高压脉冲轨道电路
- 格式:ppt
- 大小:2.01 MB
- 文档页数:37
第1章交流电力牵引区段脉冲轨道电路的形成一、概述轨道电路是用以检查一定区段上是否有列车和车辆占用的设备。
其原理是:在该区段内,利用轨枕相对绝缘的的两根钢轨传送信号电流,根据其是否被列车轮轴所短路,以检查这一区段,线路上是否被占用。
轨道电路在铁路信号现代化、自动化上,越来越多的被广泛应用,它既可用于区间的信号电路,也可用于车站的联锁电路,并能在非电化铁路上使用,也能在电气化铁道上使用。
随着直流和交流电气化铁道的发展,对轨道电路也提出了更高的要求,同时设备的现代化、自动化和列车速度的提高、牵引重量的增加,也要求有安全可靠的轨道电路。
轨道电路的工作是否稳定可靠是决定列车运行安全的首要因素。
因此对于轨道电路采用元器件必须慎重选择,以消除事故的根源,特别是要防止各个元件的故障和损坏、组件的故障,在任何情况下,都不能使轨道电路的接收设备错误的保持在工作状态。
轨道电路是一个十分复杂的问题,这是因为:1.两根钢轨有一定的阻抗,并且绝缘不良(道碴电阻每公里低到0.1欧姆)、由它构成的传输线路极不完善,它的参数随着道碴电阻状态和传送的信号频率而异。
2.电气化线路要求轨道电路不受牵引电流的干扰。
3.由于两根钢轨的直流电阻不对称(如钢轨的连接线不好),在该两根钢轨内牵引电流的不平衡,钢轨对地间的漏泄电流和附近交流接触网的感应电流,这三者都对轨道电路产生影响。
由牵引变电所、整流器和可控硅调速装置的机车,所产生的大量谐波也使这个问题更加复杂化。
4.相邻轨道电路之间一个或者两个绝缘节短路,理想状态下,不应使轨道继电器错误的保持在励磁状态。
绝缘区段无车时,这种短路必须导致轨道继电器的失磁,很快的检出事故。
5.钢轨的折断(电气折断)也应使轨道继电器失磁(最晚在第一趟列车通过以后)。
在电气化线路上,钢轨的折断,还能导致牵引电流完全不平衡,这种不平衡在任何场合都不应使轨道继电器励磁。
6.工频50周电源电压在220V±1020%范围变动,环境温度在-30℃~+60℃之间变化时,轨道电路的全部设备应仍能正常的工作。
不对称高压脉冲轨道电路的应用与改进不对称高压脉冲轨道电路的应用与改进近年来,随着科技的不断发展和应用的需求,电路设计和改进也成为了一个重要的研究领域。
在这个领域中,不对称高压脉冲轨道电路逐渐引起了人们的关注。
本文将介绍不对称高压脉冲轨道电路的原理、应用以及现有的改进方向。
不对称高压脉冲轨道电路是利用高压脉冲信号在电路中产生周期性的振荡波动。
它的设计原理基于电荷和电流在电路中的不对称性,通过适当的布局和元件选择,可以实现高效的能量转换和信号传输。
这种电路常常被应用于高功率放大器、数字计算器、通信设备等领域。
首先,不对称高压脉冲轨道电路在高功率放大器中的应用十分广泛。
在传统的放大器中,功率放大效果往往受到电路阻抗匹配的限制。
但是,不对称高压脉冲轨道电路可以通过调整元件的不对称性,实现更好的阻抗匹配,从而提高功率放大的效果。
这种电路在雷达、无线电通信等领域中的应用广泛,为信号的传输提供了有力的支持。
其次,不对称高压脉冲轨道电路在数字计算器中也起到了重要的作用。
传统的数字计算器通常需要较高的运算速度和较低的功耗。
而不对称高压脉冲轨道电路的优势在于能够提供更高的运算速度和更低的功耗。
这种电路在计算器的时钟电路、数据传输电路等方面应用广泛,为计算器的高效运算提供了有力的支持。
不对称高压脉冲轨道电路的应用还不仅仅限于上述领域,它还在通信设备、传感器等领域中得到了广泛应用。
例如,在通信设备中,不对称高压脉冲轨道电路可以提供更高的频率响应和更低的噪声水平,从而提高通信质量和覆盖范围。
在传感器中,不对称高压脉冲轨道电路可以提供更高的灵敏度和更低的能耗,从而实现更高精度的感测效果。
然而,目前不对称高压脉冲轨道电路仍然存在一些改进的空间。
首先,电路的稳定性和可靠性需要进一步提高。
由于振荡和运算过程中存在较大的能量波动和电流冲击,电路的稳定性和可靠性往往受到一定的挑战。
因此,如何在设计中引入稳定性和保护措施,成为了电路改进的关键。
《普速铁路信号维护规则》-不对称高压脉冲轨道电路普速铁路信号维护规则一、引言普速铁路是指铁路列车行驶速度在200公里/小时以下的铁路,是我国铁路运输网络中最为常见的一种铁路类型。
在普速铁路的运行中,信号系统是至关重要的一环,它直接关系到列车的安全运行。
而在信号系统中,不对称高压脉冲轨道电路是一项关键的信号维护规则。
二、不对称高压脉冲轨道电路的定义不对称高压脉冲轨道电路是指利用不对称脉冲技术来实现轨道电路的信号传输和操作的一种电路。
它主要用于普速铁路的信号系统中,通过对轨道进行高压脉冲的发送和检测,来实现信号的传输和控制。
三、不对称高压脉冲轨道电路的作用不对称高压脉冲轨道电路在普速铁路的信号系统中扮演着至关重要的角色。
1. 实现信号的传输:不对称高压脉冲轨道电路能够通过对轨道发送高压脉冲,来实现信号的传输,确保信号的准确传达。
2. 控制列车运行:通过对轨道进行高压脉冲的操作,可以实现对列车运行的控制,包括列车的停车、开车以及运行速度的调整等功能。
四、不对称高压脉冲轨道电路的维护规则1. 定期检测:为了确保不对称高压脉冲轨道电路的正常运行,需要定期对轨道电路进行全面的检测,确保设备的完好和稳定性。
2. 及时维护:一旦发现不对称高压脉冲轨道电路存在故障或异常情况,需要及时进行维护和处理,以免影响普速铁路的正常运行。
3. 保持清洁:保持轨道电路的清洁是保证其正常运行的重要因素之一,需要定期清理轨道,确保信号的传输和控制的准确性和稳定性。
五、对不对称高压脉冲轨道电路的思考在日常维护过程中,我们需要不断总结和完善不对称高压脉冲轨道电路的维护规则,以应对各种复杂的情况。
我们也需要加强对新技术的学习和研究,不断提升自己的专业水平,以保障普速铁路的安全运行。
六、总结通过本文的介绍和讨论,我们对不对称高压脉冲轨道电路有了更深入的了解。
在普速铁路的信号系统中,不对称高压脉冲轨道电路的作用至关重要,它直接关系到列车的安全运行。
50HZ 高压脉冲轨道电路故障处理【摘要】高压脉冲轨道电路,是用来解决不经常行车的轨道区段分路不良问题的;高压脉冲轨道电路分为集中式和分散式、25HZ和50ZH轨道电路;本次介绍的是分散式的50HZ高压脉冲轨道电路故障分析处理。
【关键词】轨道电路、高压脉冲、故障处理1高压脉冲轨道电路介绍电源要求:高压脉冲轨道电路分为25Hz或50Hz两种电源分别供电。
设备分类:轨道电路集中式设置和轨道电路分散式设置;分散式轨道电路发码设备安装在室外XB箱内,集中式轨道电路发码设备安装在室内综合托架上。
本文主要介绍50HZ分散式设置高压脉冲轨道电路。
50HZ分散式高压脉冲轨道电路:室外设备:送端:电化非电码化区段高压脉冲稳压变压器、GM·HF系列高压脉冲发码盒、GM·RT调整电阻器;电化电码化区段高压脉冲稳压变压器、GM·HF系列高压脉冲发码盒、GM·RT调整电阻器、扼流变压器、高压脉冲隔离匹配盒;受端:电化非电码化区段扼流变压器、电容;电化电码化区段扼流变压器、高压脉冲隔离匹配盒;室内设备:电码化及电码化相邻非电码化区段:高压脉冲抑制器、高压脉冲译码器、二元差动继电器、高压脉冲阻容盒、轨道继电器;非电码化区段:高压脉冲译码器、二元差动继电器、高压脉冲阻容盒、轨道继电器。
2故障处理下面我们根据现场出现的高压脉冲电路故障为例,讲解故障现象、故障分析、故障处理。
案例1:故障现场:既有室外设备使用的是25HZ分散式高压脉冲轨道电路设备,即GM·HF系列的25HZ的轨道设备,改造后使用GM·HF系列50HZ的轨道设备;在开通的有效时间段内,更换设备及定型时间紧,耗用大量人员,故在开通前提前更换定型。
在天窗点内更换完定型后,室内回楼电压都有所下降,下降10-15V左右,均在正常波动电压范围内;施工完毕后进行联锁试验,轨道的占用空闲都正常;虽然电压在正常波动电压内,但还需调整至既有电压值左右,在调整时发现电压上升100V,电压变化也不大。
高压脉冲轨道电路目前,我国车站站内装设的轨道电路,就型式而言,数量最多的是JZXC一480型交流轨道电路,这种轨道电路设备简单,投资费用低,维护也比较方便,所以被广泛采用。
长期运用的实践表明,,480型轨道电路虽然可以完成站内轨道电路的基本功能,但是也暴露出了性能上的一些严重不足之处,其中至关重要的一个问题就是轨面被锈蚀或存有污垢、油膜的区段,往往会产生分路不良的情况,产生这种现象的根本原因,是由于轨道上行车的密度较低,轨面易于产生铁锈并积存污垢,由这些物质在轨面上形成的薄映或薄层,电阻值较高,基本上是不导电的,所以车轮压上轨道区段后,轨道继电器也就不会可靠地落下(现在已有改进型480轨道电路),为解决这一问题,我们和有关单位协作,研制出了电子化的高压脉冲轨道电路,以解决轨道电路分路不良的问题。
从1990年8月起,分别在几个现场单位,进行了工业性试验,正式安装、启用了10个试验区段,实用情况表明:设备工作稳定,取得了较为满意的效果。
一高压脉冲轨道电路系统和工作原理高压脉冲轨道电路,是一种间歇地发送电压的脉冲供电制的轨道电路,它可以把50Hz电源在较长时期中提供的能量,积聚起来,集中在很短的瞬问里,以峰值电压约为100 V上下的高压,高能的脉冲形式馈送至轨道,所以对轨面的锈蚀和污垢、油膜等,具有较好的击穿能力,从而可以获得满意的分路效果。
用于非电化区段的电路系统,如图1所示。
系统的送电端由恒功率脉冲发生器和发送变压器组成,按发生器设置的地点,可分为集中式和分散式两种,集中式是把脉冲发生器设置在继电器室内,通过电缆把高压脉冲送到现场的送电端,再经XB 型变压器箱内的发送变压器,降压后送往轨面。
分散式则是把发送变压器与脉冲发生器组台成一体,放在xB型变压器箱内(一个xB一1型箱可以设置“双送”),由轨道电路干线的50Hz、220 V交流电直接供电,再向轨面输送出高压脉冲信号。
轨面上的高压脉冲信号其波形如图2所示,脉冲发生器输出的脉冲电压,正向峰值最高可达350 V,信号的脉冲宽度比较窄,占空比仅为4‰左右,脉冲的频率约为4Hz。
高压脉冲轨道电路基本原理及常见故障处理高压脉冲轨道电路是一种常用于电子设备中的电路,它的基本原理是利用高压脉冲来控制电子元件的导通和断开,从而实现电路的正常工作。
在实际应用中,高压脉冲轨道电路常常会出现一些故障,下面将介绍一些常见的故障处理方法。
一、基本原理高压脉冲轨道电路是由高压脉冲发生器、轨道电路和控制电路三部分组成。
其中,高压脉冲发生器产生高压脉冲信号,轨道电路将高压脉冲信号传输到电子元件上,控制电路则控制电子元件的导通和断开。
在高压脉冲轨道电路中,电子元件的导通和断开是通过高压脉冲信号的上升沿和下降沿来实现的。
当高压脉冲信号的上升沿到达一定电压时,电子元件开始导通;当高压脉冲信号的下降沿到达一定电压时,电子元件开始断开。
通过控制高压脉冲信号的上升沿和下降沿,可以实现电子元件的精确控制。
二、常见故障处理1. 轨道电路短路轨道电路短路是高压脉冲轨道电路中常见的故障之一。
当轨道电路短路时,高压脉冲信号无法正常传输到电子元件上,导致电路无法正常工作。
此时,需要检查轨道电路的连接情况,确认是否存在短路现象。
如果存在短路现象,需要及时修复。
2. 高压脉冲发生器故障高压脉冲发生器是高压脉冲轨道电路中的核心部件,如果发生故障,会导致整个电路无法正常工作。
当高压脉冲发生器故障时,需要检查发生器的电源、电路连接和元件是否正常。
如果发现故障,需要及时更换或修复。
3. 控制电路故障控制电路是高压脉冲轨道电路中的重要组成部分,它负责控制电子元件的导通和断开。
当控制电路发生故障时,会导致电子元件无法正常工作,从而影响整个电路的正常运行。
此时,需要检查控制电路的连接情况和元件是否正常,如果发现故障,需要及时修复或更换。
4. 电子元件损坏电子元件是高压脉冲轨道电路中最容易损坏的部件之一。
当电子元件损坏时,会导致电路无法正常工作。
此时,需要检查电子元件的连接情况和工作状态,如果发现损坏,需要及时更换。
总之,高压脉冲轨道电路是一种常用的电路,它的基本原理是利用高压脉冲来控制电子元件的导通和断开。
高压脉冲轨道电路组成及调整一、高压脉冲简介高压脉冲轨道电路,始于 1953 年,之前称为高压不对称轨道电路。
这种轨道电路起初是为解决钢轨表面生锈、撒砂和油污引起列车分路不良而研制的,后来才逐渐完善用于直流、交流电化区段和车站和区间。
它之所以能有强有力的生命力,是因为他比较全面的满足了轨道电路在运用中涉及到的复杂情况。
轨道电路是用以检查一定区段上是否有列车和车辆占用的设备。
其原理是:在该区段内,利用轨枕相对绝缘的的两根钢轨传送信号电流,根据其是否被列车轮轴所短路,以检查这一区段,线路上是否被占用。
从轨道电路的工作原理可知,车轮的轮对是否使两条钢轨有效的分路,直接决定轨道电路的工作是否安全。
近年来,铁路信号随着现代化、自动化的运营设备投入使用,轻型动车等新技术的采用,轨道电路分路不良增加,这是个严重的威胁。
将铁或钢表面磨光放在空气中,不久便产生锈斑,逐渐覆盖整个表面。
这是由于在表面积存的尘土等吸收空气中的水分所致。
钢轨表面被雨湿润,随即积存尘土。
在隧道内由于尘土容易积到钢轨上或钢轨油污后尘土积存,所以在漏水、雨水多的地点钢轨特别容易生锈。
为了得到安全可靠的分路,必须给这种锈轨、撒砂、油污、氧化层等所造成的不良接触,通以相当大的电流。
氧化层,在低电压范围时,氧化层电阻较高,但在电压升高时电阻逐渐下降,再升高电压时,电阻急剧下降。
在轨道电路的任何一点,为保证有击穿钢轨表面的锈层、油污或绝缘膜,就需要足够在电阻减低到极限分路电阻以下所需要的足够电流。
这是对发送脉冲要求的第一个条件。
这就是说任何轨道电路,无论轨道电路是区间还是站内,无论是长的还是短的轨道电路,无论任何场合,在任何情况下,都能得到可靠分路的脉冲。
二、脉冲轨道电路主要器材组成高压脉冲轨道电路送电端主要由GM·F型高压脉冲发码器;变压器(GM.BG-80轨道变压器或BE1-M、BE2-M型扼流变压器)构成,供电电源为25Hz(或50Hz)220伏。
高压脉冲轨道电路基本原理及常见故障处理高压脉冲轨道电路是一种特殊的电路,它应用于轨道交通系统中的信号和通信系统。
该电路具有高频、高压、高速等特点,因此在使用过程中会出现一些常见故障,如线路断路、绝缘损坏等。
为了保证电路的正常运行,需要了解高压脉冲轨道电路的基本原理,并学会常见故障的处理方法。
高压脉冲轨道电路的基本原理是利用高压脉冲信号通过电缆或
导线在轨道上传输,目的是为了控制列车行驶和保证通信系统的正常运行。
该电路中的信号是以高频脉冲的形式发送的,通常频率在
50-1000 Hz之间。
高压脉冲的幅值通常在2000-10000 V之间,而传输速度通常在200-500 km/h之间。
在高压脉冲轨道电路中,常见的故障包括线路断路、绝缘损坏、信号干扰等。
线路断路是指电路中某些部分的导线或连接器断开,导致信号无法传输。
绝缘损坏是指电缆或导线的绝缘层受到损坏,导致信号干扰或无法传输。
信号干扰是指电路受到外部电磁干扰或其他信号的干扰,导致信号失真或无法识别。
针对这些故障,处理方法通常包括检查电路连接是否牢固、更换损坏的电缆或导线、加强绝缘措施、降低电磁干扰等。
在处理故障时,需要注意安全,避免触电或受伤。
总之,高压脉冲轨道电路的基本原理及常见故障处理是轨道交通系统中的重要知识,只有深入了解和掌握相关知识,才能保证电路的正常运行,保障交通安全。
高压脉冲轨道电路组成及大修换装开通方案摘要:铁路线路的占用与空闲信息即车辆在线路上占用与否,靠的是向轨道上发送信息,一些铁路车站的线路区段很少有车辆通过,轨面就会生锈或有污染物造成绝缘层,车辆在线路上就不能将两条钢轨完整的短路,即分路不良,这时就不能正确反映车辆占用与否,这就造成极大的安全隐患,高压脉冲轨道电路能很好的解决轨道电路分路不良的问题。
关键词:高压脉冲轨道电路分类配置大修换装一、高压脉冲轨道电路简介高压脉冲轨道电路是在既有高压不对称轨道电路的基础上,吸收法国高压脉冲轨道电路技术而设计的一种新型轨道电路。
该制式轨道电路充分利用瞬间输出功率极高的特点击穿钢轨上的锈层和污染物,从而实现列车良好分路的目的。
二、高压脉冲轨道电路的分类(一)室内集中式高压脉冲轨道电路将高压脉冲发码器布置在室内,送电端通过4根电缆将产生的脉冲和电码化信息送至室外的高压脉冲匹配隔离盒和扼流变室内集中式高压脉冲轨道电路又能细分为:电化区段室内集中式高压脉冲轨道电路和非电化区段室内集中式高压脉冲轨道电路。
见图一。
(二)室外分散式高压脉冲轨道电路将高压脉冲发码变压器、高压脉冲匹配隔离盒、扼流变、高压脉冲抑制器都布置在室外。
室外分散式高压脉冲轨道电路又能细分为:电化区段室外分散式高压脉冲轨道电路和非电化区段室外分散式高压脉冲轨道电路。
见图二。
三、高压脉冲轨道电路组成1、GM•F-50高压脉冲发码器GM•F-50型高压脉冲发码器是通过芯片的控制,输出高压脉冲,产生高压脉冲信号源,提高了轨面瞬间击穿电压,解决了由于轨面严重生锈带来的分路不良问题,改善了轨道电路分路灵敏度。
型号及含义:2、GM•Y型高压脉冲译码器应用于现场高压脉冲轨道电路区段的接收端,用来接收高压脉冲,高压脉冲译码器由两个电路组成,一个电路是专门接收扼流变压器次级线圈输出的不对称脉冲的脉冲头,另一个电路是接收扼流变压器次级线圈输出的不对称脉冲的脉冲尾。
3、JCRC-24.7K/7.5K型二元差动继电器二元差动继电器和译码器、扼流变压器构成电气化区段轨道电路的接收端,专门接收钢轨上固定极性的高压脉冲而工作。
高压脉冲轨道电路基本原理及常见故障处理方法标题:高压脉冲轨道电路基本原理及常见故障处理方法引言:高压脉冲轨道电路是一种重要的电子设备,广泛应用于医疗器械、实验室仪器和工业自动化等领域。
了解高压脉冲轨道电路的基本原理以及对常见故障进行处理是保证设备安全运行和提高工作效率的关键。
本文将从简单到复杂、由浅入深地介绍高压脉冲轨道电路的基本原理,并提供一些常见故障处理方法,以帮助读者更全面、深刻和灵活地理解这一主题。
一、高压脉冲轨道电路的基本原理高压脉冲轨道电路是一种应用于电子设备的电路元件,主要用于产生高压脉冲信号。
在本部分,我们将介绍高压脉冲轨道电路的基本工作原理和其组成部分。
1.1 元件构成高压脉冲轨道电路主要包括能与高压电源连接的电源部分、稳压线路和脉冲发生器。
电源部分通常由变压器、整流器和滤波器组成,稳压线路用于保持输出电压的稳定性,而脉冲发生器是产生高压脉冲信号的核心部分。
1.2 工作原理高压脉冲轨道电路的工作原理基于电压驱动和电容放电。
当电源接通后,电源部分提供高压直流电源,稳压线路确保输出电压的稳定性。
脉冲发生器通过充电和放电过程,在电容器中积累电荷,并在特定时刻释放出高压脉冲信号。
二、常见故障及其处理方法高压脉冲轨道电路在使用过程中可能会遇到一些常见故障,了解这些故障并采取适当的处理方法对于设备的正常运行至关重要。
本部分将介绍一些常见的故障,并提供相应的解决方案。
2.1 电源部分故障电源部分故障可能导致高压脉冲轨道电路无法正常工作或输出电压不稳定。
常见的电源部分故障包括变压器损坏、整流器开关失效和滤波器失效等。
针对这些故障,我们可以通过更换损坏的元件、修复开关和重新安装滤波器等方法来解决问题。
2.2 稳压线路问题稳压线路是保证高压脉冲轨道电路输出电压稳定性的重要组成部分。
如果稳压线路出现问题,可能导致输出电压波动或无法达到预期的数值。
处理稳压线路问题的方法包括检查线路连接是否稳固,是否存在短路或接触不良,以及替换损坏的稳压器件等。