高等数学空间解析几何及向量代数
- 格式:doc
- 大小:2.82 MB
- 文档页数:32
高数下册常用常见知识点高等数学下册常用知识点第八章:空间解析几何与向量代数一、向量及其线性运算1.向量的概念及基本性质:包括向量相等、单位向量、零向量、向量平行、共线、共面等基本概念。
2.向量的线性运算:包括加减法和数乘。
3.空间直角坐标系:包括坐标轴、坐标面、卦限和向量的坐标分解式等。
4.利用坐标进行向量的运算:设向量a=(ax。
ay。
az),向量b=(bx。
by。
bz),则a±b=(ax±bx。
ay±by。
az±bz),λa=(λax。
λay。
λaz)。
5.向量的模、方向角、投影:包括向量的模、两点间的距离公式、方向角、方向余弦和投影等。
二、数量积和向量积1.数量积:包括数量积的概念、性质和计算公式等。
2.向量积:包括向量积的概念、性质和计算公式等。
三、曲面及其方程1.曲面方程的概念:包括曲面方程的定义和基本性质等。
2.旋转曲面:包括旋转曲面的定义、方程和旋转后方程的计算等。
3.柱面:包括柱面的特点、方程和母线的概念等。
4.二次曲面:包括椭圆锥面的方程和图形等。
2.椭球面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$3.旋转椭球面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$4.单叶双曲面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$5.双叶双曲面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=-1$6.椭圆抛物面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=z$7.双曲抛物面(马鞍面):$\frac{x^2}{a^2}-\frac{y^2}{b^2}=z$8.椭圆柱面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$9.双曲柱面:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$10.抛物柱面:$2x=ay^2$空间曲线及其方程:1.参数方程:$\begin{cases}x=x(t)\\y=y(t)\\z=z(t)\end{cases}$,如螺旋线:$\begin{cases}x=a\cos t\\y=a\sin t\\z=bt\end{cases}$2.一般方程:$F(x,y,z)=0$,消去$z$,得到曲线在面$xoy$上的投影。
第八章空间解析几何与向量代数 公共数学教研室空间解析几何主要研究空间几何图形, 把数学研究的两个基本对象“数”和“形”统一起来, 达到用代数方法解决几何问题, 用几何方法解决代数问题.本章引进向量及其代数运算, 讨论向量的各种运算规律, 介绍空间曲面和空间曲线, 以向量为工具来研究平面和空间直线, 最后介绍二次曲面.8.1 向量及其线性运算 8.2 向量的数量积8.3 向量的向量积混合积 8.4 平面及其方程8.5 空间直线及其方程 8.6 直线平面之间的关系 8.7 曲面及其方程8.8 空间曲线和向量函数8.1 向量及其线性运算vector and linear operation8.1.1 空间直角坐标系在空间中任取一点O, 作互相垂直的数轴Ox, Oy, Oz, 分别叫做x 轴 (横轴), y 轴 (纵轴), z 轴 (竖轴), 统称坐标轴, 三个坐标轴符合右手法则. 这样的三条坐标轴组成一个空间直角坐标系, 点O 叫做坐标原点 (或原点).三条坐标轴中的任意两条确定一个平面, 分别称为xOy 面, yOz 面及zOx 面. 三个坐标面把空间分成八个部分, 每一部分叫做一个卦限.x 轴, y 轴, z 轴上点的坐标分别表示为 (0, 0, z ), (0, y , 0), (0, 0, z ); xOy 面, yOz 面, zOx 面上点的坐标分别表示为 (x , y , 0), (0, y , z ), (x , 0, z ).22212212121||()()().M M x x y y z z =-+-+- 设有序数 (x , y , z ) 与空间点 M 一一对应, 依次称 x , y 和 z 为点M 的横坐标, 纵坐标和竖坐标. 点 M 通常记为 M (x , y , z ).空间中两点M 1 (x 1, y 1, z 1), M 2 (x 2, y 2, z 2) 间的距离公式为设 M 为空间中一点, 过 M 作三个平面分别垂直于 x 轴, y 轴, z 轴, 与 x 轴, y 轴, z 轴的交点依次为 P , Q , R , 这三个点在 x 轴, y 轴, z 轴的坐标依次为 x , y , z . 于是 M 唯一地确定了一个有序数组 (x , y , z ); 反之, 一有序数组 (x , y , z ) 唯一确定空间一点 M . 这样, 就建立了空间的点 M 和有序数组 (x , y , z ) 之间的一一对应关系. x z y ⑻O⑷⑶⑵⑴⑺⑹⑸R P QO x z y8.1.2 向量的概念及其坐标表示只有大小的量称为数量 (或标量), 如时间, 温度, 长度等. 既有大小又有方向的量称为向量 (或矢量), 例如位移 , 速度 , 加速度 , 力 等.s v a F 向量包含两个要素 — 大小和方向. 有向线段也具有这两个要素, 因此可用有向线段 表示向量, 其大小是有向线段的长度, 其方向是从 A 到 B 的方向, A 是向量的起点, B 是向量的终点. 若记 则称 为的一个几何表示 . AB ,v AB AB v 向量 的大小, 叫做向量的模或长度, 记为v ||.v向量仅由其大小和方向确定, 与其位置无关, 故向量被称为自由向量. 因此, 若两个向量大小相等, 方向相同, 称这两个向量相等.将两个向量移到同一始点, 如果它们位于一条直线上, 且两个终点分布在始点的同一侧, 则称这两个向量方向相同; 如果它们位于一条直线上, 且两个终点分布在始点的两侧, 则称这两个向量方向相反. 长度是零的向量称为零向量, 记为 , 零向量的方向可以认为是任意的.如图, 向量 位置不同, 但它们的长度相同, 且它们所在的线段有相同的斜率,即它们的方向相同, 所以,,OP AB CD P (2, 1)O C (1, 3)D (3, 4)A (- 3, - 3)B (- 2, - 2)x y .OP AB CD == 向量具有平移不变性, 若将向量 平移, 使其起点与原点 O 重合, 终点位于 P , 则 故 可由 P 的座標確定.AB ,AB OP = AB 定义 8-1 一个二元有序实数组 {a , b } 称为一个二维向量, 二维向量的全体记作 V 2. 一个三元有序实数组 {a , b , c } 称为一个三维向量. 三维向量的全体记作 V 3, 其中实数 a , b , c 称为向量的分量, 也称为向量的坐标.2121{,}v x x y y =-- 定义 8-2 若 M 1 (x 1, y 1), M 2 (x 2, y 2) 为平面上两点, 则二维向量 表示由有向线段 所表示的向量. 12M M 212121{,,}v x x y y z z =--- 若 M 1 (x 1, y 1, z 1), M 2 (x 2, y 2, z 2) 为空间中两点, 则三维向量表示由有向线段 所表示的向量. 12M M 22212212121||||()()()v M M x x y y z z ==-+-+-给定向量任意取定 A (x 0, y 0, z 0), 记 B = (x + x 0, y + y 0, z + z 0), P = P (x , y , z ),则{,,},r x y z = .r AB OP == 称为点 P (x , y , z ) 的位置向量,{,,}r x y z = 222|||{,,}|r x y z x y z ==++ 222||02(1) 5.AB =++-= 例 1 已知 A (1, 0, 2), B (1, 2, 1) 是空间两点, 求向量 和它的模.AB 解{11,20,12}{0,2,1},AB =---=-对三维向量 8.1.3 向量的线性运算 定义 8-3 设 是两个二维向量, 称向量 {a x + b x , a y + b y }为向量 和的和, 记作 即{,},{,}x y x y a a a b b b == a b ,a b + {,}{,}{,}.x y x y x x y y a b a a b b a b a b +=+=++ {,,},{,,},x y z x y z a a a a b b b b == 类似有{,,}{,,}{,,}.x y z x y z x x y y z z a b a a a b b b a b a b a b +=+=+++几何上, 向量加法服从三角形法则及平行四边形法则.A yx O B a x b x a y b y a b a b + A y O a x a y b y C xB b x a b a b +定义 8-4 设向量 c 为实数, 称向量 { c a x , c a y } 为向量 与数量 c 的乘积. 记作 即其模{,},x y a a a = a ,c a {,}{,},x y x y c a c a a c a c a == ||||||.c a c a = 对于三维向量, 类似有c {a x , a y , a z } = {c a x , c a y , c a z }. c > 0 时, c 与平行, 且方向相同; c < 0 时 c 与 平行, 且方向相反.a a a a 称 为 的负向量.(1)a a -=- a 与 的和称为 与的差, 记为 b a b - a .a b -证 仅需证明必要性. 设则存在 λ, 使得 ,a b .b a λ= 若又有则 故 所以 λ = μ .,b a μ= ()0,a λμ-= |||||0|0,a λμ-== 定理 1 设 是两个向量, 且 则 的充分必要条件是存在唯一常数 λ 使得 ,a b a b .b a λ= 0≠a向量的加法运算和数乘运算统称为向量的线性运算. 向量的线性运算满足下列法则 :(1) (交换律) .a b b a +=+ (2) (结合律) ()().a b c a b c ++=++ (4) ()0.a a +-= (6) ().a a a λμλμ+=+ (7) ()().a a λμλμ= (8) 1.a a ⋅= (5) ().ab a b λλλ+=+ (3) a a =+0由于向量的加法符合交换律和结合律, 故 n 个向量相加可写成,||.||a a a e a a e a == 12.n a a a +++ n 个向量相加复合多边形法则 : 使前一向量的终点与后一向量的起点重合, 相继作向量 再以第一向量的起点为起点, 最后一向量的终点为终点作一向量, 这个向量即和向量.12,,,,n a a a 模为 1 的向量称为单位向量. 记非零向量 的单位化向量为则a ,a eV 3 中, 与 x 轴, y 轴, z 轴的正向同向的单位向量记为{1,0,0},{0,1,0},{0,0,1}.i j k === 称 为 V 3 中的一组标准基.,,i j k a 设 则 可由 线性表示, 即{,,},x y z a a a a = ,,i j k {1,0,0}{0,1,0}{0,0,1}.x y z x y z a a a a a i a j a k =++=++ {1,0},{0,1}i j == 二维的情形,是 V 2 的一组标准基.例 2 设 求{1,1,3},{2,1,2},a b =-=- (1) 32;c a b =- (2) 用标准基 表示向量,,i j k ;c (3) 求与同方向的单位向量.c 解 (1)323{1,1,3}2{2,1,2}{34,32,94}{1,1,5}.c a b =-=---=--+-=-- (2)5.c i j k =--+ 所以 222(3)||(1)(1)533,c =-+-+= {1,1,5}.||33c c e c ==--解 作 12(),OP OP OP OP λ-=- 例 3 设两点 P 1 (x 1, y 1, z 1), P 2 (x 2, y 2, z 2). 在线段 P 1 P 2 上求一点 P (x , y , z ), 使由 P 分成的两个有向线段 的的比为定数 λ ( ≠ - 1), 即 12,P P PP 12.P P PP λ= O P 1P 2P 11112222{,,},{,,},{,,},OP x y z OP x y z OP x y z === 由于 及12,P P PP λ= 1122,,P P OP OP PP OP OP =-=-121212,,.111x x y y z z x y z λλλλλλ+++===+++所以 12(1),OP OP OP λλ+=+ 这就是定比分点公式.得到 121OP OP OP λλ+=+ ,得点 P 的坐标例 4 证明平行四边形的对角线互相平分.11(),22AE AC AB BC ==+ 解 设 ABCD 为平行四边形, AC , BD 的中点分别 为 E 及 F , 则D A FE B C 由定比分点公式 (λ = 1) 得1(),2AF AB AD =+ 即 E 与 F 重合, 即 AC 与 BD 互相平分.11()().22AF AB AD AB BC AE =+=+= 所以。
第七章向量代数与空间解析几何空间解析几何是多元函数微积分学必备的基础知识.本章首先建立空间直角坐标系,然后引进有广泛应用的向量代数,以它为工具,讨论空间的平面和直线,最后介绍空间曲面和空间曲线的部分内容.第一节空间直角坐标系平面解析几何是我们已经熟悉的,所谓解析几何就是用解析的,或者说是代数的方法来研究几何问题.坐标法把代数与几何结合起来.代数运算的基本对象是数,几何图形的基本元素是点.正如我们在平面解析几何中所见到的那样,通过建立平面直角坐标系使几何中的点与代数的有序数之间建立一一对应关系.在此基础上,引入运动的观点,使平面曲线和方程对应,从而使我们能够运用代数方法去研究几何问题.同样,要运用代数的方法去研究空间的图形——曲面和空间曲线,就必须建立空间内点与数组之间的对应关系.一、空间直角坐标系空间直角坐标系是平面直角坐标系的推广.过空间一定点O,作三条两两互相垂直的数轴,它们都以O为原点.这三条数轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴),统称坐标轴.它们的正方向按右手法则确定,即以右手握住z轴,右手的四个手指指向x轴的正向以π2角度转向y轴的正向时,大拇指的指向就是z轴的正向(图7-1),这样的三条坐标轴就组成了一空间直角坐标系Oxyz,点O叫做坐标原点.图7-1三条坐标轴两两分别确定一个平面,这样定出的三个相互垂直的平面:xOy,yOz,zOx,统称为坐标面.三个坐标面把空间分成八个部分,称为八个卦限,上半空间(z>0)中,从含有x 轴、y轴、z轴正半轴的那个卦限数起,按逆时针方向分别叫做Ⅰ,Ⅱ,Ⅲ,Ⅳ卦限,下半空间(z<0)中,与Ⅰ,Ⅱ,Ⅲ,Ⅳ四个卦限依次对应地叫做Ⅴ,Ⅵ,Ⅶ,Ⅷ卦限(图7-2).图7-2确定了空间直角坐标系后,就可以建立起空间点与数组之间的对应关系.设M为空间的一点,过点M作三个平面分别垂直于三条坐标轴,它们与x轴、y轴、z 轴的交点依次为P、Q、R(图7-3).这三点在x轴、y轴、z轴上的坐标依次为x,y,z.这样,空间的一点M就惟一地确定了一个有序数组(x,y,z),它称为点M的直角坐标,并依次把x,y和z叫做点M的横坐标,纵坐标和竖坐标.坐标为(x,y,z)的点M通常记为M(x,y,z).图7-3反过来,给定了一有序数组(x,y,z),我们可以在x轴上取坐标为x的点P,在y轴上取坐标为y的点Q,在z轴上取坐标为z的点R,然后通过P、Q与R分别作x轴,y轴与z 轴的垂直平面,这三个平面的交点M就是具有坐标(x,y,z)的点(图7-3).从而对应于一有序数组(x,y,z),必有空间的一个确定的点M.这样,就建立了空间的点M和有序数组(x,y,z)之间的一一对应关系.如图7-3所示x轴,y轴和z轴上的点的坐标分别为P(x,0,0),Q(0,y,0),R(0,0,z);xOy面,yOz面和zOx面上的点的坐标分别为A(x,y,0),B(0,y,z),C(x,0,z);坐标原点O的坐标为O(0,0,0).它们各具有一定的特征,应注意区分.二、空间两点间的距离设M1(x1,y1,z1)、M2(x2,y2,z2)为空间两点,为了用两点的坐标来表达它们间的距离d,我们过M1,M2各作三个分别垂直于三条坐标轴的平面.这六个平面围成一个以M1,M2为对角线的长方体(图7-4).根据勾股定理,有图7-4|M 1M 2|2=|M 1N |2+|NM 2|2=|M 1P |2+|M 1Q |2+|M 1R |2.由于|M 1P |=|P 1P 2|=|x 2-x 1|,|M 1Q |=|Q 1Q 2|=|y 2-y 1|,|M 1R |=|R 1R 2|=|z 2-z 1|,所以d =|M 1M 2|=212212212)()()(z z y y x x -+-+-,这就是两点间的距离公式.特别地,点M (x,y,z )与坐标原点O (0,0,0)的距离为d =|OM |=222z y x ++。
第一章 高等数学 第一节 空间解析几何一、向量代数(一)向量及其线性运算既有大小又有方向的量,如位移、速度、力等这类量,称为向量,向量 a 的大小称为向量 a 的模,记作| a |。
模等于1的向量叫做单位向量,向量的加减法、向量与数的乘法统称为向量的线性运算。
向量a 与向量 b 的和 a + b 是一个向量 c ,利用平行四边形法则或三角形法则可得向量c ,如图 1-1-1 ,图 1-1-2 所示。
向量的加法符合下列运算规律: ① 交换律 a + b = b + a② 结合律(a + b)+c= a +(b+c)向量 b 与向量 a 的差 b - a 定义为向量 b 与 a 的负向量-a 的和,即b - a = b + (-a)由向量加法的三角形法则可知:() |a| = |-a|向量 a 与实数λ的积记作λa ,它是一个向量,它的模它的方向当λ> 0 时,与向量 a 相同;当λ< 0 时,与向量 a 相反。
向量与数的乘积符合下列运算规律:由向量与数的乘积的定义,可得以下定理:定理 设向量 a≠0 ,那么,向量 b 与向量 a 平行的充分必要条件是:存在惟一的实数λ,使 b =λa 。
(二)向量的坐标设有空间直角坐标系 O - xyz , i、 j、 k 分别表示沿 x 、 y 、 z 轴正向的单位向量, 12a M M是以1111(,,)M x y z 为起点,2222(,,)M x y z 为终点的向量,则向量a 可表示为其中212121x x y y z z ---、、称为向量 a 的坐标。
利用向量的坐标,可得向量的加法、减法以及向量与数的乘法运算如下:非零向量 a 与三条坐标轴正向的夹角αβγ、、称为它的方向角。
向量的模、方向角与坐标之间关系:其中cos cos cos αβγ、、称为向量 a 的方向余弦。
利用向量的坐标可得向量的模与方向余弦如下:(三)数量积 向量积设向量a 和向量 b 的夹角为θθπ≤≤(0),向量 a 和向量 b 的数量积为一个数量,记作a b ⋅ ,其大小为||||cos a b θ,即a ⊥b 的充分必要条件是 a .b =0向量 a 在轴u 上的投影(记作 Prj u a )等于向量 a 的模乘以轴与向量a 的夹角φ的余弦,即利用向量在轴上的投影,可将数量积表为向量 a 和向量 b 的向量积为一个向量 c ,记作 a × b ,即c = a × b ,c 的模c 的方向垂直于 a 与 b 所决定的平面, c 的指向按右手法则确定。
-。
b与a的差b a.向量加法的性质〔运算律〕②结合律+的模一般地不等于a的模加b的模,而有a b a ba b+≤+,即三角形两边之和大于等于第三向量与数的乘法Array、向量的定义:向量a与数m的乘积是一个向量,它的模等于m a,方向与a相同〔假设反〔假设m<0〕。
、向量与数量乘法的性质(运算律)②分配律≠,则向量b平行于a得充分必要条件是:存在唯一实数λ,使b=λa。
a0在实际问题中,有些向量与其起点有关,有些向量与其起点无关。
由于一切向量的共性是它们都有大小和方向,所以在数学上我们研究与起点无关的向量,并称这种向量为自由向量〔以后简称向量〕,即只考虑向量的大小和方向,而不管它的起点在什么地方。
当遇到与起点有关的向量时〔例如,谈到某一质点的运动速度时,这速度就是与所考虑的那一质点的位置有关的向量〕,可在一般原则下作特别处理。
上的射影。
投影向量的定义:AB 的始点A B ''就定义AB 在轴u 上的投影向量。
向量在轴上的投影:向量A B ''在轴AB 在轴u 上的投影,记为投影AB 。
向量在轴上的投影性质:性质1〔投影定理〕AB =cos AB ϕ与向量AB 的夹角。
推论:相等矢量在同一轴上的射影相等。
性质2:Prj(12a a +)=Prj 1a +Prj 2a 。
性质2可推广到有限个向量的情形。
性质3:Prj u λa =λPrj u a 。
向量在坐标轴上的分向量与向量的坐标:向量a 在坐标轴上的投影向量,,y z i a j a k 称为向量在坐标轴上的分向量。
向量a 在三条坐标轴上的投影,y z a a 叫做向量的坐标,记为:a ={,,x y a a 由向量在轴上的投影定义,a 在直角坐标系Oxyz 中的坐标{,,x y z a a a a ,由此可知,向量的投影具有与坐标相同的性质。
利用向量的坐标,可得向量的加法、减法以及向量与数的乘法的运算如下:a ={,x y a a ,{,,}x y zb b b b =利用向量加法的交换律与结合律,以及向量与数乘法的结合律与分配律,有{,x y z z a b a b b a b +=+++{x a b a b -=-{,}x y a a a λλλ=由此可见,对向量进行加、减及与数相乘,只须对向量的各个坐标分别进行相应的数量运算就行了。
第七章 空间解析几何与向量代数第一节 空间直角坐标系教学目的:将学生的思维由平面引导到空间,使学生明确学习空间解析几何的意义和目的。
教学重点:1.空间直角坐标系的概念2.空间两点间的距离公式教学难点:空间思想的建立教学内容:一、空间直角坐标系1.将数轴(一维)、平面直角坐标系(二维)进一步推广建立空间直角坐标系(三维)如图7-1,其符合右手规则。
即以右手握住z 轴,当右手的四个手指从正向x 轴以2 角度转向正向y 轴时,大拇指的指向就是z 轴的正向。
2. 间直角坐标系共有八个卦限,各轴名称分别为:x 轴、y 轴、z 轴,坐标面分别为xoy 面、yoz 面、zox 面。
坐标面以及卦限的划分如图7-2所示。
图7-1右手规则演示 图7-2空间直角坐标系图 图7-3空间两点21M M 的距离图3.空间点),,(z y x M 的坐标表示方法。
通过坐标把空间的点与一个有序数组一一对应起来。
注意:特殊点的表示a)在原点、坐标轴、坐标面上的点;b)关于坐标轴、坐标面、原点对称点的表示法。
4.空间两点间的距离。
若),,(1111z y x M 、),,(2222z y x M 为空间任意两点, 则21M M 的距离(见图7-3),利用直角三角形勾股定理为:2222122212212NM pN p M NM N M M M d ++=+== 而 121x x P M -=12y y PN -= 122z z NM -=所以21221221221)()()(z z y y x x M M d -+-+-==特殊地:若两点分别为),,(z y x M ,)0,0,0(o222z y x oM d ++==例1:求证以)1,3,4(1M 、)2,1,7(2M 、)3,2,5(3M 三点为顶点的三角形是一个等腰三角形。
证明: 14)21()13()74(222221=-+-+-=M M 6)23()12()75(222232=-+-+-=M M 6)13()32()45(222213=-+-+-=M M由于 1332M M M M =,原结论成立。
例2:设P 在x 轴上,它到)3,2,0(1P 的距离为到点)1,1,0(2-P 的距离的两倍,求点P 的坐标。
解:因为P 在x 轴上,设P 点坐标为)0,0,(x()113222221+=++=x x PP ()21122222+=+-+=x x PP212PP PP =Θ 221122+=+∴x x1±=⇒x所求点为:)0,0,1(,)0,0,1(-小结:空间直角坐标系(轴、面、卦限)空间两点间距离公式作业:第二节 向量及其运算教学目的:使学生对(自由)向量有初步了解,为后继内容的学习打下基础。
教学重点:1.向量的概念2.向量的运算教学难点:向量平行与垂直的关系教学内容:一、向量的概念1.向量:既有大小,又有方向的量。
在数学上用有向线段来表示向量,其长度表示向量的大小,其方向表示向量的方向。
在数学上只研究与起点无关的自由向量(以后简称向量)。
2. 量的表示方法有: a 、i 、F 、OM 等等。
3. 向量相等b a =:如果两个向量大小相等,方向相同,则说(即经过平移后能完全重合的向量)。
4. 量的模:向量的大小,记为a。
模为1的向量叫单位向量、模为零的向量叫零向量。
零向量的方向是任意的。
5. 量平行b a //:两个非零向量如果它们的方向相同或相反。
零向量与如何向量都平行。
6. 负向量:大小相等但方向相反的向量,记为a -二、向量的运算1.加减法c b a =+: 加法运算规律:平行四边形法则(有时也称三角形法则),其满足的运算规律有交换率和结合率见图7-42.c b a =- 即c b a =-+)(3.向量与数的乘法a λ:设λ是一个数,向量a 与λ的乘积a λ规定为0)1(>λ时,a λ与a 同向,||||a a λλ=0)2(=λ时,0a =λ0)3(<λ时,a λ与a 反向,||||||a a λλ=其满足的运算规律有:结合率、分配率。
设0a 表示与非零向量a 同方向的单位向量,那么a a a 0= 定理1:设向量a ≠0,那么,向量b 平行于a 的充分必要条件是:存在唯一的实数λ,使b =a λ例1:在平行四边形ABCD 中,设a =AB ,b =AD ,试用a 和b 表示向量MA 、MB 、MC和MD ,这里M 是平行四边形对角线的交点。
(见图7-5)图7-4 解:→→==+AM AC 2b a ,于是)(21b a +-=→MA 由于→→-=MA MC , 于是)(21b a +=→MC 又由于→→==+-MD BD 2b a ,于是)(21a b -=→MD 由于→→-=MD MB , 于是)(21a b --=→MB 小结:本节讲述了空间解析几何的重要性以及向量代数的初步知识,引导学生对向量(自由向量)有清楚的理解,并会进行相应的加减、乘数、求单位向量等向量运算。
作业:第三节 向量的坐标教学目的:进一步介绍向量的坐标表示式、为空间曲面等相关知识打好基础。
教学重点:1.向量的坐标表示式2.向量的模与方向余弦的坐标表示式教学难点:1.向量的坐标表示2.向量的模与方向余弦的坐标表示式教学内容:一、向量在轴上的投影1.几个概念(1) 轴上有向线段的值:设有一轴u ,AB 是轴u 上的有向线段,如果数λ满足=λ且当与轴u 同向时λ是正的,当与轴u 反向时λ是负的,那么数λ叫做轴u 上有向线段的值,记做AB ,即AB =λ。
设e 是与u 轴同方向的单位向量,则e λ=(2) 设A 、B 、C 是u 轴上任意三点,不论三点的相互位置如何,总有+=(3) 两向量夹角的概念:设有两个非零向量a 和b ,任取空间一点O ,作a =,b =,规定不超过π的AOB ∠称为向量a 和b 的夹角,记为),(b a ∧(4) 空间一点A 在轴u 上的投影:通过点A 作轴u 的垂直平面,该平面与轴u 的交点'A 叫做点A 在轴u 上的投影。
(5) 向量在轴u 上的投影:设已知向量的起点A 和终点B 在轴u 上的投影分别为点'A 和'B ,那么轴u 上的有向线段的值''B A 叫做向量AB 在轴u 上的投影,记做AB j u Pr 。
2.投影定理性质1:向量在轴u 上的投影等于向量的模乘以轴与向量的夹角ϕ的余弦:ϕcos Pr AB AB j u =性质2:两个向量的和在轴上的投影等于两个向量在该轴上的投影的和,即 2121a a a a j j j u Pr Pr )(Pr +=+性质3:向量与数的乘法在轴上的投影等于向量在轴上的投影与数的乘法。
即a a j j u Pr )(Pr λλ=二、向量在坐标系上的分向量与向量的坐标1.向量在坐标系上的分向量与向量的坐标通过坐标法,使平面上或空间的点与有序数组之间建立了一一对应关系,同样地,为了沟通数与向量的研究,需要建立向量与有序数之间的对应关系。
设a =21M M 是以),,(1111z y x M 为起点、),,(2222z y x M 为终点的向量,i 、j 、k 分别表示 图7-5沿x ,y ,z 轴正向的单位向量,并称它们为这一坐标系的基本单位向量,由图7-5,并应用向量的加法规则知:)(1221x x M M -=i + )(12y y -j +)(12z z -k或 a = a x i + a y j + a z k上式称为向量a 按基本单位向量的分解式。
有序数组a x 、a y 、a z 与向量a 一一对应,向量a 在三条坐标轴上的投影a x 、a y 、a z 就叫做向量a 的坐标,并记为a = {a x ,a y ,a z }。
上式叫做向量a 的坐标表示式。
于是,起点为),,(1111z y x M 终点为),,(2222z y x M 的向量可以表示为 },,{12121221z z y y x x M M ---=特别地,点),,(z y x M 对于原点O 的向径},,{z y x =注意:向量在坐标轴上的分向量与向量在坐标轴上的投影有本质区别。
向量a 在坐标轴上的投影是三个数a x 、a y 、a z , 向量a 在坐标轴上的分向量是三个向量a x i 、 a y j 、 a z k .2.向量运算的坐标表示设},,{z y x a a a =a ,},,{z y x b b b =b 即k j i a z y x a a a ++=,k j i b z y x b b b ++=则(1) 加法: k j i b a )()()(z z y y x x b a b a b a +++++=+◆ 减法:k j i b a )()()(z z y y x x b a b a b a -+-+-=- ◆ 乘数:k j i a )()()(z y x a a a λλλλ++= ◆ 或 },,{z z y y x x b a b a b a +++=+b a},,{z z y y x x b a b a b a ---=-b a},,{z y x a a a λλλλ=a◆ 平行:若a ≠0时,向量a b //相当于a b λ=,即 },,{},,{z y x z y x a a a b b b λ=也相当于向量的对应坐标成比例即z z y y x x a b a b a b == 三、向量的模与方向余弦的坐标表示式设},,{z y x a a a =a ,可以用它与三个坐标轴的夹角γβα、、(均大于等于0,小于等于π)来表示它的方向,称γβα、、为非零向量a 的方向角,见图7-6,其余弦表示形式γβαcos cos cos 、、称为方向余弦。
1. 模222z y x a a a ++=a2. 方向余弦由性质1知⎪⎪⎩⎪⎪⎨⎧======γγββααcos cos cos cos cos cos 212121a a a M M a M M a M M a zy x,当0222≠++=z y x a a a a 时,有⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧++==++==++==222222222cos cos cos z y x z z z y x y y z y x x x a a a a a a a a a a a a a a a a a a γβα ◆ 任意向量的方向余弦有性质:1cos cos cos 222=++γβα ◆ 与非零向量a 同方向的单位向量为: }cos ,cos ,{cos },,{1γβα===z y x a a a a a aa 03. 例子:已知两点M 1(2,2,2)、M 2(1,3,0),计算向量21M M 的模、方向余弦、方向角以及与21M M 同向的单位向量。