第17章 一元二次方程(整理与复习)
- 格式:ppt
- 大小:777.50 KB
- 文档页数:18
第17章 一元二次方程(知识清单+典型例题)【知识导图】【知识清单】1.一元二次方程的概念一元二次方程2(0)0a x bx c a ìïíï=¹î++一个未知数2整式方概念:只含有,且未知数的一程最高次数是的.般式:C .()()513x x -+=D .()212y x =-+【变式】方程25610x x --=的二次项系数、一次项系数和常数项分别是( )A .5,6-,1-B .5,6,1C .1,6-,1D .1,6,1-2.一元二次方程的解法解法2212,0(0)0,0a c x ax c a x x c c x a a c ì=ïïï+=¹Þ=íï===ïïîìíî-开平方法无实数根因式分解法一次因式积零异号时,:形如:的方程同号公时,;时,:把一元二次方程分解成两个等于的形式,分别令两个一次因式为零求解。
把常数项移到方程右边;把二次项系数化为;方程两边都加上:半;左边配成配方法一次项系数一的平方完程全平方式①②1③④.24b ac x ìïïïïïïïïïíïïïïìïïD ==ïíïïîïïî-式:化成一般式;计算判别式法;①②③【例2】解下列方程:(1)22(1)18x -=.(2)2450x x --=.【变式】解下列方程:(1)()()273273x x +=+;(2)2640x x --=.3.一元二次方程的判别式000.D >ÛìïD ÛíïD <Ûî两个不相等两个方程有的实数根;=方程有的实数根;方实数根没有程相等【例3】(2023上·上海金山·八年级校考期中)下列方程是关于x 的一元二次方程,一定有实数解的是( )A .220x x ++=B .220x x m ++=C .2230x x -+-=D .2240x x --=4.二次三项式的因式分解:步骤:21212220(0),()()40ax bx c a a x x a x x x c x b ac x bx ì-³ïí++=ï++=¹--î如果,先求出方程,再写出分解式:的两根①②5.一元二次方程的应用题一般步骤:ìíî找出题中的;设;列出,即根据找出的等量等量关系未知数方程含有未知数的等关系列出;解方作式检程;。
第17章一元二次方程练习题1 一元二次方程x 2-6x -5=0配方后可变形为( )A .(x -3)2=14B .(x -3)2=4C .(x +3)2=14D .(x +3)2=42一元二次方程x 2+2x +1=0的根的情况是( )A .有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根3下列一元二次方程没有实数根的是( )A .x 2+2x +1=0B .x 2+x +2=0C .x 2-1=0D .x 2-2x -1=04. 若关于x 的一元二次方程x 2+4x +k =0有两个相等的实根,则k 的值为( )A .k =-4B .k =4C .k ≥-4D .k ≥45 若方程3x 2-4x -4=0的两个实数根分别为x 1,x 2,则x 1+x 2=( )A .-4B .3C .-43D .436 已知关于x 的一元二次方程x 2+mx -8=0的一个实数根为2,则另一实数根及m 的值分别为( )A .4,-2B .-4,-2C .4,2D .-4,27 有x 支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( )A .12x (x -1)=45B .12x (x +1)=45 C .x (x -1)=45 D .x (x +1)=458 若x =-2是关于x 的一元二次方程x 2+32ax -a 2=0的一个根,则a 的值为( ) A .-1或4 B .-1或-4 C .1或-4 D .1或49若x 1,x 2是一元二次方程x 2-2x -1=0的两个根,则x 12-x 1+x 2的值为( )A .-1B .0C .2D .310 已知M =29a -1,N =a 2-79a (a 为任意实数),则M ,N 的大小关系为( ) A .M <N B .M =N C .M >N D .不能确定11 若x 0是方程ax 2+2x +c =0(a ≠0)的一个根,设M =1-ac ,N =(ax 0+1)2,则M 与N 的大小关系正确的为( )A .M >NB .M =NC .M <ND .不确定12 方程x 2-3=0的根是________.13若方程2x -4=0的解也是关于x 的方程x 2+mx +2=0的一个解,则m 的值为________.14 某加工厂九月份加工了10吨干果,十一月份加工了13吨干果.设该厂加工干果重量的月平均增长率为x ,根据题意可列方程为________________.15 已知m 是关于x 的方程x 2-2x -3=0的一个根,则2m 2-4m =________.16] 若一个三角形的两边长分别是3和4,第三边长是方程x 2-13x +40=0的根,则该三角形的周长为________.17 若关于x 的一元二次方程x 2+6x +k =0有两个相等的实数根,则k =________.18若关于x的一元二次方程x2+2x-2m+1=0的两个实数根之积为负数,则实数m的取值范围是________.19.如果关于x的一元二次方程kx2-3x-1=0有两个不相等的实数根,那么k的取值范围是________.20] 某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是________.21设m,n分别为一元二次方程x2+2x-2018=0的两个实数根,则m2+3m+n=________.22解方程:x2-2x=4.23定义新运算:对于任意实数m,n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:-3☆2=(-3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0,请判断方程2x2-bx+a=0的根的情况.24已知关于x的一元二次方程x2+(2m+1)x+m2-1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.25.已知关于x的一元二次方程x2-6x+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x 1,x 2,且2x 1x 2+x 1+x 2≥20,求m 的取值范围.26 一幅长20 cm 、宽12 cm 的图案,如图17-Y -1,其中有一横两竖的彩条,横、竖彩条的宽度比为3∶2.设竖彩条的宽度为x cm ,图案中三条彩条所占面积为y cm 2.(1)求y 与x 之间的函数表达式;(2)若图案中三条彩条所占面积是图案面积的25,求横、竖彩条的宽度.图17-Y -127某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品的进价为300元/件,两次降价共售出此种商品100件.为使两次降价销售的总利润不少于3210元,则第一次降价后至少要售出该种商品多少件?参考答案1.A2.B3.B [解析] A .Δ=22-4×1×1=0,方程有两个相等实数根,此选项错误;B .Δ=12-4×1×2=-7<0,方程没有实数根,此选项正确;C .Δ=0-4×1×(-1)=4>0,方程有两个不等的实数根,此选项错误;D .Δ=(-2)2-4×1×(-1)=8>0,方程有两个不等的实数根,此选项错误.4.B 5.D 6.D 7.A8.C [解析] 将x =-2代入方程x 2+32ax -a 2=0,得4-3a -a 2=0,即a 2+3a -4=0,左边分解因式得(a -1)(a +4)=0,∴a -1=0,或a +4=0,解得a =1或-4.9.D [解析] ∵x 1,x 2是一元二次方程x 2-2x -1=0的两个根,∴x 1+x 2=-b a=2,x 1x 2=c a=-1.x 12-x 1+x 2=x 12-2x 1-1+x 1+1+x 2=1+x 1+x 2=1+2=3. 10.A [解析] ∵M =29a -1,N =a 2-79a (a 为任意实数),∴N -M =a 2-a +1=(a -12)2+34,N -M >0,∴N >M ,即M <N . 11.B [解析] ∵x 0是方程ax 2+2x +c =0(a ≠0)的一个根,∴ax 02+2x 0+c =0,即ax 02+2x 0=-c ,则N -M =(ax 0+1)2-(1-ac )=a 2x 02+2ax 0+1-1+ac =a (ax 02+2x 0)+ac =-ac +ac =0,∴M =N .12.x 1=3,x 2=- 313.-314.10(1+x )2=1315.616.1217.918.m >1219.k >-94且k ≠0 20.10%21.2016 [解析] ∵m 为一元二次方程x 2+2x -2018=0的实数根,∴m 2+2m -2018=0,即m 2=-2m +2018,∴m 2+3m +n =-2m +2018+3m +n =2018+m +n ,∵m ,n 分别为一元二次方程x 2+2x -2018=0的两个实数根,∴m +n =-2,∴m 2+3m +n =2018-2=2016.22.解:配方x 2-2x +1=4+1,∴(x -1)2=5,∴x =1±5,∴x 1=1+5,x 2=1- 5.23.解:∵2☆a 的值小于0,∴22a +a =5a <0,解得a <0.在方程2x 2-bx +a =0中,Δ=(-b )2-8a ≥-8a >0,∴方程2x 2-bx +a =0有两个不相等的实数根.24.解:(1)∵关于x 的一元二次方程x 2+(2m +1)x +m 2-1=0有两个不相等的实数根,∴Δ=(2m +1)2-4×1×(m 2-1)=4m +5>0,解得m >-54. (2)m =1,此时原方程为x 2+3x =0,即x (x +3)=0,解得x 1=0,x 2=-3.(答案不唯一,正确即可)25.解:(1)根据题意得Δ=(-6)2-4(2m +1)≥0,解得m ≤4.(2)根据题意得x 1+x 2=6,x 1x 2=2m +1,而2x 1x 2+x 1+x 2≥20,所以2(2m +1)+6≥20,解得m ≥3,由(1)可得m ≤4,所以m 的范围为3≤m ≤4.26.解:(1)根据题意可知,横彩条的宽度为32x cm , ∴y =20×32x +2×12x -2×32x ·x =-3x 2+54x , 即y 与x 之间的函数表达式为y =-3x 2+54x .(2)根据题意,得-3x 2+54x =25×20×12, 整理,得x 2-18x +32=0,解得:x 1=2,x 2=16(舍去),∴32x =3, 答:横彩条的宽度为3 cm ,竖彩条的宽度为2 cm .27.解:(1)设该种商品每次降价的百分率为x %,依题意得400×(1-x %)2=324,解得x =10或x =190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m 件,则第二次降价后售出该种商品(100-m )件, 第一次降价后的单件利润为400×(1-10%)-300=60(元/件);第二次降价后的单件利润为324-300=24(元/件).依题意得60m +24×(100-m )=36m +2400≥3210.解得m ≥22.5.∴m ≥23.答:为使两次降价销售的总利润不少于3210元,第一次降价后至少要售出该种商品23件.。
沪教版初二上第十七章《一元二次方程》全章复习与巩固练习(有解析)【巩固练习】 一、选择题1. 关于x 的一元二次方程(a -1)x2+x +|a|-1=0的一个根是0,则实数a 的值为( )A.-1B.0C.1D.-1或12.已知a 是方程x2+x ﹣1=0的一个根,则22211a a a---的值为( ) A.152-+ B.152-± C.﹣1D.13.若方程式(3x ﹣c )2﹣60=0的两根均为正数,其中c 为整数,则c 的最小值为何?( )A.1B.8C.16D.614.已知关于x 的方程2(2)230m x mx m -+++=有实根,则m 的取值范畴是( )A .2m ≠B .6m ≤且2m ≠C .6m <D .6m ≤ 5.假如是α、β是方程2234x x +=的两个根,则22αβ+的值为( ) A .1 B .17 C .6.25 D .0.25 6.在一幅长80 cm,宽50 cm 的矩形风景画的四周镶上一条金色纸边,制成一幅矩形挂图,如图所示.假如要使整个挂图的面积是5 400 cm2,设金色纸边的宽为x cm,那么x 满足的方程是( )A.x2+130x -1 400=0B.x2+65x -350=0C.x2-130x -1 400=0D.x2-65x -350=07. 方程x2+ax+1=0和x2-x-a=0有一个公共根,则a 的值是( ) A .0 B .1 C .2 D .38. 若关于x 的一元二次方程的两个实数根分别是,且满足.则k 的值为( )A.-1或B.-1C.D.不存在 二、填空题9.关于x 的方程2()0a x m b ++=的解是x1=-2,x2=1(a ,m ,b 均为常数,a ≠0),则方程2(2)0a x m b +++=的解是 .10.已知关于x 的方程x2+2(a+1)x+(3a2+4ab+4b2+2)=0有实根,则a 、b 的值分别为 .11.已知α、β是一元二次方程2430x x --=的两实数根,则(α-3)(β-3)=________.12.当m_________时,关于x 的方程是一元二次方程;当m_________时,此方程是一元一次方程.13.把一元二次方程3x2-2x-3=0化成3(x+m)2=n 的形式是____________;若多项式x2-ax+2a-3是一个完全平方式,则a=_________.14.已知,则的值等于_________. 15.已知,那么代数式的值为________.16.当x=_________时,既是最简二次根式,被开方数又相同.三、解答题17. 设m 为整数,且4<m <40,方程有两个不相等的整数根,求m 的值及方程的根.18.设(a ,b)是一次函数y =(k-2)x+m 与反比例函数ny x=的图象的交点,且a 、b 是关于x 的一元二次方程22(3)(3)0kx k x k +-+-=的两个不相等的实数根,其中k 为非负整数,m 、n 为常数.(1)求k 的值;(2)求一次函数与反比例函数的解析式.19. 长沙市某楼盘预备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格通过两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人预备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优待方案以供选择:①打9.8折销售;②不打折,送两年物业治理费,物业治理费是每平方米每月1.5元,请问哪种方案更优待?20.已知某项工程由甲、乙两队合做12天能够完成,共需工程费用13 800元,乙队单独完成这项工程所需时刻是甲队单独完成这项工程所需时刻的2倍少10天,且甲队每天的工程费用比乙队多150元.(1)甲、乙两队单独完成这项工程分别需要多少天?(2)若工程治理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应该选择哪个工程队?请说明理由.【答案与解析】 一、选择题 1.【答案】A ;【解析】先把x =0代入方程求出a 的值,然后依照二次项系数不能为0,把a =1舍去.2.【答案】D ; 【解析】先化简22211a a a---,由a 是方程x2+x ﹣1=0的一个根,得a2+a ﹣1=0,则a2+a=1,再整体代入即可.解:原式=2(1)(1)(1)a a a a a -++-=1(1)a a +,∵a 是方程x2+x ﹣1=0的一个根, ∴a2+a ﹣1=0, 即a2+a=1, ∴原式=1(1)a a +=1.故选D . 3.【答案】B ;【解析】利用平方根观念求出x ,再依照一元二次方程的两根都为正数,求出c 的最小值即可.解:(3x ﹣c )2﹣60=0 (3x ﹣c )2=60 3x ﹣c=±3x=c ±x=又两根均为正数,且>7.因此整数c 的最小值为8故选B . 4.【答案】D ;【解析】△≥0得6m ≤,方程有实根可能是一元二次方程有实根,也可能是一元一次方程有实根.5.【答案】C ;【解析】22+=+-=6.25αβαβαβ2()2. 6.【答案】B ;【解析】上、下两条金色纸边的面积一样,左、右两条金色纸边的面积一样,∴2(80+x)·x+2(50+x)·x+80×50=5 400. 整理得x2+65x -350=0. 7.【答案】C ;【解析】提示:先求公共根m=-1,再把那个公共根m=-1代入原先任意一个方程可求出a=2.8.【答案】C ;【解析】由题意,得: 二、填空题9.【答案】x1=﹣4,x2=﹣1.【解析】解:∵关于x 的方程a (x+m )2+b=0的解是x1=﹣2,x2=1,(a ,m ,b 均为常数,a ≠0),∴则方程a (x+m+2)2+b=0的解是x1=﹣2﹣2=﹣4,x2=1﹣2=﹣1. 故答案为:x1=﹣4,x2=﹣1. 10.【答案】a =1,12b =-.【解析】 判别式△=[2(a+1)]2-4(3a2+4ab+4b2+2) =4(a2+2a+1)-(12a2+16ab+16b2+8) =-8a2-16ab-16b2+8a-4=-4(2a2+4ab+4b2-2a+1)=-4[(a2+4ab+4b2)+(a2-2a+1)]. =-4[(a+2b)2+(a-1)2].因为原方程有实根,因此-4[(a+2b)2+(a-1)2]≥0, (a+2b)2+(a-1)2≤0,又∵ (a+2b)2≥0,(a-1)2≥0, ∴ a-1=0且a+2b =0, ∴ a =1,12b =-. 11.【答案】-6;【解析】∵ α、β是一元二次方程2430x x --=的两实数根, ∴ α+β=4,αβ=-3. 12.【答案】-3;.13.【答案】;2或6.【解析】即2(-)232a a =-.a=2或6. 14.【答案】4;【解析】原方程化简为:(x2+y2)2-2(x2+y2)-8=0,解得x2+y2=-2或4,-2不符题意舍去.15.【答案】-2; 【解析】原方程化为:.16.【答案】-5;【解析】由x2+3x=x+15解出x=-5或x=3, 当x=3时,不是最简二次根式,x=3舍去.故x=-5.三、解答题17. 【答案与解析】 解方程,得,∵原方程有两个不相等的整数根,∴2m+1为完全平方数, 又∵m 为整数,且4<m <40,∴m=12或24. ∴当m=12时,,;当m=24时,.18. 【答案与解析】(1)因为关于x 的方程22(3)(3)0kx k x k +-+-=有两个不相等的实数根,因此220,44(3)4(3)0,k b ac k k k ≠⎧⎨=-=--->⎩△ 解得k <3且k ≠0, 又因为一次函数y =(k-2)x+m 存在,且k 为非负整数,因此k =1. (2)因为k =1,因此原方程可变形为2420x x --=,因此由根与系数的关系知a+b =4,ab =-2,又当k =1时,一次函数y x m =-+过点(a ,b),因此a+b =m ,因此m =4,同理可得n =-2,故所求的一次函数与反比例函数的解析式分别为4y x =-+与2y x=-. 19. 【答案与解析】(1)设平均每次下调的百分率是x . 依题意得5000(1-x)2=4050. 解得x1=10%,x2=1910(不合题意,舍去). 答:平均每次下调的百分率为10%. (2)方案①优待:4050×100×(1-0.98)=8100(元);方案②优待:1.5×100×12×2=3600(元) ∵ 8100>3600.∴ 选方案①更优待. 20. 【答案与解析】(1) 设甲队单独完成需x 天,则乙队单独完成需要(2x -10)天. 依照题意,有11121012xx +=-,解得x1=3,x2=20. 经检验均是原方程的根,x1=3不符题意舍去.故x=20.∴乙队单独完成需要 2x -10=30(天).答:甲、乙两队单独完成这项工程分别需要20天、30天. (2) 设甲队每天的费用为y 元,则由题意有 12y+12(y -150)=138 000,解得y=650 .∴选甲队时需工程费用650×20=13 000,选乙队时需工程费用500×30=15 000.∵13 000 <15 000,∴从节约资金的角度考虑,应该选择甲工程队.。
第十七讲:一元二次方程知识梳理知识点1. 一元二次方程的概念 重点:掌握一元二次方程的概念 难点:判断方程是否为一元二次方程 1、一元二次方程的概念只含有一个未知数,并且未知数的最高次数是2 的整式方程叫做一元二次方程。
2、关于x 的一元二次方程的一般形式ax 2+bx+c=0,(a ≠0),其中a 为二次项系数,b 为一次项系数,c 为常数项。
例1. .下列方程中是一元二次方程的是( )①20x =②243(25)x x =-③2111x x =++④213x -=2=⑥2545(2)(1)x x x x -=+-A . ①②③⑥B . ①②④⑥C . ①②④D . ②③④⑥ 解题思路:根据一元二次方程的概念 答案:B 例2将下列方程化成一元二次方程的一般形式,1.(1)(2)61x x x ++=+2.2(2)(2)2(3)x x x +-=- 解题思路:根据一元二次方程的一般形式ax 2+bx+c=0,(a ≠0) , 例2、1.: 2.:223261310x x x x x ++=+-+=2222242(69)42121812220x x x x x x x x -=-+-=-+-+= 练习1. 当a 时,方程2(1)(21)10a x a x ++--=是关于x 的一元二次方程;当a 时,方程22(5)740a x x a ++-=是关于x 的一元二次方程.221)0x x -+=答案:1.1a ≠-,a 为任意实数2.22)20x x -++=知识点2. 一元二次方程的解法重点:掌握一元二次方程的解法难点:熟练解一元二次方程灵活运用四种解法解一元二次方程:一元二次方程的一般形式:a2x+bx+c=0(a≠0) 四种解法:直接开平方法,配方法,公式法,因式分解法,公式法:x= (b2-4ac≥0)注意:掌握一元二次方程求根公式的推导;主要数学方法有:配方法,换元法,“消元”与“降次”。
章末复习【知识与技能】1.了解一元二次方程的概念,掌握一元二次方程的公式解法和其他解法;能够根据方程的特征,灵活运用一元二次方程的解法求方程的根.2.理解一元二次方程的根的判别式,会运用它解决一些简单的问题.3.掌握一元二次方程根与系数的关系,会用它解一些简单的问题.4.会列出一元二次方程解实际问题.【过程与方法】1.进一步培养学生快速准确的计算能力.2.进一步培养学生严密的逻辑推理与论证能力.3.进一步培养学生的分析问题、解决问题的能力.【情感态度】1.进一步渗透知识之间的相互联系和相互作用.2.进一步渗透“转化”的思想方法及对学生进行辩证唯物主义思想教育.3.进一步体会配方法是解决数学问题的一种思想方法.【教学重点】1.一元二次方程的解法及判别式.2.一元二次方程根与系数的关系以及它的简单应用.【教学难点】列方程解决实际问题,灵活运用根与系数的关系解决问题.一、知识框图,整体把握【教学说明】教师引导学生回顾本章知识点,边回顾边画出本章知识框图,使学生对本章知识有一个总体把握,了解各知识点之间的联系,加深对知识点的理解,为后面的运用奠定基础.二、释疑解惑,加深理解1.一元二次方程的定义和一般形式(1)只含有一个未知数、且未知数的最高次数是2的整式方程,叫做一元二次方程.(2)一元二次方程的一般形式是ax2+bx+c=0(a≠0)特别注意:①分母中不含有未知数.②只有当二次项系数a≠0时,整式方程ax2+bx+c=0才是一元二次方程.2.一元二次方程的解法一元二次方程解法有:直接开平方法、配方法、公式法和因式分解法.说明:(1)明确一元二次方程是以降次为目的,以配方法、开平方法、公式法、因式分解法等方法为手段,从而把一元二次方程转化为一元一次方程求解;(2)根据方程系数的特点,熟练地选用配方法、开平方法、公式法、因式分解法等方法解一元二次方程;值得注意的问题:①一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数.②直接开平方法是最基本的方法.③公式法和配方法是最重要的方法.公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算根的判别式的值,以便判断方程是否有解.配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法解一元二次方程.但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好.(三种重要的数学方法:换元法配方法,待定系数法).3.一元二次方程根的判别式一元二次方程ax 2+bx+c=0(a ≠0)中,b 2-4ac 叫做一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式,通常用“Δ”来表示,即Δ=b 2-4ac,①当Δ>0时,一元二次方程有2个不相等的实数根;②当Δ=0时,一元二次方程有2个相同的实数根;③当Δ<0时,一元二次方程没有实数根.4.一元二次方程根与系数的关系如果方程ax 2+bx+c=0(a ≠0)的两个实数根是x 1,x 2,那么x 1+x 2=-a b ,x 1x 2=a c .应用根与系数的关系,可以不解方程,计算两根的和或积,求式子的值.5.建立一元二次方程模型解决实际问题建立一元二次方程模型的步骤是:审题、设未知数、列方程.注意:(1)审题过程是找出已知量、未知量及等量关系;(2)设未知数要带单位;(3)建立一元二次方程模型的关键是依题意找出等量关系.【教学说明】教师引导学生对本章重点知识和需要注意的问题进行详细的回顾,使学生对本章知识有进一步的理解,形成知识网络.三、典例精析,复习新知例1 判断关于x 的方程x 2-mx(2x-m+1)=x 中是不是一元二次方程,如果是,指出二次项系数、一次项系数及常项数.【分析】先把方程化为一般形式ax 2+bx+c=0,然后根据一元二次方程的定义可知,当a ≠0时方程是一元二次方程.解:原方程可化为(1-2m )x 2+(m 2-m-1)x=0.当1-2m=0,即m=21时,原方程整理为-45x=0,原方程是一元一次方程; 当1-2m ≠0,即m ≠21时,原方程是一元二次方程. 此时,二次项系数为1-2m,一次项系数为m 2-m-1,常数项为0.例2 已知关于x 的一元二次方程(m-2)x 2+3x+m 2-2=0的一个根中零.求m 的值. 【分析】(1)正确理解方程的根的概念;(2)要特别注意一元二次方程ax 2+bx+c=0中隐含的a ≠0这个条件.解:方程的一个根是零,即x=0,当x=0时,原方程可化为m 2-2=0.解得m=±2.又∵m-2≠0,即m ≠2,∴m=-2例3(四川绵阳中考)已知关于x 的一元二次方程x 2=2(1-m)x-m 2的两个实数根为x 1,x 2.(1)求m 的取值范围.(2)设y=x 1+x 2,当y 取得最小值时,求相应m 的值,并求出最小值.【分析】(1)一元一次方程ax 2+bx+c=0(a ≠0)有实数根的条件是b 2-4ac ≥0,不要漏掉b 2-4ac=0的情况.先把方程变形成一般形式,把a,b,c 的值代入b 2-4ac,根据b 2-4ac ≥0求出m 的取值范围.(2)可由一次函数y=kx+b,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小的性质,根据自变量取值范围,求出一次函数的最大值或最小值.解:(1)将原方程整理为x 2+2(m-1)x+m 2=0.∵原方程有两个实数根,∴Δ=[2(m-1)]2-4m 2=-8m+4≥0,得m ≤21. (2)∵x 1,x 2=-2m+2,∴y=x 1+x 2=-2m+2,∵y 随m 的增大而减小,且m ≤21, ∴当m=21时,y 取得最小值1. 【教学说明】教师出示典型例题,让学生先尝试解答,教师予以讲解,在讲解的过程中,应着重于知识点的应用和解题方法的渗透.四、复习训练,巩固提高1.若方程x 2-3x -1=0的两根为x 1、x 2,则2111x x 的值为( ). A.3 B.-3 C.31 D.-31 2.关于x 的方程(a-6)x 2-8x+6=0有实数根,则整数a 的最大值是( )A.6B.7C.8D.93.在一幅长为80cm,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm,那么x 满足的方程是( ).A.x 2+130x -1400=0B.x 2+65x -350=0C.x 2-130x -1400=0D.x 2-65x -350=04.关于x 的一元二次方程-x2+(2k+1)x+2-k 2=0有实数根,则k 的取值范围是 .5.已知x 1、x 2是方程x 2-3x -2=0的两个实根,则(x 1-2) (x 2-2)= .6.某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到1210辆,则该厂四、五月份的月平均增长率为 .7.解方程:(x -3)2+4x(x -3)=08.阅读材料:为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1 看作一个整体,然后设x 2-1=y,那么原方程可化为y 2-5y+4=0……①,解得y 1=1,y 2=4,当y=1时,x 2-1=1,∴x 2=2,∴x=±2;当y=4时,x 2-1=4,∴x 2=5,∴x=±5,故原方程的解为x 1=2,x 2=-2,x 3=5,x 4=-5. 解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用 法达到了解方程的目的,体现了转化的数学思想;(2)请利用以上知识解方程x 4-x 2-6=0.9.关于x 的方程kx 2+(k+2)x+4k =0有两个不相等的实数根. (1)求k 的取值范围.(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k 的值;若不存在,说明理由.10.如图,利用一面墙,用80米长的篱笆围成一个矩形场地(1)怎样围才能使矩形场地的面积为750平方米?(2)能否使所围的矩形场地面积为810平方米,为什么?【答案】1.B 2.C 3.B 4.k ≥-49 5.-4 6.10%10.解:设AD=BC=xm,则AB=(80-2x)m (1)由题意得:x(80-2x)=750解得:x1=15 x2=25当x=15时,AD=BC=15m,AB=50m当x=25时,AD=BC=25m,AB=30m答:当平行于墙面的边长为50m,斜边长为15m时,矩形场地面积为750m2;或当平行于墙面的边长为30m,邻边长为25m时矩形场地面积为750m2.(2)由题意得:x(80-2x)=810Δ=40-4×405=1600-1620=-20<0∴方程无解,即不能围成面积为810m2的矩形场地.【教学说明】学生独立完成练习,进一步熟练相关知识点的应用和提高解题能力.五、师生互动,课堂小结1.一元二次方程的定义和一般形式.2.一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法,要根据具体的问题选择合适的方法.3.根的判别式:Δ=b2-4ac和根与系数的关系:4.列方程解应用题的一般步骤.【教学说明】学生结合刚才所进行的复习,进行自主交流与反思,提出自己的困惑,进一步掌握全章知识.完成同步练习册中本课时的练习.重点是让学生加强对一元二次方程解法的熟练性,难点是让学生掌握根的判别式和根与系数的关系.对于根的判别式这个知识点,学生还不时会在两个方面出问题:一是方程有解的时候,学生通常只考虑到△>0的情况,而漏了△=0情况;二是在对方程中某一待定系数的取值范围的分析的时候,常常会忘记对二次项系数a≠0这种情况的分析.有一部分的学生问题主要还是出在了公式的误差记忆上,从而导致了整个运算的错误.还有一点问题就是学生的运算能力太差,在解方程时,方法基本都已经掌握,但无法保证计算的准确性.。