a ---感谢你的观看(5)xaaa x a a a xΛΛΛΛΛΛΛ (6)abb a b a b a 000000000000ΛΛΛΛΛΛΛΛΛΛ 习 题 1.31. 解下列方程组(1)⎪⎩⎪⎨⎧-=++=+--=++1024305222325321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x2. k 取何值时,下列齐次线性方程组可能有非零:(1) ⎪⎩⎪⎨⎧=+-=++-=++0200321321321x x x x kx x kx x x (2)⎪⎩⎪⎨⎧=+-=++=++0300321321321x x x x kx x x x kx 习 题 五1.41.计算下列行列式(1)3010002113005004, (2)113352063410201-- (3)222111c b a c b a(4)3351110243152113------, (5)nn n n n b a a a a a b a a a a D ++=+ΛΛΛΛΛΛΛΛ212112111112.用克莱姆法则解线性方程(1)⎪⎩⎪⎨⎧=+-=-+=--114231124342321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=++=+-+=+-+=++3322212543143214321321x x x x x x x x x x x x x x3.当λ为何值时,方程组⎪⎩⎪⎨⎧=+-=+-=++0020321321321x x x x x x x x x λλ可能存在非零解?4.证明下列各等式(1) 222)(11122b a b b a a b ab a -=+(2) ))()((4)2()1()2()1()2()1(222222222c b a c a b c c c b b ba a a ---=++++++ (3) ))()()()()()((111144442222d c b a d c d b c b d a c a b a d c b a d c b a d c b a+++------=5.试求一个2次多项式)(x f ,满足1)2(,1)1(,0)1(-==-=f f f .第2章矩阵 习 题 2.21.设 ⎥⎦⎤⎢⎣⎡=530142A , ⎥⎦⎤⎢⎣⎡-=502131B , ⎥⎦⎤⎢⎣⎡--=313210C , 求3A -2B +C 。
第5章二次型5.1复习笔记一、二次型及其矩阵表示1.二次型定义设P是一数域,一个系数在数域P中的x1,x2,…,x n的二次齐次多项式称为数域P上的一个n元二次型,或简称二次型.2.线性替换与二次型矩阵(1)线性替换定义设x1,…,x n;y1,…,y n是两组文字,系数在数域P中的一组关系式称为由x1,…,x n到y1,…,y n的一个线性代替,或简称线性替换.如果系数行列式,那么线性替换就称为非退化的.(2)二次型的矩阵令由于所以二次型可以写成其中的系数排成一个n×n 矩阵它就称为二次型的矩阵,因为a ij =a ji ,i,j=1,…,n,所以A=A'二次型的矩阵都是对称的.3.合同矩阵(1)定义数域P 上n×n 矩阵A ,B 称为合同的,如果有数域P 上可逆的n×n 矩阵C ,使B C AC¢=(2)性质①反身性:A=E'AE ;②对称性:由B=C'AC 即得A=(C -1)'BC -1;③传递性:由A 1=C 1'AC 1和A 2=C 2'A 1C 2即得经过非退化的线性替换,新二次型的矩阵与原二次型的矩阵是合同的.二、标准形1.定义数域P 上任意一个二次型都可以经过非退化的线性替换变成平方和2221122n nd x d x d x +++ 的形式,该形式就称为的一个标准形.注意:二次型的标准型不是唯一的,而与所作的非退化线性替换有关.2.定理在数域P 上,任意一个对称矩阵都合同于一对角矩阵.即对于任意一个对称矩阵A 都可以找到一个可逆矩阵C,使C AC ¢成对角矩阵,并且该对角矩阵的值就是对应的标准形式的系数.三、唯一性1.基本概念(1)二次型的秩在一个二次型的标准形中,系数不为零的平方项的个数是唯一确定的,与所作的非退化线性替换无关,二次型矩阵的秩有时就称为二次型的秩.(2)复二次型的规范性设f(x1,x2,…,x n)是一个复系数的二次型.经过一适当的非退化线性替换后,f(x1,x2,…,x n)变成标准形,不妨假定它的标准形是易知r就是f(x1,x2,…,x n)的矩阵的秩.因为复数总可以开平方,我们再作一非退化线性替换(1)就变成称为复二次型f(x1,x2,…,x n)的规范形.结论:任意一个复系数的二次型,经过一适当的非退化线性替换可以变成规范形,且规范形是唯一的.即任一复数的对称矩阵合同于一个形式为的对角矩阵.从而有,两个复数对称矩阵合同的充分必要条件是它们的秩相等.(3)实二次型的规范形设f(x1,x2,…,x n)是一实系数的二次型,经过某一个非退化线性替换,再适当排列文字的次序,可使f(x1,x2,…,x n)变成标准形其中d i>0,i=1,…,r;r是f(x1,x2,…,x n)的矩阵的秩.因为在实数域中,正实数总可以开平方,所以再作一非退化线性替换(4)就变成(6)称为实二次型f(x1,x2,…,x n)的规范形.结论:任意一个实数域上的二次型,经过一适当的非退化线性替换可以变成规范形,且规范形是唯一的.2.惯性定理设实二次型f(x1,x2,…,x n)经过非退化线性替换X=BY化成规范形而经过非退化线性替换X=CZ也化成规范形则p=q.另一种表述:实二次型的标准形中系数为正的平方项的个数是唯一确定的,它等于正惯性指数,而系数为负的平方项的个数就等于负惯性指数.3.惯性指数在实二次型f(x1,x2,…,x n)的规范形中,(1)正惯性指数:正平方项的个数p;(2)负惯性指数:负平方项的个数r-p;(3)符号差:p-(r-p)=2p-r.该定义对于矩阵也是适合的.四、正定二次型1.定义实二次型,f(x1,x2,…,x n)称为正定的,如果对于任意一组不全为零的实数c1,c2,…,c n都有f(c1,c2,…,c n)>0.2.常用的判别条件(1)n元实二次型f(x1,x2,…,x n)是正定的充分必要条件是它的正惯性指数等于。
第1章 多项式第1节 数域1.举出对加法、乘法及除法封闭但对减法不封闭的例子。
解:集合Q +={a ∈Q|a >0}对加法、乘法及除法封闭但是对减法不封闭。
2.举出对加法、减法封闭,但对乘法不封闭的例子。
解:集合1{}33n n n ⎧⎫=∈=∈⎨⎬⎩⎭Z Z Z ∣对加法、减法都封闭,但是对乘法不封闭。
3.举出对加法、减法都不封闭,但对乘法封闭的例子。
解:集合S ={2n|n ∈N},{1},{2m +1|m ∈Z}与集合{m|p ∤m ,p 素数}对加法、减法都是不封闭的,但是对乘法封闭。
4.试证C 的子集P 若对减法封闭,则必对加法封闭。
证明:可设P ≠∅,于是有a ∈P ,因此a -a =0∈P 。
又因为0-a =-a ∈P ,若有b ∈P ,则必有a +b =b +a =b -(-a )∈P 。
故P 若对减法封闭,则必对加法封闭。
5.试证C 的子集P 若对除法封闭,则必对乘法封闭。
证明:设P ≠∅,P ≠{0},于是有a ∈P ,a ≠0,因此a ÷a =1∈P 。
又因为1÷a =a -1∈P ,故若b ∈P成立,则有ab =ba =b ÷a -1∈P 。
因此P 若对除法封闭,则必对乘法封闭。
6.令{,,}a a b c =++∈Q Q试证明是一个数域。
证明:由题目易知1,0Q∈,若1,2)i i d a b c i =+=则有()((12121212d d a a b b c c ±=±+±+±Q即Q 对加法和减法都封闭。
又因为()((12121212122112122112555 d d a a b c c b a b a b c c a c a c b b =++++++++Q则Q 对乘法封闭。
下面需证明Q 对除法是封闭的。
由于对乘法封闭,故只需证明下面结论: 若d a=++≠则1d-∈Q成立。
下面分为三种情形讨论:(1)b=c=0,此时d=a≠0,11d a--=∈Q。