第1讲 繁分数 -教师版
- 格式:doc
- 大小:121.00 KB
- 文档页数:6
工程问题一、工程问题:1、由两个或两个以上单位(或人),共同去完成一件工作或一项工程,计算需要完成任务的时间,这一类应用题叫做“工程问题”。
2、题目中没有给出具体的总工程量,通常用单位“1”表示(即整体思想),并用“1÷工作时间”推算工作效率,用一个分数单位1n⎛⎫⎪⎝⎭表示。
3、基本数量关系与一般工作问题完全相同,即总工程量÷工作效率=工作时间;总工程量÷工作时间=工作效率【例 1】【基础】一项工作,甲队独做需要10天,乙队独修需要12天,两队合作几天修完?【提高、尖子】铺设一条公路,单独由甲队完成需要20天,由乙队单独完成需要30天,由丙队单独完成需要60天,现在希望能尽快修好这条路,让甲、乙、丙三队一起铺设,需要几天可以完成?第五讲工程问题与繁分数【例 2】【基础】有一项工程甲队单独做需要10天时间,甲、乙两队合做需要4天,问:1)乙队单独做,要到第几天才能完成?2)如果甲先做3天,然后两队合做,还需要几天能够完成?【尖子】有一水池,装有甲、乙两个注水管,下面装有丙管放水,池空时,单开甲管5分钟可注满,单开乙管10分钟可注满;水池装满水后,单开丙管15分钟可将水放完. 如果在池空时,将甲、乙、丙管齐开,2 分钟后关闭乙管,还要多少分钟可注满水池?【例 3】【基础】一项工程,甲、乙合作需要12天完成,乙、丙合作需要15天完成,甲、丙合作需要20天完成,如果由甲、乙、丙三队合作需要几天完成?【提高】一件工作甲、乙两队合作36天完成,乙、丙两人合作45天完成,甲、丙两人合作要60天完成,问甲队独做需要多少天完成?【尖子】一项工程,由甲、乙、丙三人分段去完成.甲先做4小时完成23,乙继续做1小时,完成余下的34,丙再做20分钟完成工程.如果一开始就由3人合作,几小时完成?【例 4】【基础】有一条公路,甲队独修10天,乙队独修12天,丙队独修15天,现在让3个队合修,但中途甲队撤离出去到外地工作,结果用了6天才把这条公路修完。
54、分数与繁分数化简
【分数化简】
讲析:容易看出,分子中含有因数37,分母中含有因数71。
所以可得
(长沙地区小学数学奥林匹克选拔赛试题)
讲析:注意到,4×6=24,2+4=6,由此产生的一连串算式:
16×4=64
166×4=664
1666×4=6664
……
(全国“育苗杯”小学数学竞赛试题)
讲析:容易看出分子中含有因数3。
把48531分解为48531=3×16177,然后可试着用16177去除分母:
【繁分数化简】
(1990年马鞍山市小学数学竞赛试题)
讲析:如果分别计算出分子与分母的值,则难度较大。
观察式子,可发现分子中含有326×274,分母中含有275×326。
于是可想办法化成相同的数:
(全国第三届“华杯赛”复赛试题)
讲析:可把小数化成分数,把带分数都化成假分数,并注意将分子分母同乘以一个数,以消除各自中的分母。
于是可得
例3 化简
(全国第三届“华杯赛”复赛试题)
讲析:由于分子与分母部分都比较复杂,所以只能分别计算。
计算时,哪一步中能简算的,就采用简算的办法去计算。
所以,原繁分数等于1。
(北京市第一届“迎春杯”小学数学竞赛试题)
讲析:连分数化简,通常要从最下层的分母开始,自下而上逐步化简。
依此法计算,题目的得数是2。
(计算过程略)。
第一章四则混合运算第一节带分数的加减法一1. 带分数的整数部分与分数部分是相加的关系【例1】将下列各带分数写成整数和分数相加的形式(1)3 13 2 (2)104 17【例2】将下列整数和分数合并成一个带分数1217 (1)18+122133 (2)133+2. 带分数的加法(1)同分母的带分数加法法则:带分数相加,可以把它们的整数部分和分数部分分别相加,再把所得的结果合并起来。
结果可以约分的需要约分化简。
【例3】计算1 (1)51334135(2)12181318(3)45 3765471249(4)323249(2)异分母的带分数加法法则:先将分数部分通分,再进行运算。
,分数部分是假分数时要化成带分数,并将整数部分与原来的整数部分相加。
【例4】计算13 (1)4 25(2)356749(3)12337343111(4)193387573. 带分数的减法(1)同分母的带分数减法法则:带分数相减,可以把它们的整数部分和分数部分分别相减,再把所得的结果合并起来。
结果可以约分的需要约分化简。
【例5】计算35 (1)8 - 3251314(2)45-94145 (3)713 -213(4)564552- 455521(2)异分母的带分数减法法则:先将分数部分通分,再进行运算。
【例6】 计算(1)6 2 5- 43 8(2)23 11 26 - 55 396 (3)4 17-1 5345 (4)91 36-199 144(3)分数部分不够减的带分数减法:被减数的分数部分向整数部分借 1,然后再进行运算。
【例7】 计算1 3(1)7- 5 2 3(2)4 5 7- 36 75 (3)14 19- 2 21389 (4)3 121- 9 11(5)5 3 14- 311 35 (6) 79 43 111 - 747 74练习 4. 计算(1)42 2 7354 7(2)513 7135(3)4172 5 174 (4)56 1944 1519 (5)4 2 564 7(6) 73 5 8 81114 93 (7)797 62 (8) 4 5 18 817 4225. 计算59 (1)7 - 329(2)17411- 5311(3)45 57-9145(4)5612-5718(5)39 321- 3557(6)1201120- 173110(7)67738-919(8)72342- 6756第二节带分数的加减法二本节主要讲在带分数的加减混合运算中需要注意的几个问题。
小学数学人教新版六年级上册实用资料繁分数的运算繁分数的运算,涉及分数与小数的定义新运算问题,综合性较强的计算问题.1.繁分数的运算必须注意多级分数的处理,如下所示:甚至可以简单地说:“先算短分数线的,后算长分数线的”.找到最长的分数线,将其上视为分子,其下视为分母.2.一般情况下进行分数的乘、除运算使用真分数或假分数,而不使用带分数.所以需将带分数化为假分数.3.某些时候将分数线视为除号,可使繁分数的运算更加直观.4.对于定义新运算,我们只需按题中的定义进行运算即可.5.本讲要求大家对分数运算有很好的掌握,可参阅《思维导引详解》五年级[第1讲循环小数与分数].1.计算:71147 18262 13581333416⨯+⨯-÷【分析与解】原式=7123723174612241488128131233+⨯=⨯=-2.计算:【分析与解】注意,作为被除数的这个繁分数的分子、分母均含有5199.于是,我们想到改变运算顺序,如果分子与分母在5199后的两个数字的运算结果一致,那么作为被除数的这个繁分数的值为1;如果不一致,也不会增加我们的计算量.所以我们决定改变作为被除数的繁分数的运算顺序.而作为除数的繁分数,我们注意两个加数的分母相似,于是统一通分为1995×0.5.具体过程如下:原式=5919(3 5.22)19930.41.6 910() 52719950.51995 19(6 5.22)950+-⨯÷+⨯-+=5191.3219930.440.40.5 9() 519950.419950.5 191.329-⨯⨯⨯÷+⨯⨯-=199320.41()19950.5+÷⨯=0.410.5÷=1143.计算:1111111987 -+-【分析与解】原式=11198711986-+=198613973-=198739734.计算:已知=181111+12+1x+4=,则x等于多少?【分析与解】方法一:1118x68114x112x711 1+11148x62+214x1x+4+====+++++++交叉相乘有88x+66=96x+56,x=1.25.方法二:有1113 11188 21x4+==+++,所以18222133x4+==++;所以13x42+=,那么x=1.25.5.求944,43,443,...,44 (43)123个这10个数的和.【分析与解】方法一:944+43+443...44 (43)++123个={1044(441)(4441)...(44...41)+-+-++-个={104444444...44 (49)++++-个=1094(999999...999...9)99⨯++++-123个=1004[(101)(1001)(10001)...(1000...01)]99⨯-+-+-++--14243个=914111.1009=49382715919⨯-14243个.方法二:先计算这10个数的个位数字和为39+4=31⨯;再计算这10个数的十位数字和为4×9=36,加上个位的进位的3,为36339+=;再计算这10个数的百位数字和为4×8=32,加上十位的进位的3,为32335+=;再计算这10个数的千位数字和为4×7=28,加上百位的进位的3,为28331+=;再计算这10个数的万位数字和为4×6=24,加上千位的进位的3,为24327+=;再计算这10个数的十万位数字和为4×5=20,加上万位的进位的2,为20222+=;再计算这10个数的百万位数字和为4×4=16,加上十万位的进位的2,为16218+=;再计算这10个数的千万位数字和为4×3=12,加上百万位的进位的1,为12113+=;再计算这10个数的亿位数字和为4×2=8,加上千万位的进位的1,为819+=;最后计算这10个数的十亿位数字和为4×1=4,加上亿位上没有进位,即为4. 所以,这10个数的和为4938271591.6.如图1-1,每一线段的端点上两数之和算作线段的长度,那么图中6条线段的长度之和是多少?【分析与解】 因为每个端点均有三条线段通过,所以这6条线段的长度之和为: 1173(0.60.875)1+0.75+1.8+2.625=6.175=63440⨯+++=7.我们规定,符号“○”表示选择两数中较大数的运算,例如:3.5○2.9=2.9○3.5=3.5.符号“△”表示选择两数中较小数的运算,例如:3.5△2.9=2.9△3.5=2.9.请计算:23155(0.625)(0.4)333841235(0.3)( 2.25)3104⨯+V d d V 【分析与解】原式1550.6255155725384218384122562.253⨯=⨯÷=+8.规定(3)=2×3×4,(4)=3×4×5,(5)=4×5×6,(10)=9×10×11,….如果111(16)(17)(17)-=⨯,那么方框内应填的数是多少?【分析与解】111(17)()1(16)(17)(17)(16)=-÷=-=161718111516175⨯⨯-=⨯⨯.9.从和式11111124681012+++++中必须去掉哪两个分数,才能使得余下的分数之和等于1?【分析与解】 因为1116124+=,所以12,14,16,112的和为l ,因此应去掉18与110.10.如图1-2排列在一个圆圈上10个数按顺时针次序可以组成许多个整数部分是一位的循环小数,例如1.892915929.那么在所有这种数中。
奥数计算要点知识点整理汇总及典型例题讲解速算与巧算一、加减法中的巧算:1、加补数法两个自然数相加,如果它们的和恰好是整十、整百、整千……那么就称其中的一个数为另一个数的“补数”,这两个数称为互补。
在加减法的运算中,如果有两个加数互为补数,那么可以先求出它们的和,使计算迅速简便;如果题中没有互补的加数,那么可以设法分出互补的加数,以便凑成整十、整百、整千……的数。
2、去括号和添括号的法则在只有加减的算式里,如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,即:a+(b+c+d)=a+b+c+da-(b+c+d)=a-b-c-da-(b-c)=a-b+c如:100+(10+20+30)=100+10+20+30=160100-(10+20+30)=100-10-20-30=40100-(30-10)=100-30+10=803、找“基准数”法在算式中的加减运算中,当所有数都接近某个数时,可以将这个数作为基数,然后把每个数都看作是基数,计算,并且算出每个数与基数的差值,最后从结果中减去或加上这些差值。
4、分组凑整法先把能凑成整十或整百(包括0)的数结合在一起,再把它们各自的结果数相加。
5、位值原理法当遇到复杂的加减运算时,可以将每个数按位值分解,使具有相同位值的优先加减,最后将各个位值运算的结果合并起来,使运算简化。
6、带“符号”搬家如325+46-125+54=325-125+46+54=(325-125)+(46+54)=200+100=300。
二、乘法中的巧算:1、两数的乘积是整十、整百、整千,要先乘。
为此,要牢记下面这三个特殊的等式:5×2=1025×4=100125×8=10002、拆并法在乘除法的计算问题中,观察题目,将其中的部分数拆分,从而能够使用相应的乘除法分配率、结合率等等。
分数与小数的互化是六年级数学上学期第二章第2节中的内容.通过本讲的学习,我们需要学会分数与有限小数及无限循环小数的互化,并利用分数与小数互相转化的方法比较分数与小数的大小,从而熟练分数与小数的互化,为后面学习分数与小数的四则混合运算做好准备.1、分数化小数利用分数与除法的关系,进行分数向小数的转化,例如:3350.65=÷=.2、可化为有限小数的分数的规律一个最简分数,如果分母中只含有素因数2和5,再无其他素因数,那么这个分数可以化成有限小数;否则就不能化成有限小数.3、有限小数化为分数原来有几位小数,就在1后面添几个零作为分母,原来的小数去掉小数点作分子,若有整数部分作为带分数的整数部分.注意:结果一定要化为最简分数.分数与小数的互化内容分析知识结构模块一:分数与有限小数的互化知识精讲【例1】 把下列分数化成有限小数,如果不能化成有限小数,则将其保留3位小数.35、56、18、920、7112、124【难度】★【答案】0.6;0.833;0.125;0.45;1.583;2.25. 【解析】考察分数与小数的互化.【例2】 把下列小数化成分数.0.12,0.076,1.35,2.02.【难度】★【答案】3197112252502050,,,.【解析】2531001212.0==,25019100076076.0==,207110035135.1==,50121002202.2==.【总结】考察分数与小数的互化.【例3】 比较下列两组数的大小:1320______0.66,1.35______37180. 【难度】★【答案】< ;<. 【解析】66.065.02013<=,35.14625.180371>=.【总结】考查分数与小数的大小比较,可以将分数化为小数,也可将小数化成分数,然后再比较大小.【例4】 将12,35,58,710,1320,1725按从小到大的顺序排列.【难度】★★【答案】12<35<58<1320<1725<710. 【解析】1=0.52,3=0.65,5=0.6258,7=0.710,13=0.6520,17=0.6825.【总结】主要考查分数的大小比较,可以将分数化为小数,然后再比较大小.例题解析【例5】 下列说法错误的是( )A .任何分数都能化为小数B .任何小数都能化为最简分数C .任何分数都能化为有限小数D .任何有限小数都能化为分数【难度】★★ 【答案】C【解析】分数可以化为有限小数和无限不循环小数. 【总结】考查分数化为小数的方法.【例6】 在分数313,714,1150,1215,2332,76中能化为有限小数的分数有______个.【难度】★★【答案】4【解析】714,1150,1215,2332均可化为有限小数.【总结】考察分数转化为有限小数的条件.【例7】 10.26分米 = ______分米 = ______米;0.26天 =______小时.(填分数) 【难度】★★ 【答案】501310;500131;25156.【解析】501310100261026.10==,251562450132426.0=⨯=⨯. 【总结】考察利用小数分数之间的转化表示单位之间的换算.【例8】 0.24的倒数是______,1.35的倒数是______. 【难度】★★【答案】625,2720.【解析】2561002424.0==,2027207110035135.1===. 【总结】先将小数化为分数,然后再求倒数.【例9】 (1)120.252-;(2)120.253-.【难度】★★【答案】(1)2.25;(2)1212. 【解析】(1)120.25 2.50.25 2.252-=-=;(2)111120.252233412-=-=.【总结】分数与小数混合运算时,有不能化为有限小数的分数时,将所有的数字转化为分数来进行运算.如果可以转换为有限小数时,则可以化做小数再加减运算.【例10】 甲水果店的苹果以9元4千克的价格出售,乙水果店的苹果以16元7千克的价格出售,哪家水果店苹果的价格比较便宜?【难度】★★ 【答案】乙. 【解析】因为1696416916494⨯=⨯⨯=,9166391697167⨯=⨯⨯=,所以16794>, 故乙水果店便宜.【总结】考查利用分数的大小比较解决实际问题.【例11】 某学校组织“分数计算竞赛”,甲、乙、丙三位同学分别耗时0.6小时、3760小时和42分钟,三人中用时最少的是谁?【难度】★★★ 【答案】甲. 【解析】42分钟=6042小时;0.6小时=53小时=6036小时.所以分钟小时小时4260376.0<<,故甲用时最少.【总结】考查利用分数的大小比较解决实际问题.【例12】 已知,a 是一个不大于30的正整数,且9a能化成有限小数,则a 可能取的值有______个.【难度】★★★ 【答案】13【解析】满足条件的有2,4,6,8,10,12,15,16,18,20,24,25,30,共有13个.【总结】本题主要考查分数化为有限小数的条件,主要化成最简分数之后,分母的因数 只有2和5就可以.1、 循环小数一个小数从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这个小数叫做循环小数.一个循环小数的小数部分中依次不断地重复出现的第一个最少的数字组,叫做这个循环小数的循环节.为了书写方便,小数的循环部分只写出第一个循环节,在这个循环节的首位和末位的数字上面各记一个圆点.例如:0.3333…的循环节为“3”,写作0.3g;0.1363636…的循环节为“36”,写作0.136g g. 像“0.3g”这样的循环小数称为纯循环小数,其循环节从小数点后第一位开始; 像“0.136g g ”这样的循环小数称为混循环小数,其循环节不从小数点后第一位开始. 2、 纯循环小数化为分数纯循环小数化分数:这个分数的分子等于一个循环节所组成的数,分母全部由9构成,9的个数等于一个循环节中的位数,最后再化为最简分数.例如:123410.123999333==g g . 3、 混循环小数化为分数混循环小数化分数:这个分数的分子是第二个循环节之前的小数部分组成的数与小数部分中不循环部分组成的数的差,分母的前几位数是9,末几位数是0,9的个数等于一个循环节中的位数,0的个数等于小数点后不循环部分的位数.例如:1231122610.123990990495-===g g . 模块二:分数与循环小数的互化知识精讲【例13】0.102102…的循环节是_______,写作_________,保留2位小数写作_______.【难度】★【答案】102;••201;0.10.【解析】考察循环小数的读法和写法.【例14】已知:0.12222,0.353555…,3.23232323,0.1010010001…,0.1353535…,0.231544307…,其中循环小数有_____个.【难度】★【答案】2个【解析】循环小数有0.353555…,0.1353535….【总结】考察循环小数的定义.【例15】将下列分数化为有限小数,若不能化为有限小数,则化为循环小数,并说出其循环节.(1)75;(2)1215;(3)79;(4)4199.【难度】★【答案】(1)1.4;(2)0.8;(3)•7.0,循环节为7;(4)••14.0,循环节为41.【解析】考察分数与小数的互化.【例16】将下列两组数按从小到大的顺序排列.(1)29、16、0.2、516;(2)315、1.62g、138、1.60g g.【难度】★★【答案】(1)16<0.229<516<;(2)3151.60<g g1.62<g138<.【解析】(1)因为20.29•=、10.166•=、0.2、50.312516=,所以16<0.229<516<;(2)因为31 1.65=、131.6258=,所以3151.60<g g1.62<g138<.【总结】考察分数与小数的大小比较,可以将小数化为分数,也可将分数化为小数.例题解析【例17】 将下列循环小数化为分数.(1)0.3g;(2)0.21g g;(3)0.36g;(4)0.321g g.【难度】★★【答案】(1)31;(2)337;(3)3011;(4)53165.【解析】(1)310.393==g; (2)2170.219933==g g ;(3)36333110.36909030-===g ; (4)3213318530.321990990165-===g g . 【总结】考察循环小数化为分数的方法,参考知识精要.【例18】 分数511化为循环小数后,小数点右边第200位上的数字是______. 【难度】★★【答案】5.【解析】••=54.0115,则小数点右边第200位上的数字为5.【总结】考察分数化为小数的方法以及数字的规律.【例19】 移动循环小数2.3020304gg的前一个循环点,使产生的循环小数尽可能小,这个新循环小数是__________.【难度】★★ 【答案】2.3020304gg.【解析】考察循环小数的比较大小.【例20】 将67化为循环小数后,小数点后的前100个数字之和为多少? 【难度】★★【答案】453.【解析】••=257148.076循环数字有6位,因为100÷6=16余4,所以小数点后的前100个数字之和为:()()453175824175816=+++++++++⨯.【总结】考察分数化成小数的方法,以及对循环节的理解和运用.【例21】 将31 1.25⨯g 的结果化为带分数:______.【难度】★★【答案】45431.【解析】因为9212.1=•,所以381188431 1.215594545⨯=⨯==g .【总结】现将循环小数化为分数,然后根据分数的乘法法则进行计算.【例22】 计算:(1)2.45 3.13+g gg;(2)2.609 1.32-gg g;(3)4.3 2.4⨯gg;(4)1.240.3÷g gg. 【难度】★★ 【答案】(1)165975;(2)283919900;(3)27286;(4)1141 【解析】(1)45131527522972.453.13232323599901115165165165-+=+=+=+=g gg; (2)609603261322.609 1.3221219009910099--=-=-g g g 283919900=; (3)3439222864.3 2.442999927⨯=⨯=⨯=g g ;(4)243123411.240.3139999911÷=÷=⨯=g g g .【总结】本题主要考查无限循环小数化成分数的方法以及分数的运算.【例23】 10.610.610.60.6+++gggg.【难度】★★【答案】132205.【解析】212121212121212126443333321231333331339233263=+=+=+=+=+++++++原式239205344132=+=. 【总结】考察繁分数的运算,本题要先将小数化成分数再进行计算.【例24】 计算:0.140.250.360.470.58++++ggggg. 【难度】★★★【答案】1831.【解析】0.140.250.360.470.58++++ggggg.141252363474585=909090909013233343539090909090165319018-----++++=++++== 【总结】本题一方面考查无限循环小数化成分数的方法,另一方面考查分数的加法运算.【例25】 将纯循环小数0.ab g g化为最简分数时,分子与分母之和为19,求a 和b . 【难度】★★★ 【答案】72a b ==,. 【解析】100.99a b ab +=g g,当分母为9时,则分子为10,则分数为910,不合题意;当分母为11时,分子为8,则分数为••=27.0118,所以72a b ==,. 【总结】考察循环小数化为分数的方法以及对纯循环小数的理解及运用.【例26】 某学生计算1.23g乘以一个数a 时,把1.23g误看成1.23,使乘积比正确结果减少0.3,则正确的结果该是多少?【难度】★★★ 【答案】111. 【解析】因为30719021190223132.1==-=•,所以3.023.13071=-a a ,所以3.03001=a ,所以90=a ;则正确的结果为111903037903071=⨯=⨯.【总结】本题一方面考查学生对题意的理解,另一方面考查无限循环小数与分数的互化以及分数的运算.【例27】 循环小数0.12345gg与0.2345gg在小数点后面第几位第一次同时出现数字5? 【难度】★★★【答案】小数点后面第20位第一次 同时出现数字5.【解析】0.12345gg循环节有5位,0.2345gg循环节有4位,则小数点后面第20位第一次同时出现数字5.【总结】考察循环小数循环节的规律以及对最小公倍数的运用.【例28】 真分数7x化为小数后,如果从小数点后第一位数字开始连续若干个数字之和是91,那么x 等于多少?【难度】★★★【答案】2【解析】••=742851.071,••=485712.072,••=128574.073,••=871425.074,••=514287.075,••=257148.076,观察发现循环节的数字都是1,4,2,8,5,7,一个循环节的和为27758241=+++++,32791=÷余10,只有72中1082=+,所以x 等于2.【总结】考察分数与小数的互化以及对数字规律的观察与总结.【例29】 求证:20.63=g. 【难度】★★★【答案】设a =•6.0,则a 106.6=•,所以66.06.610=-=-••a a ,所以69=a ,所以32=a . 【解析】考察分数化为循环小数的方法.【例30】 求证:110.3630=g . 【难度】★★★【答案】设a =•63.0,则a 106.3=•,a 1006.36=•,所以336.36.3610100=-=-••a a ,所以3390=a ,所以3011=a . 【解析】考察分数化为循环小数的方法.【习题1】 把下列分数化成有限小数,如果不能化成有限小数,则将其保留3位小数.74、415、1324、8335. 【难度】★【答案】7 1.754=、41 1.85=、130.54224=、83 3.22935=. 【解析】考察分数化小数的方法.【习题2】将1722化为循环小数:______. 【难度】★【答案】••7277.0.【解析】考察分数化小数的方法.【习题3】 将0.1503g g 化为分数:______. 【难度】★★【答案】4995751. 【解析】1503115027510.1503999099904995-===g g . 【总结】考察循环小数化成分数的方法.【习题4】 将1.44、1.4g、41100、1.41从大到小排列:____________________. 【难度】★★【答案】41100<1.41<1.44<1.4g . 【解析】因为04.110041=,所以41100<1.41<1.44<1.4g . 【总结】考察分数与小数的大小比较,注意合理方法的选用.随堂检测【习题5】 计算:30.4524⨯=g g ______. 【难度】★★ 【答案】45. 【解析】因为115994554.0==••,所以351150.45241144⨯=⨯=g g . 【总结】先将循环小数化为分数,然后再做乘法.【习题6】 甲、乙两个工人加工零件,甲平均每分钟加工0.9个,乙平均每分钟加工1011个,谁的工作效率高些? 【难度】★★【答案】乙 【解析】因为100.900.911••=>,所以乙的工作效率高.【总结】考查分数与小数的大小比较在实际问题中的应用.【习题7】 0.540.36+=g g g______. 【难度】★★ 【答案】990899. 【解析】545364945393608990.540.3690999011990990990-+=+=+=+=g g g . 【总结】先将循环小数化为分数,然后再做分数加减法.【习题8】 将613化为循环小数后,小数点后的前100个数字之和为多少?. 【难度】★★【答案】448. 【解析】••=861534.0136,循环节共有6位,则4166100Λ=÷, 所以()448516483516416=+++++++++⨯. 【总结】考察分数化成小数的方法,以及对循环节的总结及运用.【习题9】 计算:0.010.120.230.340.780.89+++++g g g g g g .【难度】★★★ 【答案】512. 【解析】0.010.120.230.340.780.89+++++g g g g g g11212323437878989090909090901112131718190909090909021612905-----=+++++=+++++== 【总结】考察循环小数化为分数的方法以及分数的加法运算,注意结果要化到最简.【习题10】 设a 、b 、c 是0 ~ 9的数字(允许相同),将循环小数0.abc g g 化成最简分数后,分子有多少种不同的情况?【难度】★★★【答案】660. 【解析】0.999abc abc =g g ,因为a 、b 、c 是0 ~ 9的数字,所以abc 可以为001到999.因为373331119999⨯⨯⨯=⨯=,所以001到999中以3为公因数有333个数可以约分,还剩666个.以37为公因数的有27个可以约分,还剩639个.算重复的有 9个,所以剩 下639+9=648.而其中81的倍数有12个,所以共有648+12=660个.【总结】本题综合性较强,考查的知识点比较多,也比较综合,主要是认真分析题意,根据所学知识求出结论.【作业1】 填空: 12=______; 14=______; 34=______; 15=______; 18=______; 38=______; 58=______; 78=______; 120=______; 125=______; 140=______; 150=______. 【难度】★ 【答案】0.5;0.25;0.75;0.2;0.125;0.375;0.625;0.875;0.05;0.04;0.025;0.02.【解析】考察分数化成小数的方法.【总结】常见分数与小数需要背诵.【作业2】 将无限循环小数3.102g g表示成分数形式:______. 【难度】★【答案】333343. 【解析】102343.10233999333==g g . 【总结】考察循环小数化分数.【作业3】 将下列小数化成最简分数.0.35,0.02,1.135【难度】★【答案】712712050200,,. 【解析】0.3520710035==,0.022110050==,1.13520027110001351==. 【总结】考察小数化成分数的方法,注意分数一定要化成最简分数.课后作业【作业4】 将435化成循环小数是______,小数点右边第2016位上的数字是______. 【难度】★★ 【答案】0.1142857&&,5. 【解析】40.114285735=&&循环节共有6个数字,()2016163355-÷=L ,所以小数点右 边第2016位上的数字是5.【总结】考察分数化小数的方法以及对循环节的理解及运用.【作业5】 119、522、0.227g g 、0.227g g 、1.2g 这些数中,是否有相等的两个数?若有,请将它们一一写出来.【难度】★★ 【答案】119=1.2g 、522=0.227g g . 【解析】227222550.22799099022-===g g ;2270.2271000=g g ;2111.2199==g . 【总结】考察循环小数化分数的方法以及分数的大小比较.【作业6】 化肥厂第一天生产化肥12.5吨,第二天比第一天多生产113吨,两天共生产化肥多少吨?【难度】★★ 【答案】3126. 【解析】31263115.125.12=⎪⎭⎫ ⎝⎛++(吨). 【总结】考察分数加减法的实际应用.【作业7】 191.21.2427⨯+g g g . 【难度】★★ 【答案】920. 【解析】192241911123194119201.21.241127999279992727279⨯+=⨯+=⨯+=+=g g g .【总结】先将循环小数化为分数再做乘法运算.【作业8】 有8个数,0.51g g ,23,59,0.51g ,2447,1325是其中6个,如果按从小到大的顺序排列时,第4个数是0.51g ,那么按从大到小排列时,第6个数是哪一个数?【难度】★★★【答案】0.51g. 【解析】因为20.63•=,50.59•=,240.510647=L ,130.5225=, 所以2447<0.51g 0.51<g g 1325<59<23<,由于这6个数从小到大的顺序排列0.51&在第二位,而0.51&在八个数按从小到大的顺序排列时位于第4个,所以另外两个数都小于0.51&,所以这八个数从大到小排列时,第四个是0.51&. 【作业9】 纯循环小数0.abc g g写成最简分数时,分子和分母的和是58,那么三位数abc = ______.【难度】★★★【答案】567. 【解析】0.999abc abc =g g ,而37391119999⨯⨯=⨯=,又因为0.abc g g 小于1,且分子和分母 的和是58,所以当分母为37时,则分子为21,即分数为••=765.03721;所以567abc =. 【总结】考察循环小数化为分数的方法.【作业10】 真分数13a 化成小数后,如果小数点后连续2017个数字之和是9075,那么a 等于多少?【难度】★★★【答案】4或5. 【解析】将分数131213111310139138137136135134133132131,,,,,,,,,,,化为小数后发现所有的循环节都是又0、7、6、9、2、3或4、6、1、5、3、8构成.则一个循环节的和为27329670=+++++, 或46153827+++++=,而3336279075Λ=÷,而 只有134,135小数点后第一位为3, 所以45a =或. 【总结】本题主要考查对循环节的规律的归纳及运用.。
奥数教程(六年级)第一讲 分数的计算例1 计算:4.3695.3)5.3694.3(2009-⨯+⨯⨯ (提示:转化成分母相同) 例2 计算:1341321318428.44.22.113913313118628.106.32.1⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯ (提示:找分子分母共同点,变形)例3 计算:10241195121172561151281136411132191617815413211+++++++++(提示:先合并再相加) 例4 计算:)1099()988()877()766()655()544()433()322()211(-⨯-⨯-⨯-⨯-⨯-⨯-⨯-⨯-(提示:先求差)例5 计算:23191713111917132223171311132613117455⨯⨯+⨯⨯+⨯⨯+⨯⨯(分子分解质因数,约分) 例6 计算:()123...891098...32199...531)100...642(22222222++++++++++++++++-++++第二讲 分数的大小比较例1 分数75、1715、94、12440、309103中,哪一个最大?(提示:化简,统一分子)例2 在□内填上相同的自然数,使不等式3619613111>++++ 成立,此时□内的数的最大值是几?例3 若A=12009200912+-, B=2220082009200820091+⨯-,比较A 与B 的大小。
(提示:比较分母)例4 不求和,比较200520022004200420032005+与200520022003200420032006+的大小。
例5 在下列□内填两个相邻的整数,使不等式成立。
□<10191817161514131211+++++++++<□ 例6 已知A=21771 (21611216011)+++,求A 的整数部分是多少?第三讲 巧算分数的和例1 计算:50491...431321211⨯++⨯+⨯+⨯ 例2 计算:100981...861641421⨯++⨯+⨯+⨯ 例3 计算:10099981...43213211⨯⨯++⨯⨯+⨯⨯ 例4 计算:10099...3211...4321132112111++++++++++++++++例5 计算:2019...4321...54321432132121++++++++++++++++ 例6 计算:⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+++9911...311211991 (41131121141)3112113121121 第四讲 繁分数例1 计算:20072008200820091200920092009122⨯+-+-÷ 例2 计算:41322111+++例3 规定□表示选择两数中较大的数的运算,△表示选择两数中较小的数的运算。
⎧⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎩⎪⎪⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎧⎨⎪⎨⎪⎩⎧⎪⎧⎨⎨⎪⎩⎩⎧⎨⎩⎧⎪⎪⎨⎪⎪⎩分组凑整加补凑整加减法位值原理基准数法商不变性质积不变性质四则运算乘除法结合律乘法分配律换元法提取公因式运算技巧拆数法分组法求和等差数列求项数求通向整数裂项裂项裂差分数裂项裂和化简繁分数运算倒推法求未知数平方差公式完全平方公式常用公式自然数立方和自然数平方和⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩一、基本运算律及公式 1.加法加法交换律:两个数相加,交换加数的位置,他们的和不变。
即:a b b a +=+其中a ,b 各表示任意一数.例如,7+8=8+7=15知识网络速算巧算知识积累总结:多个数相加,任意交换相加的次序,其和不变.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变。
即:()()a b c a b c a b c++=++=++其中a,b,c各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).总结:多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变。
2.减法在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”.例如:a b c a c b--=--,a b c a c b-+=+-,其中a,b,c各表示一个数.在加减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”.如:()a b c a b c+-=+-()a b c a b c-+=--()a b c a b c--=-+在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。