高中数学必修四的综合测试与答案
- 格式:docx
- 大小:26.98 KB
- 文档页数:7
第十一章综合测试答案解析基础练习一、 1.【答案】D【解析】直线AC 与直线PO 交于点O ,所以平面PCA 与平面PBD 交于点O ,所以必相交于直线PO ,直线AM 在平面PAC 内,点N AM ∈故N ∈面PAC ,故O ,N ,P ,M 四点共面,所以A 错,点D 若与M ,N 共面,则直线BD 在平面PAC 内,与题目矛盾,故B 错,O ,M 为中点,所以OM PA ∥,ON PA P =,故ON OM O =,故C 错,故选D 。
2.【答案】D【解析】连接1B C 交1BC 于点O ,取AC 中点D ,连接OD ,设12AA AB AC BC ====,三棱柱111ABC A B C −为直三棱柱,∴四边形11BCC B 为矩形,O ∴为1B C 中点,1//DO AB ∴且112DO AB ===又1DC 1112OC BC ==,11cos 4DOC ∴∠==−, ∴异面直线1AB 和1BC 所成角的余弦值为11cos 4DOC ∠=, 故选:D 。
3.【答案】C【解析】因为截面PQMN 是正方形,所以PQ MN ∥、QM PN ∥, 则PQ ACD ∥平面、QM BDA ∥平面,所以PQ AC ∥,QM BD ∥,由PQ QM ⊥可得AC BD ⊥,故A 正确; 由PQ AC ∥可得AC PQMN ∥截面,故B 正确;异面直线PM 与BD 所成的角等于PM 与QM 所成的角,故D 正确; 综上C 是错误的, 故选C 。
4.【答案】A【解析】如图所示,三棱锥11D B EF −的体积为1 111112·2213323D EF V S B C ==⨯⨯⨯⨯=为定值,①正确; 11EF D C ∥,111B D C ∠是异面直线11D B 与EF 所成的角为45︒,②正确;若11D B ⊥平面1B EF ,则11D B EF ⊥,而11EF D C ∥故1111D B D C ⊥,而11D B 与11D C 所成角为45︒,③错误;平面1D EF 即为平面11D C CD ,故直线11D B 与平面1D EF 所成的角是为11145C D B ∠=︒,④错误。
高中数学必修4习题和复习参考题及对应答案A 组1、在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是哪个象限的角: (1)-265°;(2)-1000°;(3)-843°10′;(4)3900°. 答案:(1)95°,第二象限; (2)80°,第一象限; (3)236°50′,第三象限; (4)300°,第四象限.说明:能在给定范围内找出与指定的角终边相同的角,并判定是第几象限角.2、写出终边在x 轴上的角的集合. 答案:S={α|α=k ·180°,k ∈Z }.说明:将终边相同的角用集合表示.3、写出与下列各角终边相同的角的集合,并把集合中适合不等式-360°≤β<360°的元素β写出来:(1)60°;(2)-75°;(3)-824°30′;(4)475°;(5)90°;(6)270°;(7)180°;(8)0°.答案:(1){β|β=60°+k ·360°,k ∈Z },-300°,60°; (2){β|β=-75°+k ·360°,k ∈Z },-75°,285°; (3){β|β=-824°30′+k ·360°,k ∈Z },-104°30′,255°30′; (4){β|β=475°+k ·360°,k ∈Z },-245°,115°; (5){β|β=90°+k ·360°,k ∈Z },-270°,90°; (6){β|β=270°+k ·360°,k ∈Z },-90°,270°; (7){β|β=180°+k ·360°,k ∈Z },-180°,180°; (8){β|β=k ·360°,k ∈Z },-360°,0°. 说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.4、分别用角度和弧度写出第一、二、三、四象限角的集合. 答案: 象限 角度制弧度制一 {β|k ·360°<β<90°+k ·360°,k ∈Z } {|22,}2k k k πβπβπ<<+∈Z二 {β|90°+k ·360°<β<180°+k ·360°,k ∈Z }{|22,}2k k k πβπβππ+<<+∈Z三 {β|180°+k ·360°<β<270°+k ·360°,k ∈Z }3{|22,}2k k k πβππβπ+<<+∈Z 四{β|270°+k ·360°<β<360°+k ·360°,k ∈Z }3{|222,}2k k k πβπβππ+<<+∈Z 说明:用角度制和弧度制写出各象限角的集合.5、选择题:(1)已知α是锐角,那么2α是( ) A .第一象限角 B .第二象限角 C .小于180°的正角 D .第一或第二象限角 (2)已知α是第一象限角,那么2α是( )、 A .第一象限角 B .第二象限角C .第一或第二象限角D .第一或第三象限角 答案:(1)C 说明:因为0°<α<90°,所以0°<2α<180°. (2)D说明:因为k ·360°<α<90°+k ·360°,k ∈Z ,所以180451802k k α︒<<︒+︒,k ∈Z .当k 为奇数时,2α是第三象限角;当k 为偶数时,2α是第一象限角.6、一条弦的长等于半径,这条弦所对的圆心角等于1弧度吗?为什么?答案:不等于1弧度.这是因为等于半径长的弧所对的圆心角为1弧度,而等于半径长的弦所对的弧比半径长.说明:了解弧度的概念.7、把下列各角度化成弧度: (1)36°;(2)-150°;(3)1095°;(4)1440°.答案:(1)5π;(2)56π;(3)7312π-;(4)8π.说明:能进行度与弧度的换算.8、把下列各弧度化成度: (1)76π-;(2)103π-;(3)1.4;(4)23. 答案:(1)-210°;(2)-600°;(3)80.21°;(4)38.2°.说明:能进行弧度与度的换算.9、要在半径OA=100cm 的圆形金属板上截取一块扇形板,使其弧AB 的长为112cm ,求圆心角∠AOB 是多少度(可用计算器,精确到1°).答案:64°说明:可以先运用弧度制下的弧长公式求出圆心角的弧度数,再将弧度换算为度,也可以直接运用角度制下的弧长公式.10、已知弧长50cm 的弧所对圆心角为200°,求这条弧所在的圆的半径(可用计算器,精确到1cm ).答案:14cm .说明:可以先将度换算为弧度,再运用弧度制下的弧长公式,也可以直接运用角度制下的弧长公式.B 组1、每人准备一把扇子,然后与本小组其他同学的对比,从中选出一把展开后看上去形状较为美观的扇子,并用计算器算出它的面积S 1.(1)假设这把扇子是从一个圆面中剪下的,而剩余部分的面积为S 2,求S 1与S 2的比值; (2)要使S 1与S 2的比值为0.618,则扇子的圆心角应为几度(精确到10°)? 答案:(1)(略)(2)设扇子的圆心角为θ,由2122120.6181(2)2r S S r θπθ==-,可得θ=0.618(2π-θ),则θ=0.764π≈140°.说明:本题是一个数学实践活动.题目对“美观的扇子”并没有给出标准,目的是让学生先去体验,然后再运用所学知识发现,大多数扇子之所以“美观”是因为基本都满足:120.618S S =(黄金分割比)的道理.2、(1)时间经过4 h (时),时针、分针各转了多少度?各等于多少弧度?(2)有人说,钟的时针和分针一天内会重合24次、你认为这种说法是否正确?请说明理由.(提示:从午夜零时算起,假设分针走了t min 会与时针重合,一天内分针和时针会重合n 次,建立t 关于n 的函数关系式,并画出其图象,然后求出每次重合的时间.)答案:(1)时针转了-120°,等于23π-弧度;分针转了-1440°,等于-8π弧度 (2)设经过t min 分针就与时针重合,n 为两针重合的次数. 因为分针旋转的角速度为2(rad /min)6030ππ=, 时针旋转的角速度为2(rad/min)1260360ππ=⨯,所以()230360t n πππ-=,即72011t n =.用计算机或计算器作出函数72011t n =的图象(如下页图)或表格,从中可清楚地看到时针与分针每次重合所需的时间.n u1 15. 981.82 16. 1047.3 17. 1112.7 18. 1178.2 19. 1243.6 20. 1309.1 21. 1374.5 22.1440.因为时针旋转一天所需的时间为24×60=1440(min ),所以720144011n ≤,于是n ≤22.故时针与分针一天内只会重合22次.说明:通过时针与分针的旋转问题进一步地认识弧度的概念,并将问题引向深入,用函数思想进行分析.在研究时针与分针一天的重合次数时,可利用计算器或计算机,从模拟的图形、表格中的数据、函数的解析式或图象等角度,不难得到正确的结论.3、已知相互啮合的两个齿轮,大轮有48齿,小轮有20齿,当大轮转动一周时,小轮转动的角是__________度,即__________rad .如果大轮的转速为180r/min (转/分),小轮的半径为10.5cm ,那么小轮周上一点每1s 转过的弧长是__________.答案:864°,245π,151.2π cm . 说明:通过齿轮的转动问题进一步地认识弧度的概念和弧长公式.当大齿轮转动一周时,小齿轮转动的角是4824360864rad.205π⨯︒=︒= 由于大齿轮的转速为3r/s ,所以小齿轮周上一点每1s 转过的弧长是483210.5151.2(cm)20ππ⨯⨯⨯=. P20习题1.2A 组1、用定义法、公式一以及计算器求下列角的三个三角函数值:(1)173π-;(2)214π;(3)236π-;(4)1500°. 答案:(1)31sin ,cos ,tan 322ααα===; (2)22sin ,cos ,tan 122ααα=-=-=; (3)133sin ,cos ,tan 223ααα===; (4)31sin ,cos ,tan 322ααα===. 说明:先利用公式一变形,再根据定义求值,非特殊角的三角函数值用计算器求.2、已知角α的终边上有一点的坐标是P (3a ,4a ),其中a ≠0,求sin α,cos α,tan α的三角函数值.答案:当a >0时,434s i n ,c o s,t a n 553ααα===;当a <0时,434s i n ,c o s ,t a n 553ααα=-=-=-. 说明:根据定义求三角函数值.3、计算:(1)6sin (-90°)+3sin0°-8sin270°+12cos180°; (2)10cos270°+4sin0°+9tan0°+15cos360°;(3)22322costantan sin cos sin2446663ππππππ-+-++; (4)2423sin cos tan 323πππ+-.答案:(1)-10;(2)15;(3)32-;(4)94-.说明:求特殊角的三角函数值.4、化简:(1)asin0°+bcos90°+ctan180°;(2)-p 2cos180°+q 2sin90°-2pqcos0°;(3)223cos 2sincos sin 22a b ab ab ππππ-+-; (4)13tan 0cos sin cos sin 222m n p q r ππππ+---.答案:(1)0;(2)(p -q )2;(3)(a -b )2;(4)0.说明:利用特殊角的三角函数值化简.5、根据下列条件求函数3()sin()2sin()4cos 23cos()444f x x x x x πππ=++--++的值.(1)4x π=;(2)34x π=. 答案:(1)-2;(2)2.说明:转化为特殊角的三角函数的求值问题.6、确定下列三角函数值的符号: (1)sin186°; (2)tan505°; (3)sin7.6π; (4)23tan()4π-; (5)cos940°;(6)59cos()17π-. 答案:(1)负;(2)负;(3)负;(4)正;(5)负;(6)负. 说明:认识不同位置的角对应的三角函数值的符号.7、确定下列式子的符号: (1)tan125°·sin273°;(2)tan108cos305︒︒;(3)5411sin cos tan 456πππ;(4)511cos tan 662sin 3πππ. 答案:(1)正;(2)负;(3)负;(4)正.说明:认识不同位置的角对应的三角函数值的符号.8、求下列三角函数值(可用计算器):(1)67sin()12π-; (2)15tan()4π-;(3)cos398°13′; (4)tan766°15′. 答案:(1)0.9659;(2)1;(3)0.7857;(4)1.045.说明:可先运用公式一转化成锐角三角函数,然后再求出三角函数值.9、求证:(1)角θ为第二或第三象限角当且仅当sin θ·tan θ<0; (2)角θ为第三或第四象限角当且仅当cos θ·tan θ<0; (3)角θ为第一或第四象限角当且仅当sin 0tan θθ>;(4)角θ为第一或第三象限角当且仅当sinθ·cosθ>0.答案:(1)先证如果角θ为第二或第三象限角,那么sinθ·tanθ<0.当角θ为第二象限角时,sinθ>0,tanθ<0,则sinθ·tanθ<0;当角θ为第三象限角时,sinθ<0,tanθ>0,则sinθ·tanθ<0,所以如果角θ为第二或第三象限角,那么sinθ·tanθ<0.再证如果sinθ·tanθ<0,那么角θ为第二或第三象限角.因为sinθ·tanθ<0,即sinθ>0且tanθ<0,或sinθ<0且tanθ>0,当sinθ>0且tanθ<0时,角θ为第二象限角;当sinθ<0且tanθ>0时,角θ为第三象限角,所以如果sinθ·tanθ<0,那么角θ为第二或第三象限角.综上所述,原命题成立.(其他小题略)说明:以证明命题的形式,认识位于不同象限的角对应的三角函数值的符号.10、(1)已知3sin2α=-,且α为第四象限角,求cosα,tanα的值;(2)已知5cos13α=-,且α为第二象限角,求sinα,tanα的值;(3)已知3tan4α=-,求sinα,cosα的值;(4)已知cosα=0.68,求sinα,tanα的值(计算结果保留两个有效数字).答案:(1)1,3 2-;(2)1212,135-;(3)当α为第二象限角时,34 sin,cos55αα==-,当α为第四象限角时,34 sin,cos55αα=-=;(4)当α为第一象限角时,sinα=0.73,tanα=1.1,当α为第四象限角时,sinα=-0.73,tanα=-1.1.说明:要注意角α是第几象限角.11、已知1sin3x=-,求cosx,tanx的值.答案:当x为第三象限角时,222 cos,tan34x x=-=;当x为第四象限角时,222 cos,tan34x x==-.说明:要分别对x是第三象限角和第四象限角进行讨论.12、已知3tan 3,2απαπ=<<,求cos α-sin α的值. 答案:1(31)2- 说明:角α是特殊角.13、求证: (1)2212sin cos 1tan 1tan cos sin x x xxx x--=+-;(2)tan 2α-sin 2α=tan 2α·sin 2α;(3)(cos β-1)2+sin 2β=2-2cos β;(4)sin 4x +cos 4x=1-2sin 2xcos 2x .答案:(1)2(cos sin )cos sin 1tan (cos sin )(cos sin )cos sin 1tan x x x x xx x x x x x x---===+-++左边; (2)222222222211cos sin sin (1)sin sin sin tan cos cos cos x x x xxx x xxx-=-===左边;(3)左边=1-2cos β+cos 2β+sin 2β=2-2cos β;(4)左边=(sin 2x +cos 2x )2-2sin 2x ·cos 2x=1-2sin 2x ·cos 2x .说明:还可以从右边变为左边,或对左右同时变形.可提倡一题多解,然后逐渐学会选择较为简单的方法.B 组1、化简(1+tan 2α)cos 2α. 答案:1说明:根据同角三角函数的基本关系,将原三角函数式转化为正余弦函数式.2、化简1sin 1sin 1sin 1sin αααα+---+,其中α为第二象限角.答案:-2tan α说明:先变形,再根据同角三角函数的基本关系进行化简.3、已知tan α=2,求sin cos sin cos αααα+-的值.答案:3说明:先转化为正切函数式.4、从本节的例7可以看出,cos 1sin 1sin cos x x x x+=-就是sin 2x +cos 2x=1的一个变形.你能利用同角三角函数的基本关系推导出更多的关系式吗?答案:又如sin 4x +cos 4x=1-2sin 2x ·cos 2x 也是sin 2x +cos 2x=1的一个变形;2211tan cos x x=+是sin 2x +cos 2x=1和sin tan cos xx x=的变形;等等. 说明:本题要求学生至少能写出每个同角关系式的一个变形.P29习题1.3A 组1、将下列三角函数转化为锐角三角函数,并填在题中横线上: (1)cos210°=__________; (2)sin263°42′=__________; (3)cos()6π-=__________;(4)5sin()3π-=__________;(5)11cos()9π-=__________;(6)cos (-104°26′)=__________; (7)tan632°24′=__________; (8)17tan6π=__________. 答案:(1)-cos30°; (2)-sin83°42′ (3)cos 6π; (4)sin3π;(5)2cos9π-; (6)-cos75°34′; (7)-tan87°36′; (8)tan6π-.说明:利用诱导公式转化为锐角三角函数.2、用诱导公式求下列三角函数值: (1)17cos()4π-; (2)sin (-1574°); (3)sin (-2160°52′); (4)cos (-1751°36′); (5)cos1615°8′;(6)26sin()3π-.答案:(1)22;(2)-0.7193;(3)-0.0151;(4)0.6639;(5)-0.9964;(6)32 -说明:先利用诱导公式转化为锐角三角函数,再求值.3、化简:(1)sin(-1071°)·sin99°+sin(-171°)·sin(-261°);(2)1+sin(α-2π)·sin(π+α)-2cos2(-α).答案:(1)0;(2)-cos2α说明:先利用诱导公式转化为角α的三角函数,再进一步化简.4、求证:(1)sin(360°-α)=-sinα;(2)cos(360°-α)=cosα;(3)tan(360°-α)=-tanα.答案:(1)sin(360°-α)=sin(-α)=-sinα;(2)略;(3)略.说明:有的书也将这组恒等式列入诱导公式,但根据公式一可知,它和公式三等价,所以本教科书未将其列入诱导公式.B组1、计算:(1)sin420°·cos750°+sin(-330°)·cos(-660°);(2)tan675°+tan765°-tan(-330°)+tan(-690°);(3)252525sin cos tan() 634πππ++-.答案:(1)1;(2)0;(3)0.说明:先利用诱导公式转化为锐角三角函数,再求值.2、已知1sin()2πα+=-,计算:(1)sin(5π-α);(2)sin()2πα+; (3)3cos()2πα-; (4)tan()2πα-.答案:(1)12; (2)3,,23,;2αα⎧⎪⎪⎨⎪-⎪⎩当为第一象限角当为第二象限角(3)12-; (4)3,,3,αα⎧⎪⎨-⎪⎩当为第一象限角当为第二象限角.说明:先用诱导公式将已知式和待求式都转化为角α的三角函数,然后再根据同角三角函数的基本关系得解. P46习题1.4A 组1、画出下列函数的简图:(1)y=1-sinx ,x ∈[0,2π]; (2)y=3cosx +1,x ∈[0,2π]. 答案:(1)(2)说明:可以直接用“五点法”作出两个函数的图象;也可以先用“五点法”作出正弦、余弦函数的图象,再通过变换得到这两个函数的图象.2、求使下列函数取得最大值、最小值的自变量x 的集合,并分别写出最大值、最小值是什么.(1)11cos ,23y x x π=-∈R ; (2)3sin(2),4y x x π=+∈R ;(3)31cos(),226y x x π=--∈R ; (4)11sin(),223y x x π=+∈R .答案:(1)使y 取得最大值的集合是{x|x=6k +3,k ∈Z },最大值是32; 使y 取得最小值的集合是{x|x=6k ,k ∈Z },最大值是12; (2)使y 取得最大值的集合是{|,}8x x k k ππ=+∈Z ,最大值是3;使y 取得最小值的集合是3{|,}8x x k k ππ=-+∈Z ,最小值是-3; (3)使y 取得最大值的集合是{|2(21),}3x x k k ππ=++∈Z ,最大值是32;使y 取得最小值的集合是{|4,}3x x k k ππ=+∈Z ,最小值是32-;(4)使y 取得最大值的集合是{|4,}3x x k k ππ=+∈Z ,最大值是12;使y 取得最小值的集合是5{|4,}3x x k k ππ=-+∈Z ,最小值是12-. 说明:利用正弦、余弦函数的最大值、最小值性质,研究所给函数的最大值、最小值性质.3、求下列函数的周期:(1)2sin 3y x =,x ∈R ; (2)1cos 42y x =,x ∈R . 答案:(1)3π;(2)2π说明:可直接由函数y=Asin (ωx +φ)和函数y=Acos (ωx +φ)的周期2T πω=得解.4、利用函数的单调性比较下列各组中两个三角函数值的大小: (1)sin103°15′与sin164°30′; (2)4744cos()cos()109ππ--与; (3)sin508°与sin144°;(4)cos760°与cos (-770°). 答案:(1)sin103°15′>sin164°130′; (2)4744cos()cos()109ππ->-; (3)sin508°<sin144°;(4)cos760°>cos (-770°).说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.5、求下列函数的单调区间: (1)y=1+sinx ,x ∈R ; (2)y=-cosx ,x ∈R . 答案:(1)当[2,2]22x k k ππππ∈-++,k ∈Z 时,y=1+sinx 是增函数;当3[2,2]22x k k ππππ∈++,k ∈Z 时,y=1+sinx 是减函数. (2)当x ∈[(2k -1)π,2k π],k ∈Z 时,y=-cosx 是减函数; 当x ∈[2k π,(2k +1)π],k ∈Z 时,y=-cosx 是增函数. 说明:利用正弦、余弦函数的单调性研究所给函数的单调性.6、求函数tan()26y x π=-++的定义域.答案:{|,}3x x k k ππ≠+∈Z .说明:可用换元法.7、求函数5tan(2),()3122k y x x k πππ=-≠+∈Z 的周期.答案:2π. 说明:可直接由函数y=Atan (ωx +φ)的周期T πω=得解.8、利用正切函数的单调性比较下列各组中两个函数值的大小: (1)13tan()tan()57ππ--与; (2)tan1519°与tan1493°;(3)93tan 6tan(5)1111ππ-与; (4)7tan tan 86ππ与.答案:(1)13tan()tan()57ππ->-;(2)tan1519°>tan1493°;(3)93tan 6tan(5)1111ππ>-;(4)7tan tan 86ππ<.说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.9、根据正切函数的图象,写出使下列不等式成立的x 的集合: (1)1+tanx ≥0;(2)tan 30x -≥. 答案:(1){|,}42x k x k k ππππ-+<+∈Z ≤;(2){|,}32x k x k k ππππ+<+∈Z ≤.说明:只需根据正切曲线写出结果,并不要求解三角方程或三角不等式.10、设函数f (x )(x ∈R )是以 2为最小正周期的周期函数,且x ∈[0,2]时f (x )=(x -1)2.求f (3),7()2f 的值.答案:由于f (x )以2为最小正周期,所以对任意x ∈R ,有f (x +2)=f (x ).于是:f (3)=f (1+2)=f (1)=(1-1)2=0;273331()(2)()(1)22224f f f =+==-=. 说明:利用周期函数的性质,将其他区间上的求值问题转化到区间[0,2]上的求值问题.11、容易知道,正弦函数y=sinx 是奇函数,正弦曲线关于原点对称,即原点是正弦曲线的对称中心.除原点外,正弦曲线还有其他对称中心吗?如果有,对称中心的坐标是什么?另外,正弦曲线是轴对称图形吗?如果是,对称轴的方程是什么?你能用已经学过的正弦函数性质解释上述现象吗? 对余弦函数和正切函数,讨论上述同样的问题.答案:由正弦函数的周期性可知,除原点外,正弦曲线还有其他对称中心,其对称中心坐标为(k π,0),k ∈Z .正弦曲线是轴对称图形,其对称轴的方程是,2x k k ππ=+∈Z .由余弦函数和正切的周期性可知,余弦曲线的对称中心坐标为(,0)2k ππ+,k ∈Z ,对称轴的方程是x=k π,k ∈Z ;正切曲线的对称中心坐标为(,0)2k π,k ∈Z ,正切曲线不是轴对称图形.说明:利用三角函数的图象和周期性研究其对称性.B 组1、根据正弦函数、余弦函数的图象,写出使下列不等式成立的x 的取值集合:(1)3sin ()2x x ∈R ≥; (2)22cos 0()x x +∈R ≥. 答案:(1)2{|22,}33x k x k k ππππ++∈Z ≤≤; (2)33{|22,}44x k x k k ππππ-++∈Z ≤≤. 说明:变形后直接根据正弦函数、余弦函数的图象写出结果,并不要求解三角方程或三角不等式.2、求函数3tan(2)4y x π=--的单调区间. 答案:单调递减区间5(,),2828k k k ππππ++∈Z .说明:利用正切函数的单调区间求所给函数的单调区间.3、已知函数y=f (x )的图象如图所示,试回答下列问题:(1)求函数的周期;(2)画出函数y=f (x +1)的图象;(3)你能写出函数y=f (x )的解析式吗?答案:(1)2;(2)y=f (x +1)的图象如下;(3)y=|x -2k|,x ∈[2k -1,2k +1],k ∈Z .说明:可直接由函数y=f (x )的图象得到其周期.将函数y=f (x )的图象向左平行移动1个单位长度,就得到函数y=f (x +1)的图象.求函数y=f (x )的解析式难度较高,需要较强的抽象思维能力.可先求出定义域为一个周期的函数y=f (x ),x ∈[-1,1]的解析式为y=|x|,x ∈[-1,1],再根据函数y=f (x )的图象和周期性,得到函数y=f (x )的解析式为y=|x -2k|,x ∈[2k -1,2k +1],k ∈Z . P57习题1.5A 组1、选择题:(1)为了得到函数1cos()3y x =+,x ∈R 的图象,只需把余弦曲线上所有的点( )A .向左平行移动3π个单位长度 B .向右平行移动3π个单位长度C .向左平行移动13个单位长度D .向右平行移动13个单位长度(2)为了得到函数cos 5xy =,x ∈R 的图象,只需把余弦曲线上所有的点的( )、A .横坐标伸长到原来的5倍,纵坐标不变B .横坐标缩短到原来的15倍,纵坐标不变 C .纵坐标伸长到原来的5倍,横坐标不变D .纵坐标缩短到原来的15倍,横坐标不变 (3)为了得到函数1cos 4y x =,x ∈R 的图象,只需把余弦曲线上所有的点的( ).A .横坐标伸长到原来的4倍,纵坐标不变B .横坐标缩短到原来的14倍,纵坐标不变 C .纵坐标伸长到原来的4倍,横坐标不变 D .纵坐标缩短到原来的14倍,横坐标不变 答案:(1)C ;(2)A ;(3)D .2、画出下列函数在长度为一个周期的闭区间上的简图(有条件的可用计算器或计算机作图检验):(1)14sin 2y x =,x ∈R ; (2)1cos32y x =,x ∈R ; (3)3sin(2)6y x π=+,x ∈R ; (4)112cos()24y x π=-,x ∈R .答案:(1)(2)(3)(4)说明:研究了参数A、ω、φ对函数图象的影响.3、不画图,直接写出下列函数的振幅、周期与初相,并说明这些函数的图象可由正弦曲线经过怎样的变化得到(注意定义域):(1)8sin()48x y π=-,x ∈[0,+∞); (2)1sin(3)37y x π=+,x ∈[0,+∞). 答案:(1)振幅是8,周期是8π,初相是8π-. 先把正弦曲线向右平行移动8π个单位长度,得到函数1sin()8y x π=-,x ∈R 的图象;再把函数y 1的图象上所有点的横坐标伸长到原来的4倍(纵坐标不变),得到函数2sin()48x y π=-,x ∈R 的图象;再把函数y 2的图象上所有点的纵坐标伸长到原来的8倍(横坐标不变),得到函数38sin()48x y π=-,x ∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数8sin()48x y π=-,x ∈[0,+∞)的图象.(2)振幅是13,周期是23π,初相是7π.先把正弦曲线向左平行移动7π个单位长度,得到函数1sin()7y x π=+,x ∈R 的图象;再把函数y 1的图象上所有点的横坐标缩短到原来的13倍(纵坐标不变),得到函数2sin(3)7y x π=+,x ∈R 的图象;再把函数y 2的图象上所有点的纵坐标缩短到原来的13倍(横坐标不变),得到函数31sin(3)37y x π=+,x ∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数1sin(3)37y x π=+,x ∈[0,+∞)的图象.说明:了解简谐振动的物理量与函数解析式的关系,并认识函数y=Asin (ωx +φ)的图象与正弦曲线的关系.4、图 1.5-1的电流i (单位:A )随时间t (单位:s )变化的函数关系是5sin(100),[0,)3i t t ππ=+∈+∞.(1)求电流i 变化的周期、频率、振幅及其初相; (2)当t=0,1171,,,(:s)60015060060单位时,求电流i . 答案:(1)周期为150,频率为50,振幅为5,初相为3π.(2)t=0时,532i =;1600t =时,i=5;1150t =时,i=0;7600t =时,i=-5;160t =时,i=0.说明:了解简谐振动的物理量与函数解析式的关系,并求函数值.5、一根长为l cm 的线,一端固定,另一端悬挂一个小球.小球摆动时,离开平衡位置的位移s (单位:cm )与时间t (单位:s )的函数关系是3cos(),[0,)3g s t t l π=+∈+∞. (1)求小球摆动的周期;(2)已知g ≈980cm/s 2,要使小球摆动的周期是1s ,线的长度l 应当是多少?(精确到0.1cm )答案:(1)2lgπ;(2)约24.8cm . 说明:了解简谐振的周期.B 组1、弹簧振子的振动是简谐运动.下表给出了振子在完成一次全振动的过程中的时间t 与位移s 之间的对应数据,根据这些数据求出这个振子的振动函数解析式.t 0 t 0 2t 0 3t 04t 05t 0 6t 0 7t 0 8t 0 9t 010t 0 11t 0 12t 0s-20.0-17.8-10.10.110.317.720.017.710.30.1 -10.1-17.8-20.0答案:根据已知数据作出散点图(如图).由散点图可知,振子的振动函数解析式为020sin()62x y t ππ=-,x ∈[0,+∞).说明:作出已知数据的散点图,然后选择一个函数模型来描述,并根据已知数据求出该函数模型.2、弹簧挂着的小球作上下运动,它在t 秒时相对于平衡位置的高度h 厘米由下列关系式确定:2sin()4h t π=+.以t 为横坐标,h 为纵坐标,作出这个函数在一个剧期的闭区间上的图象,并回答下列问题:(1)小球在开始振动时(即t=0)的位置在哪里?(2)小球的最高点和最低点与平衡位置的距离分别是多少? (3)经过多少时问小球往复运动一次? (4)每秒钟小球能往复振动多少次?答案:函数2sin()4h t π=+在[0,2π]上的图象为(1)小球在开始振动时的位置在(0,2); (2)最高点和最低点与平衡位置的距离都是2; (3)经过2π秒小球往复运动一次; (4)每秒钟小球能往复振动12π次. 说明:结合具体问题,了解解析式中各常数的实际意义.3、如图,点P 是半径为r cm 的砂轮边缘上的一个质点,它从初始位置P 0开始,按逆时针方向以角速度ω rad/s 做圆周运动.求点P 的纵坐标y 关于时间t 的函数关系,并求点P 的运动周期和频率.答案:点P的纵坐标关于时间t的函数关系式为y=rsin(ωt+φ),t∈[0,+∞);点P的运动周期和频率分别为2πω和2ωπ.说明:应用函数模型y=rsin(ωt+φ)解决实际问题.P65习题1.61、根据下列条件,求△ABC的内角A:(1)1sin2A=;(2)2cos2A=-;(3)tanA=1;(4)3 tan3A=-.答案:(1)30°或150°;(2)135°;(3)45°;(4)150°.说明:由角A是△ABC的内角,可知A∈(0°,180°).2、根据下列条件,求(0,2π)内的角x:(1)3sin2x=-;(2)sinx=-1;(3)cosx=0;(4)tanx=1.答案:(1)4533ππ或;(2)32π;(3)322ππ或;(4)544ππ或.说明:可让学生再变换角x的取值范围求解.3、天上有些恒星的亮度是会变化的.其中一种称为造父(型)变星,本身体积会膨胀收缩造成亮度周期性的变化、下图为一造父变星的亮度随时间的周期变化图、此变星的亮度变化的周期为多少天?最亮时是几等星?最暗时是几等星?答案:5.5天;约3.7等星;约4.4等星.说明:每个周期的图象不一定完全相同,表示视星等的坐标是由大到小.4、夏天是用电的高峰时期,特别是在晚上.为保证居民空调制冷用电,电力部门不得不对企事业拉闸限电,而到了0时以后,又出现电力过剩的情况.因此每天的用电也出现周期性的变化.为保证居民用电,电力部门提出了“消峰平谷”的想法,即提高晚上高峰时期的电价,同时降低后半夜低峰时期的电价,鼓励各单位在低峰时用电.请你调查你们地区每天的用电情况,制定一项“消峰平谷”的电价方案.答案:先收集每天的用电数据,然后作出用电量随时间变化的图象,根据图象制定“消峰平谷”的电价方案.说明:建立周期变化的模型解决实际问题.B组1、北京天安门广场的国旗每天是在日出时随太阳升起,在日落时降旗、请根据年鉴或其他的参考资料,统计过去一年不同时期的日出和日落时间.(1)在同一坐标系中,以日期为横轴,画出散点图,并用曲线去拟合这些数据,同时找到函数模型;(2)某同学准备在五一长假时去看升旗,他应当几点到达天安门广场?答案:略.说明:建立周期变化的函数模型,根据模型解决实际问题.2、一个城市所在的经度和纬度是如何影响日出和日落的时间的?收集其他有关的数据并提供理论证据支持你的结论.答案:略.说明:收集数据,建立周期变化的函数模型,根据模型提出个人意见.然后采取上网、查阅资料或走访专业人士的形式,获取这方面的信息,以此来说明自己的结论.P69复习参考题A 组1、写出与下列各角终边相同的角的集合S ,并且把S 中适合不等式-2π≤β≤4π的元素β写出来:(1)4π; (2)23π-;(3)125π;(4)0.答案:(1)79{|2,},,,4444k k ππππββπ=+∈-Z ; (2)22410{|2,},,,3333k k ββπππππ=-+∈-Z ;(3)128212{|2,},,,5555k k ββπππππ=+∈-Z ;(4){β|β=2k π,k ∈Z },-2π,0,2π. 说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.2、在半径为15cm 的圆中,一扇形的弧含有54°,求这个扇形的周长与面积(π取3.14,计算结果保留两个有效数字).答案:周长约44cm ,面积约1.1×102cm 2.说明:可先将角度转化为弧度,再利用弧度制下的弧长和面积公式求解.3、确定下列三角函数值的符号:(1)sin4; (2)cos5; (3)tan8; (4)tan (-3). 答案:(1)负;(2)正;(3)负;(4)正.说明:将角的弧度数转化为含π的形式或度,再进行判断.4、已知1cos 4ϕ=,求sin φ,tan φ. 答案:当φ为第一象限角时,15sin ,tan 154ϕϕ==; 当φ为第四象限角时,15sin ,tan 154ϕϕ=-=-. 说明:先求sin φ的值,再求tan φ的值.5、已知sinx=2cosx ,求角x 的三个三角函数值. 答案:当x 为第一象限角时,tanx=2,525cos ,sin 55x x ==;当x 为第三象限角时,tanx=2,525cos ,sin 55x x =-=-. 说明:先求tanx 的值,再求另外两个函数的值.6、用cos α表示sin 4α-sin 2α+cos 2α.答案:cos 4α.说明:先将原式变形为sin 2α(sin 2α-1)+cos 2α,再用同角三角函数的基本关系变形.7、求证:(1)2(1-sin α)(1+cos α)=(1-sin α+cos α)2;(2)sin 2α+sin 2β-sin 2α·sin 2β+cos 2α·cos 2β=1. 答案:(1)左边=2-2sin α+2cos α-2sin αcos α=1+sin 2α+cos 2α-2sin α+2cos α-2sin αcos α =右边. (2)左边=sin 2α(1-sin 2β)+sin 2β+cos 2αcos 2β=cos 2β(sin 2α+cos 2α)+sin 2β =1=右边.说明:第(1)题可先将左右两边展开,再用同角三角函数的基本关系变形.8、已知tan α=3,计算: (1)4sin 2cos 5cos 3sin αααα-+;(2)sin αcos α;(3)(sin α+cos α)2. 答案:(1)57;(2)310;(3)85. 说明:第(2)题可由222sin tan 9cos ααα==,得21c o s 10α=,所以23sin cos tan cos 10αααα==.或222s incs i n c10sin cos tan 131αααααααα====+++.9、先估计结果的符号,再进行计算. (1)252525sincos tan()634πππ++-; (2)sin2+cos3+tan4(可用计算器).答案:(1)0;(2)1.0771.说明:先根据各个角的位置比较它们的三角函数值的大小,再估计结果的符号.10、已知1sin()2πα+=-,计算:(1)cos(2π-α);(2)tan(α-7π).答案:(1)当α为第一象限角时,3 cos(2)2πα-=,当α为第二象限角时,3 cos(2)2πα-=-;(2)当α为第一象限角时,3 tan(7)3απ-=,当α为第二象限角时,3 tan(7)3απ-=-.说明:先用诱导公式转化为α的三角函数,再用同角三角函数的基本关系计算.11、先比较大小,再用计算器求值:(1)sin378°21′,tan1111°,cos642.5°;(2)sin(-879°),313t a n(),c o s()810ππ--;(3)sin3,cos(sin2).答案:(1)tan1111°=0.601,sin378°21′=0.315,cos642.5°=0.216;(2)sin(-879°)=-0.358,3313tan()0.414,cos()0.588 810ππ-=--=-;(3)sin3=0.141,cos(sin2)=0.614.说明:本题的要求是先估计各三角函数值的大小,再求值验证.12、设π<x<2π,填表:x 76π74πsinx -1cosx22-32tanx 3答案:x 76π54π43π32π74π116πsinx12-22-32--122-12-cosx32-22-12- 02232tanx3313不存在-133-说明:熟悉各特殊角的三角函数值.13、下列各式能否成立,说明理由: (1)cos 2x=1.5;(2)3sin 4x π=-.答案:(1)因为cos 1.5x =,或cos 1.5x =-,而 1.51, 1.51>-<-,所以原式不能成立;(2)因为3sin 4x π=-,而3||14π-<,所以原式有可能成立.说明:利用正弦和余弦函数的最大值和最小值性质进行判断.14、求下列函数的最大值、最小值,并且求使函数取得最大、最小值的x 的集合: (1)sin 2xy π=+,x ∈R ;(2)y=3-2cosx ,x ∈R . 答案:(1)最大值为12π+,此时x 的集合为{|2,}2x x k k ππ=+∈Z ;最小值为12π-,此时x 的集合为{|2,}2x x k k ππ=-+∈Z ;(2)最大值为5,此时x 的集合为{x|x=(2k +1)π,k ∈Z }; 最小值为1,此时x 的集合为{x|x=2k π,k ∈Z }.说明:利用正弦、余弦函数的最大值和最小值性质,研究所给函数的最大值和最小值性质.15、已知0≤x ≤2π,求适合下列条件的角x 的集合: (1)y=sinx 和y=cosx 都是增函数; (2)y=sinx 和y=cosx 都是减函数;(3)y=sinx 是增函数,而y=cosx 是减函数; (4)y=sinx 是减函数,而y=cosx 是增函数.答案:(1)3{|2}2x x ππ≤≤; (2){|}2x x ππ≤≤;(3){|0}2x x π≤≤;(4)3{|}2x x ππ≤≤. 说明:利用函数图象分析.16、画出下列函数在长度为一个周期的闭区间上的简图: (1)1sin(3),;23y x x π=-∈R (2)2sin(),;4y x x π=-+∈R (3)1sin(2),;5y x x π=--∈R(4)3sin(),.63xy x π=-∈R 答案:(1)(2)(3)(4)说明:可要求学生在作出图象后,用计算机或计算器验证.17、(1)用描点法画出函数y=sinx ,[0,]2x π∈的图象.(2)如何根据第(1)小题并运用正弦函数的性质,得出函数y=sinx ,x ∈[0,2π]的图象?(3)如何根据第(2)小题并通过平行移动坐标轴,得出函数y=sin (x +φ)+k ,x ∈[0,2π]的图象?(其中φ,k 都是常数)答案:(1)x 0 18π9π 6π 29π 518π 3π 718π 49π 2π sinx0.17 0.34 0.50 0.64 0.77 0.87 0.94 0.981(2)由sin (π-x )=sinx ,可知函数y=sinx ,x ∈[0,π]的图象关于直线2x π=对称,据此可得函数y=sinx ,[,]2x ππ∈的图象;又由sin (2π-x )=-sinx ,可知函数y=sinx ,x ∈[0,2π]的图象关于点(π,0)对称,据此可得出函数y=sinx ,x ∈[π,2π]的图象.(3)先把y 轴向右(当φ>0时)或向左(当φ<0时)平行移动|φ|个单位长度,再把x 轴向下(当k >0时)或向上(当k <0时)平行移动|k|个单位长度,最后将图象向左或向右平行移动2π个单位长度,并擦去[0,2π]之外的部分,便得出函数y=sin (x +φ)+k ,x ∈[0,2π]的图象.说明:学会用不同的方法作函数图象.18、不通过画图,写出下列函数的振幅、周期、初相,并说明如何由正弦曲线得出它们的图象:(1)sin(5),;6y x x π=+∈R(2)12sin,.6y x x =∈R 答案:(1)振幅是1,周期是25π,初相是6π. 把正弦曲线向左平行移动6π个单位长度,可以得函数sin()6y x π=+,x ∈R 的图象;再把所得图象上所有点的横坐标缩短到原来的15倍(纵坐标不变),就可得出函数sin(5)6y x π=+,x ∈R 的图象.(2)振幅是2,周期是2π,初相是0.把正弦曲线上所有点的横坐标伸长到原来的6倍(纵坐标不变),得到函数1sin6y x =,x ∈R 的图象;再把所得图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),就可得到函数12sin()6y x =,x ∈R 的图象.说明:会根据解析式求各物理量,并理解如何由正弦曲线通过变换得到正弦函数的图象.。
第三章三角恒等变换综合检测题本试卷分第I 卷选择题和第U 卷非选择题两部分,满分150分,时间120 分钟。
第I 卷(选择题共60分)一、选择题(本大题共12个小题,每小题 5分,共60分,在每小题给出的四个选项中 只有一个是符合题目要求的 )n 3 41 .已知 0v av 2v 3<n 又 sin a= 5, cos (a+ ®= — 5,贝V sin ()B . 0 或 2424 C.25 24 D . ±25 [答案]Cn 3 4[解析]•/ 0v av 2 v 3v n 且 sin a= 5, COS ( a+ 3 = — 54 n3 3• cos a= 5 , 2< a+ 3v ㊁ n, • sin( a+ 3 = ±5,=sin( a+ 3cos a — cos( a+ 3)sin a才< 3v n ••• sin 3> 0•故排除 A , B , D.4 3 4⑵由 cos( a+ 3)= — 5及 Sin a= 3可得 sin 3= §(1 + cos 3)代入 sin 2 3+ cos 2 3= 1 中可解得 cos37 n=—1或一25,再结合2<仟n 可求sin 32.若sin Bv 0, cos2 0v 0,则在(0,2 内)B 的取值范围是()3 n3=0.sin3=- 5x 4-又氏才,n j, • sin 3> 0,故 sin 3= 24当 sin( a+ 3 =,sin 3= sin [( a+ a[点评](1)可用排除法求解,T=器53 245 = 25;A . n< 0< 25 nB.5T <e< ¥3 nC.y <e< 2 nD.严< 0<孕4 4[答案]B[解析]2 2 2•/ cos2 e< 0, • 1 —2sin < 0,即sin e>2或sin < —"2,又已知sin < 0, •— 1 < sin e<—亠2,2由正弦曲线得满足条件的e取值为54n<e< ¥3. 函数y= sin2x+ cos2x的图象,可由函数y= sin2x —cos2x的图象()A .向左平移f个单位得到B .向右平移f个单位得到8c.向左平移n个单位得到4D .向右平移4个单位得到[答案]C[解析]y= sin2x+ cos2x= , 2sin(2x+J=2si n2(x +》_ n _ ny= sin2x—cos2x= 2sin(2x—4)= . 2sin2(x—§)n n n其中x+8=(x+ 4)—8n•••将y= sin2x—cos2x的图象向左平移:个单位可得y= sin2x+ cos2x的图象.44. 下列各式中,值为~2的是()A . 2sin 15 cos15 °2 2B. cos 15。
高中数学必修四试卷(考试时间:100分钟 满分:150分)一、选择题1.下列命题正确的是A.第一象限角是锐角B.钝角是第二象限角C.终边相同的角一定相等D.不相等的角,它们终边必不相同 2.函数12sin()24y x π=-+的周期,振幅,初相分别是A.4π,2,4π B. 4π,2-,4π- C. 4π,2,4π D. 2π,2,4π3.如果1cos()2A π+=-,那么sin()2A π+=A.12B.12C.12D.124.函数2005sin(2004)2y x π=-是 A.奇函数 B.偶函数 C.非奇非偶函数 D.既是奇函数又是偶函数 5.给出命题(1)零向量的长度为零,方向是任意的.(2)若a ,b 都是单位向量,则a =b.(3)向量AB 与向量BA相等.(4)若非零向量AB 与CD是共线向量,则A ,B ,C ,D 四点共线.以上命题中,正确命题序号是A.(1)B.(2)C.(1)和(3)D.(1)和(4) 6.如果点(sin 2P θ,cos2)θ位于第三象限,那么角θ所在象限是 A.第一象限 B.第二象限 C.第三象限 D.第四象限7.在四边形ABCD 中,如果0AB CD = ,AB DC =,那么四边形ABCD 的形状是A.矩形B.菱形C.正方形D.直角梯形 8.若α是第一象限角,则sin cos αα+的值与1的大小关系是 A.sin cos 1αα+> B.sin cos 1αα+= C.sin cos 1αα+< D.不能确定 9.在△ABC 中,若sin 2cos sin C A B =,则此三角形必是10.如图,在△ABC 中,AD 、BE 、CF 分别是BC 、点G ,则下列各等式中不正确的是 A.23BG BE = B.2CG GF =C.12DG AG =D.121332DA FC BC +=二、填空题(本大题共4小题,每小题5分,共20分)11.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是 .12.已知tan 2α=,3tan()5αβ-=-,则tan β= . 13.已知(3a = ,1),(sin b α= ,cos )α,且a ∥b ,则4sin 2cos 5cos 3sin αααα-+= .14.给出命题:(1)在平行四边形ABCD 中,AB AD AC +=.(2)在△ABC 中,若0AB AC <,则△ABC 是钝角三角形.(3)在空间四边形ABCD 中,,E F 分别是,BC DA 的中点,则1()2FE AB DC =+.以上命题中,正确的命题序号是 .三、解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)已知3sin 25α=,53[,]42αππ∈. (1)求cos 2α及cos α的值;(2)求满足条件sin()sin()2cos 10x x ααα--++=-的锐角x .已知函数()sin22x xf x =,x R ∈. (1)求函数()f x 的最小正周期,并求函数()f x 在[2,2]x ππ∈-上的单调递增区间; (2)函数()sin ()f x x x R =∈的图象经过怎样的平移和伸缩变换可以得到函数()f x 的图象.17.(本小题满分13分)已知电流I 与时间t 的关系式为sin()I A t ωϕ=+. (1)下图是sin()I A t ωϕ=+(0,)2πωϕ><求sin()I A t ωϕ=+的解析式; (2)如果t 在任意一段1150秒的时间内,电流 sin()I A t ωϕ=+ 那么ω的最小正整数值是多少?已知向量(3,4)OA =- ,(6,3)OB =- ,(5,3)OC m m =---.(1)若点,,A B C 能够成三角形,求实数m 应满足的条件; (2)若△ABC 为直角三角形,且A ∠为直角,求实数m 的值.19.(本小题满分13分)设平面内的向量(1,7)OA = ,(5,1)OB = ,(2,1)OM =,点P 是直线OM 上的一个 动点,且8PA PB =- ,求OP的坐标及APB ∠的余弦值.20.(本小题满分13分)已知向量33(cos ,sin )22x x a = ,(cos ,sin )22x x b =- ,且[,]2x ππ∈. (1)求a b 及a b +;(2)求函数()f x a b a b =++的最大值,并求使函数取得最大值时x 的值.高中数学必修(4)试卷参考答案及评分标准一、选择题二、填空题11. 2 12. -13 13. 5714. (1)(2)(3) 三、解答题15.解:(1)因为5342παπ<<,所以5232παπ<<. ………………………(2分) 因此4cos 25α==-. ………………………………(4分)由2cos 22cos 1αα=-,得cos α=……………………(8分) (2)因为sin()sin()2cos x x ααα--++=, 所以2cos (1sin )10x α-=-,所以1sin 2x =. ………………………(11分)因为x 为锐角,所以6x π=. ………………………………………………(13分)16.解:sin2sin()2223x x x y π=+=+. (1)最小正周期2412T ππ==. ……………………………………………(3分)令123z x π=+,函数sin y z =单调递增区间是[2,2]()22k k k Z ππππ-++∈.由 1222232k x k πππππ-+≤+≤+,得 544,33k x k k Z ππππ-+≤≤+∈. ………………………………(5分) 取0k =,得533x ππ-≤≤,而5[,]33ππ-⊂[2,2]ππ-, 所以,函数sin 22x x y =,[2,2]x ππ∈-得单调递增区间是5[,]33ππ-.(2)把函数sin y x =图象向左平移3π,得到函数sin()3y x π=+的图象,…(10分)再把函数sin()3y x π=+的图象上每个点的横坐标变为原来的2倍,纵坐标不变,得到函数sin()23x y π=+的图象, …………………………………(11分)然后再把每个点的纵坐标变为原来的2倍,横坐标不变,即可得到函数2sin()23x y π=+的图象. …………………………………………………(13分) 17.解:(1)由图可知300A =,设11900t =-,21180t =, ……………………(2分)则周期211112()2()18090075T t t =-=+=, …………………………(4分) ∴2150T πωπ==. ………………………………………………………(6分) 1900t =-时,0I =,即1sin[150()]0900πϕ⋅-+=,sin()06πϕ-=. 而2πϕ<, ∴6πϕ=.故所求的解析式为300sin(150)6I t ππ=+. ……………………………(8分)(2)依题意,周期1150T ≤,即21150πω≤,(0)ω>, …………………(10分)∴300942ωπ≥>,又*N ω∈,故最小正整数943ω=. ……………(13分)18.解:(1)已知向量(3,4)OA =- ,(6,3)OB =- ,(5,3)OC m m =--- ,若点,,A B C 能构成三角形,则这三点不共线,即AB 与BC不共线. ……(4分)(3,1)AB = ,(2,1)AC m m =--,故知3(1)2m m -≠-,∴实数12m ≠时,满足条件. …………………………………………………(8分) (若根据点,,A B C 能构成三角形,必须任意两边长的和大于第三边的长,即由ABBC CA +>去解答,相应给分)∴3(2)(1)0m m -+-=, 解得74m =. …………………………………………………………………(13分) 19.解:设(,)OP x y =.∵点P 在直线OM 上,∴OP 与OM 共线,而OM(2,1)=,∴20x y -=,即2x y =,有(2,)OP y y =. ………………………………(2分)∵(12,7)PA OA OP y y =-=-- ,(52,1)PB OB OP y y =-=--,……(4分)∴(12)(52)(7)(1)PA PB y y y y =--+-- ,即252012PA PB y y =-+ . …………………………………………………(6分) 又8PA PB =- , ∴2520128y y -+=-,所以2y =,4x =,此时(4,2)OP =. ……………………………………(8分) (3,5),(1,1)PA PB =-=-.于是8PA PB PA PB ===-. …………………………………(10分)∴cos PA PB APB PA PB ∠===⋅. ………………………(13分) 20.解:(1)33cos cos sin sin cos 22222x x x xa b x =-=, ……………………(3分)a b += ………………………(4分)=2cos x == …………………………………………(7分) ∵[,]2x ππ∈, ∴cos 0x <.∴2cos a b x +=-. …………………………………………………………(9分) (2)2()cos 22cos 2cos 2cos 1f x a b a b x x x x =++=-=--2132(cos )22x =-- …………………………………………………(11分) ∵[,]2x ππ∈, ∴1cos 0x -≤≤, ……………………………………(13分)∴当cos 1x =-,即x π=时max ()3f x =. ………………………………(15分)。
单元综合测试一时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.若角600°的终边上有一点(-4,a),则a 的值是( ) A .-4 3B .±4 3 C.3D .43解析:因为tan600°=a-4=tan(540°+60°)=tan60° =3,故a =-43.答案:A2.已知cos(π2+φ)=32,且|φ|<π2,则tan φ=( )A .-33B.33 C .-3D.3解析:由cos(π2+φ)=32,得sin φ=-32,又|φ|<π2,∴cos φ=12,∴tan φ=-3.答案:C3.下列函数中,最小正周期为π,且图象关于直线x =π3对称的是( )A .y =sin(2x +π6)B .y =sin(x2+π6)C .y =sin(2x -π6)D .y =sin(2x -π3)解析:∵最小正周期为π,∴ω=2,又图象关于直线x =π3对称,∴f(π3)=±1,故只有C 符合. 答案:C4.若2k π+π<θ<2k π+5π4(k ∈Z),则sin θ,cos θ,tan θ的大小关系是( )A .sin θ<cos θ<tan θB .cos θ<tan θ<sin θC .cos θ<sin θ<tan θD .sin θ<tan θ<cos θ解析:设π<α<54π,则有sin θ=sin α,cos θ=cos α,tan θ=tan α, ∵tan α>0,而sin α<0,cos α<0,∴B 、D 排除,又∵cos α<-22<sin α,即cos α<sin α,排除A.选C.答案:C5.已知A 是三角形的内角,且sinA +cosA =52,则tanA 等于( )A .4+15B .4-15C .4±15D .以上均不正确解析:因为sinA +cosA =52,所以2sinAcosA =14>0.所以A 为锐角.又(sinA -cosA)2=1-2sinAcosA =1-14=34,所以sinA -cosA=±32.从而可求出sinA ,cosA 的值,从而求出tanA =4±15.答案:C6.函数y =2sin(π6-2x)(x ∈[0,π])的单调递增区间是( )A .[0,π3]B .[π12,7π12]C .[π3,5π6]D .[5π6,π]解析:由π2+2k π≤2x -π6≤3π2+2k π可得π3+k π≤x ≤5π6+k π(k ∈Z).∵x ∈[0,π],∴单调递增区间为[π3,5π6].答案:C7.为得到函数y =cos ⎝ ⎛⎭⎪⎫x +π3的图象,只需将函数y =sinx 的图象( )A .向左平移π6个单位长度B .向右平移π6个单位长度C .向左平移5π6个单位长度D .向右平移5π6个单位长度解析:∵y =cos ⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫x +π3+π2=sin ⎝ ⎛⎭⎪⎫x +5π6,∴只需将y =sinx 的图象向左平移5π6个单位长度.答案:C8.已知函数f(x)=2sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,则函数f(x)的一个单调递增区间是( )A.⎣⎢⎡⎦⎥⎤-7π12,5π12 B.⎣⎢⎡⎦⎥⎤-7π12,-π12C.⎣⎢⎡⎦⎥⎤-π4,π6D.⎣⎢⎡⎦⎥⎤11π12,17π12 解析:由图形可得14T =23π-512π,∴T =π,则ω=2,又图象过点⎝ ⎛⎭⎪⎫512π,2.∴2sin ⎝ ⎛⎭⎪⎫2×512π+φ=2,∴φ=-π3,∴f(x)=2sin ⎝⎛⎭⎪⎫2x -π3,其单调递增区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+512π(k ∈Z),取k =1,即得选项D. 答案:D9.设a 为常数,且a>1,0≤x ≤2π,则函数f(x)=cos 2x +2asinx -1的最大值为( )A .2a +1B .2a -1C .-2a -1D .a 2解析:f(x)=cos 2x +2asinx -1=1-sin 2x +2asinx -1 =-(sinx -a)2+a 2, ∵0≤x ≤2π,∴-1≤sinx ≤1,又a>1,∴f(x)max =-(1-a)2+a 2=2a -1. 答案:B 10.函数y =cos(ωx +φ)(ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,A ,B 分别为最高点与最低点,并且两点间的距离为22,则该函数图象的一条对称轴方程为( )A .x =2πB .x =π2C .x =1D .x =2解析:函数y =cos(ωx +φ)(ω>0,0<φ<π)的最大值为1,最小值为-1,所以周期T =2222-22=4,所以ω=π2,又函数为奇函数,所以cos φ=0(0<φ<π)⇒φ=π2,所以函数解析式为y =cos(π2x +π2)=-sin π2x ,所以直线x =1为该函数图象的一条对称轴.答案:C11.中国最高的摩天轮是“南昌之星”,它的最高点离地面160米,直径为156米,并以每30分钟一周的速度匀速旋转,若从最低点开始计时,则摩天轮进行5分钟后离地面的高度为( )A .41米B .43米C .78米D .118米解析:摩天轮转轴离地面高160-⎝ ⎛⎭⎪⎫1562=82(米),ω=2πT =π15,摩天轮上某个点P 离地面的高度h 米与时间t 的函数关系是h =82-78cos π15t ,当摩天轮运行5分钟时,其离地面高度为h =82-78cosπ15t =82-78×12=43(米).答案:B12.设ω>0,函数y =sin(ωx +π3)+2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是( )A.23B.43C.32D .3解析:方法一:函数y =sin(ωx +π3)+2的图象向右平移4π3个单位后得到函数y =sin[ω(x -4π3)+π3]+2=sin(ωx -4π3ω+π3)+2的图象.∵两图象重合,∴ωx +π3=ωx -4π3ω+π3+2k π,k ∈Z ,解得ω=32k ,k ∈Z.又ω>0,∴当k =1时,ω的最小值是32.方法二:由题意可知,4π3是函数y =sin(ωx +π3)+2(ω>0)的最小正周期T 的正整数倍,即4π3=kT =2k πω(k ∈N *),ω=32k ,ω的最小值为32.答案:C第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.在扇形中,已知半径为8,弧长为12,则圆心角是________弧度,扇形面积是________.解析:圆心角α=lr =128=32,扇形面积S =12lr =12×12×8=48.答案:324814.方程sinx =lgx 的解的个数为________.解析:画出函数y =sinx 和y =lgx 的图象(图略),结合图象易知这两个函数的图象有3个交点.答案:315.设f(x)=asin(πx +α)+bcos(πx +β),其中a ,b ,α,β为非零常数.若f(2 013)=-1,则f(2 014)=________.解析:f(2 013)=asin(2 013π+α)+bcos(2 013π+β) =-1,f(2 014)=asin(2 014π+α)+bcos(2 014π+β) =asin[π+(2 013π+α)]+bcos[π+(2 013π+β)]=-[asin(2 013π+α)+bcos(2 013π+β)]=1. 答案:116.关于函数f(x)=cos ⎝⎛⎭⎪⎫2x +π3+1有以下结论:①函数f(x)的值域是[0,2];②点⎝ ⎛⎭⎪⎫-512π,0是函数f(x)的图象的一个对称中心;③直线x =π3是函数f(x)的图象的一条对称轴;④将函数f(x)的图象向右平移π6个单位长度后,与所得图象对应的函数是偶函数.其中,所有正确结论的序号是________.解析:①∵-1≤cos ⎝ ⎛⎭⎪⎫2x +π3≤1,∴0≤cos ⎝⎛⎭⎪⎫2x +π3+1≤2;②∵f ⎝ ⎛⎭⎪⎫-5π12=cos ⎝ ⎛⎭⎪⎫-5π6+π3+1=cos ⎝ ⎛⎭⎪⎫-π2+1=1≠0,∴点⎝ ⎛⎭⎪⎫-512π,0不是函数f(x)图象的一个对称中心;③∵f ⎝ ⎛⎭⎪⎫π3=cos ⎝ ⎛⎭⎪⎫2π3+π3+1=cos π+1=0,函数取得最小值,∴直线x =π3是函数f(x)的图象的一条对称轴;④将函数f(x)的图象向右平移π6个单位长度后,与所得图象对应的函数解析式为g(x)=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+π3+1=cos2x +1,此函数是偶函数.综上所述,①③④正确.答案:①③④三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知sin θ=45,π2<θ<π,(1)求tan θ;(2)求sin 2θ+2sin θcos θ3sin 2θ+cos 2θ的值.解:(1)∵sin 2θ+cos 2θ=1,∴cos 2θ=1-sin 2θ=925.又π2<θ<π,∴cos θ=-35. ∴tan θ=sin θcos θ=-43.(2)sin 2θ+2sin θcos θ3sin 2θ+cos 2θ=tan 2θ+2tan θ3tan 2θ+1=-857.18.(12分)(1)已知cos(75°+α)=13,其中α为第三象限角,求cos(105°-α)+sin(α-105°)的值;(2)已知π<θ<2π,cos(θ-9π)=-35,求tan(10π-θ)的值.解:(1)cos(105°-α)=cos[180°-(75°+α)] =-cos(75°+α)=-13,sin(α-105°)=-sin[180°-(75°+α)] =-sin(75°+α). ∵α为第三象限角,∴75°+α为第三或第四象限角,又cos(75°+α)=13>0,∴75°+α为第四象限角, ∴sin(75°+α)=-1-cos 275=-1-⎝ ⎛⎭⎪⎫132=-223,∴cos(105°-α)+sin(α-105°)=-13+223=22-13.(2)由已知得cos(θ-9π)=-35,∴cos(π-θ)=-35,∴cos θ=35,∵π<θ<2π,∴3π2<θ<2π,∴sin θ=-45,∴tan θ=-43,∴tan(10π-θ)=tan(-θ)=-tan θ=43.19.(12分)已知函数f(x)=2cos(2x -π4),x ∈R.(1)求函数f(x)的最小正周期和单调递增区间.(2)求函数f(x)在区间[-π8,π2]上的最小值和最大值,并求出取得最值时x 的值.解:(1)因为f(x)=2cos(2x -π4),所以函数f(x)的最小正周期为T =2π2=π.由-π+2k π≤2x -π4≤2k π(k ∈Z),得-3π8+k π≤x ≤π8+k π(k ∈Z),故函数f(x)的单调递增区间为[-3π8+k π,π8+k π](k ∈Z).(2)因为f(x)=2cos(2x -π4)在区间[-π8,π8]上为增函数,在区间[π8,π2]上为减函数,又f(-π8)=0,f(π8)=2,f(π2)=2cos(π-π4)=-2cos π4=-1,所以函数f(x)在区间[-π8,π2]上的最大值为2,此时x =π8;最小值为-1,此时x =π2.20.(12分)函数f 1(x)=Asin(ωx +φ)(A>0,ω>0,|φ|<π2)的一段图象过点(0,1),如图所示.(1)求函数f 1(x)的表达式;(2)把f 1(x)的图象向右平移π4个单位长度得到f 2(x)的图象,求f 2(x)取得最大值时x 的取值.解:(1)由图知,T =π,于是ω=2πT =2.将y =Asin2x 的图象向左平移π12,得y =Asin(2x +φ)的图象,于是φ=2×π12=π6.将(0,1)代入y =Asin(2x +π6),得A =2.故f 1(x)=2sin(2x +π6).(2)依题意,f 2(x)=2sin[2(x -π4)+π6]=-2cos(2x +π6),当2x +π6=2k π+π(k ∈Z),即x =k π+5π12(k ∈Z)时,y max =2.此时x 的取值为{x|x =k π+5π12,k ∈Z}.21.(12分)已知函数f(x)=2sin(2x +π6)-1.(1)若点P(1,-3)在角α的终边上,求f(α2-π12)的值;(2)若x ∈[-π6,π3],求f(x)的值域.解:(1)因为点P(1,-3)在角α的终边上,所以sin α=-32,cos α=12,所以f(α2-π12)=2sin[2×(α2-π12)+π6]-1=2sin α-1=2×(-32)-1=-3-1.(2)令t =2x +π6,因为x ∈[-π6,π3],所以-π6≤2x +π6≤5π6,而y =sint 在[-π6,π2]上单调递增,在[π2,5π6]上单调递减, 且sin(-π6)=-12,sin 5π6=12,所以函数y =sint 在[-π6,5π6]上的最大值为1,最小值为-12,即-12≤sin(2x +π6)≤1,所以f(x)的值域是[-2,1].22.(12分)已知函数f(x)=Asin(ωx +φ)+B(A>0,ω>0)的一系列对应值如下表:(1)根据表格提供的数据求函数f(x)的一个解析式;(2)根据(1)的结果,若函数y =f(kx)(k>0)的最小正周期为2π3,当x ∈[0,π3]时,方程f(kx)=m 恰有两个不同的解,求实数m 的取值范围.解:(1)设f(x)的最小正周期为T , 得T =11π6-(-π6)=2π,由T =2πω,得ω=1.又⎩⎨⎧B +A =3,B -A =-1.解得⎩⎨⎧A =2,B =1.令ω·5π6+φ=π2,即5π6+φ=π2,解得φ=-π3,∴f(x)=2sin(x -π3)+1.(2)∵函数y =f(kx)=2sin(kx -π3)+1的最小正周期为2π3,又k>0,∴k =3,令t =3x -π3,∵x ∈[0,π3],∴t ∈[-π3,2π3],若sint =s 在[-π3,2π3]上有两个不同的解,则s ∈[32,1),∴方程f(kx)=m 在x ∈[0,π3]时恰好有两个不同的解,则m ∈[3+1,3),即实数m的取值范围是[3+1,3).。
高中数学必修4习题和复习参考题及对应答案A组1、在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是哪个象限的角:(1)-265°;(2)-1000°;(3)-843°10′;(4)3900°.答案:(1)95°,第二象限;(2)80°,第一象限;(3)236°50′,第三象限;(4)300°,第四象限.说明:能在给定范围内找出与指定的角终边相同的角,并判定是第几象限角.2、写出终边在x轴上的角的集合.答案:S={α|α=k·180°,k∈Z}.说明:将终边相同的角用集合表示.3、写出与下列各角终边相同的角的集合,并把集合中适合不等式-360°≤β<360°的元素β写出来:(1)60°;(2)-75°;(3)-824°30′;(4)475°;(5)90°;(6)270°;(7)180°;(8)0°.答案:(1){β|β=60°+k·360°,k∈Z},-300°,60°;(2){β|β=-75°+k·360°,k∈Z},-75°,285°;(3){β|β=-824°30′+k·360°,k∈Z},-104°30′,255°30′;(4){β|β=475°+k·360°,k∈Z},-245°,115°;(5){β|β=90°+k·360°,k∈Z},-270°,90°;(6){β|β=270°+k·360°,k∈Z},-90°,270°;(7){β|β=180°+k·360°,k∈Z},-180°,180°;(8){β|β=k·360°,k∈Z},-360°,0°.说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.4、分别用角度和弧度写出第一、二、三、四象限角的集合.说明:用角度制和弧度制写出各象限角的集合.5、选择题:(1)已知α是锐角,那么2α是( ) A .第一象限角 B .第二象限角C .小于180°的正角D .第一或第二象限角 (2)已知α是第一象限角,那么2α是( )、 A .第一象限角 B .第二象限角C .第一或第二象限角D .第一或第三象限角 答案:(1)C说明:因为0°<α<90°,所以0°<2α<180°. (2)D说明:因为k·360°<α<90°+k·360°,k∈Z ,所以180451802k k α︒<<︒+︒,k∈Z .当k 为奇数时,2α是第三象限角;当k 为偶数时,2α是第一象限角. 6、一条弦的长等于半径,这条弦所对的圆心角等于1弧度吗?为什么?答案:不等于1弧度.这是因为等于半径长的弧所对的圆心角为1弧度,而等于半径长的弦所对的弧比半径长.说明:了解弧度的概念. 7、把下列各角度化成弧度: (1)36°;(2)-150°;(3)1095°;(4)1440°.答案:(1)5π;(2)56π;(3)7312π-;(4)8π.说明:能进行度与弧度的换算.8、把下列各弧度化成度: (1)76π-;(2)103π-;(3)1.4;(4)23. 答案:(1)-210°;(2)-600°;(3)80.21°;(4)38.2°.说明:能进行弧度与度的换算. 9、要在半径OA=100cm 的圆形金属板上截取一块扇形板,使其弧AB 的长为112cm ,求圆心角∠AOB 是多少度(可用计算器,精确到1°).答案:64°说明:可以先运用弧度制下的弧长公式求出圆心角的弧度数,再将弧度换算为度,也可以直接运用角度制下的弧长公式.10、已知弧长50cm 的弧所对圆心角为200°,求这条弧所在的圆的半径(可用计算器,精确到1cm ).答案:14cm .说明:可以先将度换算为弧度,再运用弧度制下的弧长公式,也可以直接运用角度制下的弧长公式.B 组1、每人准备一把扇子,然后与本小组其他同学的对比,从中选出一把展开后看上去形状较为美观的扇子,并用计算器算出它的面积S 1.(1)假设这把扇子是从一个圆面中剪下的,而剩余部分的面积为S 2,求S 1与S 2的比值; (2)要使S 1与S 2的比值为0.618,则扇子的圆心角应为几度(精确到10°)? 答案:(1)(略)(2)设扇子的圆心角为θ,由2122120.6181(2)2r S S r θπθ==-,可得θ=0.618(2π-θ),则θ=0.764π≈140°.说明:本题是一个数学实践活动.题目对“美观的扇子”并没有给出标准,目的是让学生先去体验,然后再运用所学知识发现,大多数扇子之所以“美观”是因为基本都满足:120.618SS =(黄金分割比)的道理.2、(1)时间经过4 h (时),时针、分针各转了多少度?各等于多少弧度?(2)有人说,钟的时针和分针一天内会重合24次、你认为这种说法是否正确?请说明理由. (提示:从午夜零时算起,假设分针走了t min 会与时针重合,一天内分针和时针会重合n 次,建立t 关于n 的函数关系式,并画出其图象,然后求出每次重合的时间.)答案:(1)时针转了-120°,等于23π-弧度;分针转了-1440°,等于-8π弧度 (2)设经过t min 分针就与时针重合,n 为两针重合的次数. 因为分针旋转的角速度为2(rad /min)6030ππ=, 时针旋转的角速度为2(rad/min)1260360ππ=⨯,所以()230360t n πππ-=,即72011t n =. 用计算机或计算器作出函数72011t n =的图象(如下页图)或表格,从中可清楚地看到时针与分针每次重合所需的时间.n u1 15. 981.82 16. 1047.3 17. 1112.7 18. 1178.2 19. 1243.6 20. 1309.1 21. 1374.5 22.1440.因为时针旋转一天所需的时间为24×60=1440(min ),所以144011n ≤,于是n≤22.故时针与分针一天内只会重合22次.说明:通过时针与分针的旋转问题进一步地认识弧度的概念,并将问题引向深入,用函数思想进行分析.在研究时针与分针一天的重合次数时,可利用计算器或计算机,从模拟的图形、表格中的数据、函数的解析式或图象等角度,不难得到正确的结论.3、已知相互啮合的两个齿轮,大轮有48齿,小轮有20齿,当大轮转动一周时,小轮转动的角是__________度,即__________rad .如果大轮的转速为180r/min (转/分),小轮的半径为10.5cm ,那么小轮周上一点每1s 转过的弧长是__________.答案:864°,245π,151.2π cm. 说明:通过齿轮的转动问题进一步地认识弧度的概念和弧长公式.当大齿轮转动一周时,小齿轮转动的角是4824360864rad.205π⨯︒=︒= 由于大齿轮的转速为3r/s ,所以小齿轮周上一点每1s 转过的弧长是483210.5151.2(cm)20ππ⨯⨯⨯=. P20习题1.2A 组1、用定义法、公式一以及计算器求下列角的三个三角函数值:(1)173π-;(2)214π;(3)236π-;(4)1500°.答案:(1)1sin ,tan 22ααα===(2)sin tan 122ααα=-=-=;(3)1sin ,cos tan 2ααα===(4)1sin ,tan 2ααα=== 说明:先利用公式一变形,再根据定义求值,非特殊角的三角函数值用计算器求.2、已知角α的终边上有一点的坐标是P (3a ,4a ),其中a≠0,求sinα,cosα,tanα的三角函数值.答案:当a >0时,434sin ,cos ,tan 553ααα===;当a <0时,434sin ,cos ,tan 553ααα=-=-=-.说明:根据定义求三角函数值. 3、计算:(1)6sin (-90°)+3sin0°-8sin270°+12cos180°; (2)10cos270°+4sin0°+9tan0°+15cos360°;(3)22322costantan sin cos sin 2446663ππππππ-+-++;(4)2423sincos tan 323πππ+-. 答案:(1)-10;(2)15;(3)32-;(4)94-.说明:求特殊角的三角函数值.4、化简:(1)asin0°+bcos90°+ctan180°;(2)-p 2cos180°+q 2sin90°-2pqcos0°;(3)223cos 2sincos sin 22a b ab ab ππππ-+-; (4)13tan 0cos sin cos sin 222m n p q r ππππ+---.答案:(1)0;(2)(p -q )2;(3)(a -b )2;(4)0.说明:利用特殊角的三角函数值化简.5、根据下列条件求函数3()sin()2sin()4cos 23cos()444f x x x x x πππ=++--++的值. (1)4x π=;(2)34x π=. 答案:(1)-2;(2)2.说明:转化为特殊角的三角函数的求值问题. 6、确定下列三角函数值的符号:(1)sin186°; (2)tan505°; (3)sin7.6π; (4)23tan()4π-; (5)cos940°;(6)59cos()17π-. 答案:(1)负;(2)负;(3)负;(4)正;(5)负;(6)负. 说明:认识不同位置的角对应的三角函数值的符号. 7、确定下列式子的符号: (1)tan125°·sin273°;(2)tan108cos305︒︒;(3)5411sin cos tan 456πππ;(4)511cos tan 662sin 3πππ. 答案:(1)正;(2)负;(3)负;(4)正.说明:认识不同位置的角对应的三角函数值的符号. 8、求下列三角函数值(可用计算器):(1)67sin()12π-; (2)15tan()4π-;(3)cos398°13′; (4)tan766°15′. 答案:(1)0.9659;(2)1;(3)0.7857;(4)1.045.说明:可先运用公式一转化成锐角三角函数,然后再求出三角函数值. 9、求证:(1)角θ为第二或第三象限角当且仅当sinθ·tanθ<0; (2)角θ为第三或第四象限角当且仅当cosθ·tanθ<0; (3)角θ为第一或第四象限角当且仅当sin 0tan θθ>;(4)角θ为第一或第三象限角当且仅当sinθ·cosθ>0. 答案:(1)先证如果角θ为第二或第三象限角,那么sinθ·tanθ<0. 当角θ为第二象限角时,sinθ>0,tanθ<0,则sinθ·tanθ<0; 当角θ为第三象限角时,sinθ<0,tanθ>0,则sinθ·tanθ<0, 所以如果角θ为第二或第三象限角,那么sinθ·tanθ<0. 再证如果sinθ·tanθ<0,那么角θ为第二或第三象限角.因为sinθ·tanθ<0,即sinθ>0且tanθ<0,或sinθ<0且tanθ>0, 当sinθ>0且tanθ<0时,角θ为第二象限角; 当sinθ<0且tanθ>0时,角θ为第三象限角,所以如果sinθ·tanθ<0,那么角θ为第二或第三象限角. 综上所述,原命题成立. (其他小题略)说明:以证明命题的形式,认识位于不同象限的角对应的三角函数值的符号.10、(1)已知sin α=,且α为第四象限角,求cosα,tanα的值; (2)已知5cos 13α=-,且α为第二象限角,求sinα,tanα的值; (3)已知3tan 4α=-,求sinα,cosα的值;(4)已知cosα=0.68,求sinα,tanα的值(计算结果保留两个有效数字).答案:(1)1,2 (2)1212,135-;(3)当α为第二象限角时,34sin ,cos 55αα==-, 当α为第四象限角时,34sin ,cos 55αα=-=;(4)当α为第一象限角时,sinα=0.73,tanα=1.1,当α为第四象限角时,sinα=-0.73,tanα=-1.1. 说明:要注意角α是第几象限角.11、已知1sin 3x =-,求cosx ,tanx 的值.答案:当x 为第三象限角时,cos tan x x ==当x 为第四象限角时,cos tan 34x x ==- 说明:要分别对x 是第三象限角和第四象限角进行讨论.12、已知3tan 2απαπ=<<,求cosα-sinα的值.答案:11)2说明:角α是特殊角. 13、求证: (1)2212sin cos 1tan 1tan cos sin x x xxx x--=+-;(2)tan 2α-sin 2α=tan 2α·sin 2α;(3)(cosβ-1)2+sin 2β=2-2cosβ;(4)sin 4x +cos 4x=1-2sin 2xcos 2x .答案:(1)2(cos sin )cos sin 1tan (cos sin )(cos sin )cos sin 1tan x x x x xx x x x x x x---===+-++左边; (2)222222222211cos sin sin (1)sin sin sin tan cos cos cos x x x xxx x xxx-=-===左边;(3)左边=1-2cosβ+cos 2β+sin 2β=2-2cosβ;(4)左边=(sin 2x +cos 2x )2-2sin 2x·cos 2x=1-2sin 2x·cos 2x .说明:还可以从右边变为左边,或对左右同时变形.可提倡一题多解,然后逐渐学会选择较为简单的方法.B 组1、化简(1+tan 2α)cos 2α. 答案:1说明:根据同角三角函数的基本关系,将原三角函数式转化为正余弦函数式.2α为第二象限角. 答案:-2t anα说明:先变形,再根据同角三角函数的基本关系进行化简. 3、已知tanα=2,求sin cos sin cos αααα+-的值.答案:3说明:先转化为正切函数式. 4、从本节的例7可以看出,cos 1sin 1sin cos x x x x+=-就是sin 2x +cos 2x=1的一个变形.你能利用同角三角函数的基本关系推导出更多的关系式吗?答案:又如sin 4x +cos 4x=1-2sin 2x·cos 2x 也是sin 2x +cos 2x=1的一个变形;2211tan cos x x=+是sin 2x +cos 2x=1和sin tan cos xx x=的变形;等等. 说明:本题要求学生至少能写出每个同角关系式的一个变形.P29习题1.3A 组1、将下列三角函数转化为锐角三角函数,并填在题中横线上: (1)cos210°=__________; (2)sin263°42′=__________; (3)cos()6π-=__________; (4)5sin()3π-=__________;(5)11cos()9π-=__________;(6)cos (-104°26′)=__________; (7)tan632°24′=__________; (8)17tan6π=__________. 答案:(1)-cos30°; (2)-sin83°42′ (3)cos 6π;(4)sin3π; (5)2cos 9π-;(6)-cos75°34′; (7)-tan87°36′; (8)tan6π-. 说明:利用诱导公式转化为锐角三角函数. 2、用诱导公式求下列三角函数值: (1)17cos()4π-; (2)sin (-1574°); (3)sin (-2160°52′); (4)cos (-1751°36′);(5)cos1615°8′;(6)26sin()3π-.答案:(1)2;(2)-0.7193;(3)-0.0151;(4)0.6639;(5)-0.9964;(6)-说明:先利用诱导公式转化为锐角三角函数,再求值.3、化简:(1)sin(-1071°)·sin99°+sin(-171°)·sin(-261°);(2)1+sin(α-2π)·sin(π+α)-2cos2(-α).答案:(1)0;(2)-cos2α说明:先利用诱导公式转化为角α的三角函数,再进一步化简.4、求证:(1)sin(360°-α)=-sinα;(2)cos(360°-α)=cosα;(3)tan(360°-α)=-tanα.答案:(1)sin(360°-α)=sin(-α)=-sinα;(2)略;(3)略.说明:有的书也将这组恒等式列入诱导公式,但根据公式一可知,它和公式三等价,所以本教科书未将其列入诱导公式.B组1、计算:(1)sin420°·cos750°+sin(-330°)·cos(-660°);(2)tan675°+tan765°-tan(-330°)+tan(-690°);(3)252525sin cos tan() 634πππ++-.答案:(1)1;(2)0;(3)0.说明:先利用诱导公式转化为锐角三角函数,再求值.2、已知1sin()2πα+=-,计算:(1)sin(5π-α);(2)sin()2πα+;(3)3cos()2πα-; (4)tan()2πα-. 答案:(1)12; (2)3,,23,;2αα⎧⎪⎪⎨⎪-⎪⎩当为第一象限角当为第二象限角(3)12-; (4)3,,3,αα⎧⎪⎨-⎪⎩当为第一象限角当为第二象限角.说明:先用诱导公式将已知式和待求式都转化为角α的三角函数,然后再根据同角三角函数的基本关系得解. P46习题1.4A 组1、画出下列函数的简图:(1)y=1-sinx ,x∈[0,2π]; (2)y=3cosx +1,x∈[0,2π]. 答案:(1)(2)说明:可以直接用“五点法”作出两个函数的图象;也可以先用“五点法”作出正弦、余弦函数的图象,再通过变换得到这两个函数的图象.2、求使下列函数取得最大值、最小值的自变量x 的集合,并分别写出最大值、最小值是什么.(1)11cos ,23y x x π=-∈R ; (2)3sin(2),4y x x π=+∈R ;(3)31cos(),226y x x π=--∈R ; (4)11sin(),223y x x π=+∈R .答案:(1)使y 取得最大值的集合是{x|x=6k +3,k∈Z },最大值是32; 使y 取得最小值的集合是{x|x=6k ,k∈Z },最大值是12; (2)使y 取得最大值的集合是{|,}8x x k k ππ=+∈Z ,最大值是3;使y 取得最小值的集合是3{|,}8x x k k ππ=-+∈Z ,最小值是-3; (3)使y 取得最大值的集合是{|2(21),}3x x k k ππ=++∈Z ,最大值是32; 使y 取得最小值的集合是{|4,}3x x k k ππ=+∈Z ,最小值是32-; (4)使y 取得最大值的集合是{|4,}3x x k k ππ=+∈Z ,最大值是12;使y 取得最小值的集合是5{|4,}3x x k k ππ=-+∈Z ,最小值是12-. 说明:利用正弦、余弦函数的最大值、最小值性质,研究所给函数的最大值、最小值性质.3、求下列函数的周期: (1)2sin 3y x =,x∈R ; (2)1cos 42y x =,x∈R . 答案:(1)3π;(2)2π说明:可直接由函数y=Asin (ωx+φ)和函数y=Acos (ωx+φ)的周期2T πω=得解.4、利用函数的单调性比较下列各组中两个三角函数值的大小: (1)sin103°15′与sin164°30′; (2)4744cos()cos()109ππ--与; (3)sin508°与sin144°;(4)cos760°与cos (-770°). 答案:(1)sin103°15′>sin164°130′; (2)4744cos()cos()109ππ->-; (3)sin508°<sin144°;(4)cos760°>cos (-770°).说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究. 5、求下列函数的单调区间: (1)y=1+sinx ,x∈R ; (2)y=-cosx ,x∈R . 答案:(1)当[2,2]22x k k ππππ∈-++,k∈Z 时,y=1+sinx 是增函数;当3[2,2]22x k k ππππ∈++,k∈Z 时,y=1+sinx 是减函数. (2)当x∈[(2k -1)π,2kπ],k∈Z 时,y=-cosx 是减函数; 当x∈[2kπ,(2k +1)π],k∈Z 时,y=-cosx 是增函数. 说明:利用正弦、余弦函数的单调性研究所给函数的单调性. 6、求函数tan()26y x π=-++的定义域.答案:{|,}3x x k k ππ≠+∈Z .说明:可用换元法.7、求函数5tan(2),()3122k y x x k πππ=-≠+∈Z 的周期. 答案:2π. 说明:可直接由函数y=Atan (ωx+φ)的周期T πω=得解. 8、利用正切函数的单调性比较下列各组中两个函数值的大小: (1)13tan()tan()57ππ--与; (2)tan1519°与tan1493°; (3)93tan 6tan(5)1111ππ-与; (4)7tantan 86ππ与. 答案:(1)13tan()tan()57ππ->-;(2)tan1519°>tan1493°;(3)93tan 6tan(5)1111ππ>-;(4)7tantan 86ππ<. 说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.9、根据正切函数的图象,写出使下列不等式成立的x 的集合:(1)1+tanx≥0;(2)tan 0x . 答案:(1){|,}42x k x k k ππππ-+<+∈Z ≤;(2){|,}32x k x k k ππππ+<+∈Z ≤.说明:只需根据正切曲线写出结果,并不要求解三角方程或三角不等式. 10、设函数f (x )(x∈R )是以 2为最小正周期的周期函数,且x∈[0,2]时f (x )=(x -1)2.求f (3),7()2f 的值.答案:由于f (x )以2为最小正周期,所以对任意x∈R ,有f (x +2)=f (x ).于是:f (3)=f (1+2)=f (1)=(1-1)2=0;273331()(2)()(1)22224f f f =+==-=. 说明:利用周期函数的性质,将其他区间上的求值问题转化到区间[0,2]上的求值问题. 11、容易知道,正弦函数y=sinx 是奇函数,正弦曲线关于原点对称,即原点是正弦曲线的对称中心.除原点外,正弦曲线还有其他对称中心吗?如果有,对称中心的坐标是什么?另外,正弦曲线是轴对称图形吗?如果是,对称轴的方程是什么?你能用已经学过的正弦函数性质解释上述现象吗? 对余弦函数和正切函数,讨论上述同样的问题.答案:由正弦函数的周期性可知,除原点外,正弦曲线还有其他对称中心,其对称中心坐标为(kπ,0),k∈Z .正弦曲线是轴对称图形,其对称轴的方程是,2x k k ππ=+∈Z .由余弦函数和正切的周期性可知,余弦曲线的对称中心坐标为(,0)2k ππ+,k∈Z ,对称轴的方程是x=kπ,k∈Z ;正切曲线的对称中心坐标为(,0)2k π,k∈Z ,正切曲线不是轴对称图形. 说明:利用三角函数的图象和周期性研究其对称性.B 组1、根据正弦函数、余弦函数的图象,写出使下列不等式成立的x 的取值集合:(1)sin )2x x ∈R ≥;(22cos 0()x x ∈R ≥. 答案:(1)2{|22,}33x k x k k ππππ++∈Z ≤≤; (2)33{|22,}44x k x k k ππππ-++∈Z ≤≤. 说明:变形后直接根据正弦函数、余弦函数的图象写出结果,并不要求解三角方程或三角不等式.2、求函数3tan(2)4y x π=--的单调区间. 答案:单调递减区间5(,),2828k k k ππππ++∈Z . 说明:利用正切函数的单调区间求所给函数的单调区间.3、已知函数y=f (x )的图象如图所示,试回答下列问题: (1)求函数的周期;(2)画出函数y=f (x +1)的图象;(3)你能写出函数y=f (x )的解析式吗?答案:(1)2;(2)y=f (x +1)的图象如下;(3)y=|x -2k|,x∈[2k-1,2k +1],k∈Z .说明:可直接由函数y=f (x )的图象得到其周期.将函数y=f (x )的图象向左平行移动1个单位长度,就得到函数y=f (x +1)的图象.求函数y=f (x )的解析式难度较高,需要较强的抽象思维能力.可先求出定义域为一个周期的函数y=f (x ),x∈[-1,1]的解析式为y=|x|,x∈[-1,1],再根据函数y=f (x )的图象和周期性,得到函数y=f (x )的解析式为y=|x -2k|,x∈[2k-1,2k +1],k∈Z . P57习题1.5A 组1、选择题:(1)为了得到函数1cos()3y x =+,x∈R 的图象,只需把余弦曲线上所有的点( )A .向左平行移动3π个单位长度 B .向右平行移动3π个单位长度C .向左平行移动13个单位长度 D .向右平行移动13个单位长度(2)为了得到函数cos5xy =,x∈R 的图象,只需把余弦曲线上所有的点的( )、 A .横坐标伸长到原来的5倍,纵坐标不变 B .横坐标缩短到原来的15倍,纵坐标不变 C .纵坐标伸长到原来的5倍,横坐标不变D .纵坐标缩短到原来的15倍,横坐标不变 (3)为了得到函数1cos 4y x =,x∈R 的图象,只需把余弦曲线上所有的点的( ).A .横坐标伸长到原来的4倍,纵坐标不变B .横坐标缩短到原来的14倍,纵坐标不变 C .纵坐标伸长到原来的4倍,横坐标不变 D .纵坐标缩短到原来的14倍,横坐标不变 答案:(1)C ;(2)A ;(3)D .2、画出下列函数在长度为一个周期的闭区间上的简图(有条件的可用计算器或计算机作图检验):(1)14sin 2y x =,x∈R ; (2)1cos32y x =,x∈R ; (3)3sin(2)6y x π=+,x∈R ;(4)112cos()24y x π=-,x∈R .答案:(1)(2)(3)(4)说明:研究了参数A 、ω、φ对函数图象的影响.3、不画图,直接写出下列函数的振幅、周期与初相,并说明这些函数的图象可由正弦曲线经过怎样的变化得到(注意定义域):(1)8sin()48xy π=-,x∈[0,+∞);(2)1sin(3)37y x π=+,x∈[0,+∞). 答案:(1)振幅是8,周期是8π,初相是8π-.先把正弦曲线向右平行移动8π个单位长度,得到函数1sin()8y x π=-,x∈R 的图象;再把函数y 1的图象上所有点的横坐标伸长到原来的4倍(纵坐标不变),得到函数2sin()48x y π=-,x∈R的图象;再把函数y 2的图象上所有点的纵坐标伸长到原来的8倍(横坐标不变),得到函数38sin()48x y π=-,x∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数8sin()48x y π=-,x∈[0,+∞)的图象.(2)振幅是13,周期是23π,初相是7π.先把正弦曲线向左平行移动7π个单位长度,得到函数1sin()7y x π=+,x∈R 的图象;再把函数y 1的图象上所有点的横坐标缩短到原来的13倍(纵坐标不变),得到函数2sin(3)7y x π=+,x∈R的图象;再把函数y 2的图象上所有点的纵坐标缩短到原来的13倍(横坐标不变),得到函数31sin(3)37y x π=+,x∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数1sin(3)37y x π=+,x∈[0,+∞)的图象.说明:了解简谐振动的物理量与函数解析式的关系,并认识函数y=Asin (ωx+φ)的图象与正弦曲线的关系.4、图 1.5-1的电流i (单位:A )随时间t (单位:s )变化的函数关系是5sin(100),[0,)3i t t ππ=+∈+∞.(1)求电流i 变化的周期、频率、振幅及其初相; (2)当t=0,1171,,,(:s)60015060060单位时,求电流i . 答案:(1)周期为150,频率为50,振幅为5,初相为3π.(2)t=0时,2i =;1600t =时,i=5;1150t =时,i=0;7600t =时,i=-5;160t =时,i=0.说明:了解简谐振动的物理量与函数解析式的关系,并求函数值.5、一根长为l cm 的线,一端固定,另一端悬挂一个小球.小球摆动时,离开平衡位置的位移s (单位:cm )与时间t (单位:s)的函数关系是),[0,)3s t π=+∈+∞. (1)求小球摆动的周期;(2)已知g≈980cm/s 2,要使小球摆动的周期是1s ,线的长度l 应当是多少?(精确到0.1cm ) 答案:(1)2(2)约24.8cm . 说明:了解简谐振的周期.B 组1、弹簧振子的振动是简谐运动.下表给出了振子在完成一次全振动的过程中的时间t 与位移s答案:根据已知数据作出散点图(如图).由散点图可知,振子的振动函数解析式为020sin()62x y t ππ=-,x∈[0,+∞). 说明:作出已知数据的散点图,然后选择一个函数模型来描述,并根据已知数据求出该函数模型.2、弹簧挂着的小球作上下运动,它在t 秒时相对于平衡位置的高度h 厘米由下列关系式确定:2sin()4h t π=+.以t 为横坐标,h 为纵坐标,作出这个函数在一个剧期的闭区间上的图象,并回答下列问题: (1)小球在开始振动时(即t=0)的位置在哪里?(2)小球的最高点和最低点与平衡位置的距离分别是多少? (3)经过多少时问小球往复运动一次? (4)每秒钟小球能往复振动多少次?答案:函数2sin()4h t π=+在[0,2π]上的图象为(1)小球在开始振动时的位置在(0,2);(2)最高点和最低点与平衡位置的距离都是2;(3)经过2π秒小球往复运动一次;(4)每秒钟小球能往复振动12π次.说明:结合具体问题,了解解析式中各常数的实际意义.3、如图,点P是半径为r cm的砂轮边缘上的一个质点,它从初始位置P0开始,按逆时针方向以角速度ω rad/s做圆周运动.求点P的纵坐标y关于时间t的函数关系,并求点P的运动周期和频率.答案:点P的纵坐标关于时间t的函数关系式为y=rsin(ωt+φ),t∈[0,+∞);点P的运动周期和频率分别为2πω和2ωπ.说明:应用函数模型y=rsin(ωt+φ)解决实际问题.P65习题1.61、根据下列条件,求△ABC的内角A:(1)1sin2A=;(2)2cos A=-;(3)tanA=1;(4)3 tan A=-.答案:(1)30°或150°;(2)135°;(3)45°;(4)150°.说明:由角A是△ABC的内角,可知A∈(0°,180°).2、根据下列条件,求(0,2π)内的角x:(1)3sin x=-;(2)sinx=-1;(3)cosx=0;(4)tanx=1.答案:(1)4533ππ或;(2)32π;(3)322ππ或;(4)544ππ或.说明:可让学生再变换角x的取值范围求解.3、天上有些恒星的亮度是会变化的.其中一种称为造父(型)变星,本身体积会膨胀收缩造成亮度周期性的变化、下图为一造父变星的亮度随时间的周期变化图、此变星的亮度变化的周期为多少天?最亮时是几等星?最暗时是几等星?答案:5.5天;约3.7等星;约4.4等星.说明:每个周期的图象不一定完全相同,表示视星等的坐标是由大到小.4、夏天是用电的高峰时期,特别是在晚上.为保证居民空调制冷用电,电力部门不得不对企事业拉闸限电,而到了0时以后,又出现电力过剩的情况.因此每天的用电也出现周期性的变化.为保证居民用电,电力部门提出了“消峰平谷”的想法,即提高晚上高峰时期的电价,同时降低后半夜低峰时期的电价,鼓励各单位在低峰时用电.请你调查你们地区每天的用电情况,制定一项“消峰平谷”的电价方案.答案:先收集每天的用电数据,然后作出用电量随时间变化的图象,根据图象制定“消峰平谷”的电价方案.说明:建立周期变化的模型解决实际问题.B 组1、北京天安门广场的国旗每天是在日出时随太阳升起,在日落时降旗、请根据年鉴或其他的参考资料,统计过去一年不同时期的日出和日落时间.(1)在同一坐标系中,以日期为横轴,画出散点图,并用曲线去拟合这些数据,同时找到函数模型;(2)某同学准备在五一长假时去看升旗,他应当几点到达天安门广场? 答案:略.说明:建立周期变化的函数模型,根据模型解决实际问题.2、一个城市所在的经度和纬度是如何影响日出和日落的时间的?收集其他有关的数据并提供理论证据支持你的结论.答案:略.说明:收集数据,建立周期变化的函数模型,根据模型提出个人意见.然后采取上网、查阅资料或走访专业人士的形式,获取这方面的信息,以此来说明自己的结论. P69复习参考题A 组1、写出与下列各角终边相同的角的集合S ,并且把S 中适合不等式-2π≤β≤4π的元素β写出来:(1)4π; (2)23π-;(3)125π; (4)0.答案:(1)79{|2,},,,4444k k ππππββπ=+∈-Z ;(2)22410{|2,},,,3333k k ββπππππ=-+∈-Z ;(3)128212{|2,},,,5555k k ββπππππ=+∈-Z ; (4){β|β=2kπ,k∈Z },-2π,0,2π.说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.2、在半径为15cm 的圆中,一扇形的弧含有54°,求这个扇形的周长与面积(π取3.14,计算结果保留两个有效数字).答案:周长约44cm ,面积约1.1×102cm 2.说明:可先将角度转化为弧度,再利用弧度制下的弧长和面积公式求解. 3、确定下列三角函数值的符号:(1)sin4; (2)cos5; (3)tan8; (4)tan (-3). 答案:(1)负;(2)正;(3)负;(4)正.说明:将角的弧度数转化为含π的形式或度,再进行判断. 4、已知1cos 4ϕ=,求sinφ,tanφ.答案:当φ为第一象限角时,sin tan 4ϕϕ==当φ为第四象限角时,sin tan ϕϕ== 说明:先求sinφ的值,再求tanφ的值.5、已知sinx=2cosx ,求角x 的三个三角函数值.答案:当x 为第一象限角时,tanx=2,cos x x ==;当x 为第三象限角时,tanx=2,cos x x == 说明:先求tanx 的值,再求另外两个函数的值.6、用cosα表示sin 4α-sin 2α+cos 2α.答案:cos 4α.说明:先将原式变形为sin 2α(sin 2α-1)+cos 2α,再用同角三角函数的基本关系变形. 7、求证:(1)2(1-sinα)(1+cosα)=(1-sinα+cosα)2;(2)sin 2α+sin 2β-sin 2α·sin 2β+cos 2α·cos 2β=1. 答案:(1)左边=2-2sinα+2cosα-2sinαcosα=1+sin 2α+cos 2α-2sinα+2cosα-2sinαcosα =右边. (2)左边=sin 2α(1-sin 2β)+sin 2β+cos 2αcos 2β=cos 2β(sin 2α+cos 2α)+sin 2β =1=右边.说明:第(1)题可先将左右两边展开,再用同角三角函数的基本关系变形. 8、已知tanα=3,计算:(1)4sin 2cos 5cos 3sin αααα-+;(2)sinαcosα;(3)(sinα+cosα)2. 答案:(1)57;(2)310;(3)85.说明:第(2)题可由222sin tan 9cos ααα==,得21cos 10α=,所以23sin cos tan cos 10αααα==.或2222sin cos tan 33sin cos 10sin cos tan 131αααααααα====+++. 9、先估计结果的符号,再进行计算. (1)252525sincos tan()634πππ++-; (2)sin2+cos3+tan4(可用计算器).答案:(1)0;(2)1.0771.说明:先根据各个角的位置比较它们的三角函数值的大小,再估计结果的符号. 10、已知1sin()2πα+=-,计算: (1)cos (2π-α);(2)tan (α-7π).答案:(1)当α为第一象限角时,cos(2)πα-=,当α为第二象限角时,cos(2)πα-=(2)当α为第一象限角时,tan(7)3απ-=,当α为第二象限角时,tan(7)απ-= 说明:先用诱导公式转化为α的三角函数,再用同角三角函数的基本关系计算. 11、先比较大小,再用计算器求值:(1)sin378°21′,tan1111°,cos642.5°; (2)sin (-879°),3313tan(),cos()810ππ--; (3)sin3,cos (sin2).答案:(1)tan1111°=0.601,sin378°21′=0.315,cos642.5°=0.216; (2)sin (-879°)=-0.358,3313tan()0.414,cos()0.588810ππ-=--=-; (3)sin3=0.141,cos (sin2)=0.614.说明:本题的要求是先估计各三角函数值的大小,再求值验证. 12、设π<x <2π,填表:说明:熟悉各特殊角的三角函数值. 13、下列各式能否成立,说明理由: (1)cos 2x=1.5;(2)3sin 4x π=-.答案:(1)因为cos x =cos x =1,1><-,所以原式不能成立;(2)因为sin x =,而|1<,所以原式有可能成立.说明:利用正弦和余弦函数的最大值和最小值性质进行判断.14、求下列函数的最大值、最小值,并且求使函数取得最大、最小值的x 的集合:(1)sin xy π=,x∈R ;(2)y=3-2cosx ,x∈R .答案:(11π,此时x 的集合为{|2,}2x x k k ππ=+∈Z ;1π,此时x 的集合为{|2,}2x x k k ππ=-+∈Z ;(2)最大值为5,此时x 的集合为{x|x=(2k +1)π,k∈Z }; 最小值为1,此时x 的集合为{x|x=2kπ,k∈Z }.说明:利用正弦、余弦函数的最大值和最小值性质,研究所给函数的最大值和最小值性质. 15、已知0≤x≤2π,求适合下列条件的角x 的集合: (1)y=sinx 和y=cosx 都是增函数; (2)y=sinx 和y=cosx 都是减函数;(3)y=sinx 是增函数,而y=cosx 是减函数; (4)y=sinx 是减函数,而y=cosx 是增函数. 答案:(1)3{|2}2x x ππ≤≤; (2){|}2x x ππ≤≤;(3){|0}2x x π≤≤;(4)3{|}2x x ππ≤≤. 说明:利用函数图象分析.16、画出下列函数在长度为一个周期的闭区间上的简图: (1)1sin(3),;23y x x π=-∈R (2)2sin(),;4y x x π=-+∈R (3)1sin(2),;5y x x π=--∈R(4)3sin(),.63xy x π=-∈R 答案:(1)(2)(3)(4)说明:可要求学生在作出图象后,用计算机或计算器验证. 17、(1)用描点法画出函数y=sinx ,[0,]2x π∈的图象.(2)如何根据第(1)小题并运用正弦函数的性质,得出函数y=sinx ,x∈[0,2π]的图象? (3)如何根据第(2)小题并通过平行移动坐标轴,得出函数y=sin (x +φ)+k ,x∈[0,2π]的图象?(其中φ,k 都是常数)答案:(1)x 0 18π9π 6π 29π 518π 3π 718π 49π 2π sinx0.170.340.500.640.770.870.940.981(2)由sin (π-x )=sinx ,可知函数y=sinx ,x∈[0,π]的图象关于直线2x =对称,据此可得函数y=sinx ,[,]2x ππ∈的图象;又由sin (2π-x )=-sinx ,可知函数y=sinx ,x∈[0,2π]的图象关于点(π,0)对称,据此可得出函数y=sinx ,x∈[π,2π]的图象.(3)先把y 轴向右(当φ>0时)或向左(当φ<0时)平行移动|φ|个单位长度,再把x 轴向下(当k >0时)或向上(当k <0时)平行移动|k|个单位长度,最后将图象向左或向右平行移动2π个单位长度,并擦去[0,2π]之外的部分,便得出函数y=sin (x +φ)+k ,x∈[0,2π]的图象.说明:学会用不同的方法作函数图象.18、不通过画图,写出下列函数的振幅、周期、初相,并说明如何由正弦曲线得出它们的图象:(1)sin(5),;6y x x π=+∈R(2)12sin,.6y x x =∈R 答案:(1)振幅是1,周期是25π,初相是6π. 把正弦曲线向左平行移动6π个单位长度,可以得函数sin()6y x π=+,x∈R 的图象;再把所得图象上所有点的横坐标缩短到原来的15倍(纵坐标不变),就可得出函数sin(5)6y x π=+,x∈R 的图象.(2)振幅是2,周期是2π,初相是0.把正弦曲线上所有点的横坐标伸长到原来的6倍(纵坐标不变),得到函数1sin6y x =,x∈R 的图象;再把所得图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),就可得到函数12sin()6y x =,x∈R 的图象.说明:会根据解析式求各物理量,并理解如何由正弦曲线通过变换得到正弦函数的图象.B 组1、已知α为第四象限角,确定下列各角的终边所在的位置:(1)2α; (2)3α; (3)2α. 答案:(1)3(1)42k k παππ+<<+,所以2α的终边在第二或第四象限; (2)9012030901203k k α︒+︒<<︒+︒+︒,所以3α的终边在第二、第三或第四象限;(3)(4k +3)π<2α<(4k +4)π,所以2α的终边在第三或第四象限,也可在y 轴的负半轴上.说明:不要求探索α分别为各象限角时,nα和nα的终边所在位置的规律.。
人教版高中数学必修4综合测试试题含答案(原创,难度适中)高中数学必修4综合测试满分:150分时间:120分钟注意事项:客观题请在答题卡上用2B铅笔填涂,主观题请用黑色水笔书写在答题卡上。
一、选择题:(共12小题,每小题5分,共60分。
)1.sin300°的值为A。
-31 B。
3 C。
22 D。
1/22.角α的终边过点P(4,-3),则cosα的值为A。
4 B。
-3 C。
2/5 D。
-4/53.cos25°cos35°-sin25°sin35°的值等于A。
3/11 B。
3/4 C。
2/11 D。
-2/114.对于非零向量AB,BC,AC,下列等式中一定不成立的是A。
AB+BC=AC B。
AB-AC=BCC。
AB-BC=BC D。
AB+BC=AC5.下列区间中,使函数y=sinx为增函数的是A。
[0,π] B。
[π,2π] C。
[-π/2,π/2] D。
[-π,0]6.已知tan(α-π/3)=1/√3,则tanα的值为A。
4/3 B。
-3/5 C。
-5/3 D。
-3/47.将函数y=sinx图象上所有的点向左平移π/3个单位长度,再将图象上所有的点的横坐标伸长到原来的2倍(纵坐标不变),则所得图象的函数解析式为A。
y=sin(2x+π/3) B。
y=sin(2x+2π/3)C。
y=sin(2x-π/3) D。
y=sin(2x-2π/3)8.在函数y=sinx、y=sin(2x+π/2)、y=cos(2x+π)中,最小正周期为π的函数的个数为()A。
1个 B。
2个 C。
3个 D。
4个9.下列命题中,正确的是A。
|a|=|b|→a=b B。
|a|>|b|→a>bC。
|a|=0→a=0 D。
a=b→a∥b10.函数y=Asin(ωx+φ)在一个周期内的图象如右图所示,此函数的解析式为y=2sin(2x-π/3)11.方程sin(πx)=x的解的个数是()A。
人教A版高中数学必修四测试题及答案全套人教A版高中数学必修四测试题及答案全套阶段质量检测(一)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.在0°~360°的范围内,与-510°终边相同的角是()A。
330° B。
210° C。
150° D。
30°2.若sinα = 3/3,π/2 < α < π,则sin(α+π/2) = ()A。
-6/3 B。
-1/2 C。
16/2 D。
33.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A。
2 B。
2sin1 C。
2sin1 D。
sin24.函数f(x) = sin(x-π/4)的图象的一条对称轴是()A。
x = π/4 B。
x = π/2 C。
x = -π/4 D。
x = -π/25.化简1+2sin(π-2)·cos(π-2)得()A。
sin2+cos2 B。
cos2-sin2 C。
sin2-cos2 D。
±cos2-sin26.函数f(x) = tan(x+π/4)的单调增区间为()A。
(kπ-π/2.kπ+π/2),k∈Z B。
(kπ。
(k+1)π),k∈ZC。
(kπ-4π/4.kπ+4π/4),k∈Z D。
(kπ-3π/4.kπ+3π/4),k∈Z7.已知sin(π/4+α) = 1/√2,则sin(π/4-α)的值为()A。
1/3 B。
-1/3 C。
1/2 D。
-1/28.设α是第三象限的角,且|cosα| = α/2,则α的终边所在的象限是()A。
第一象限 B。
第二象限 C。
第三象限 D。
第四象限9.函数y = cos2x+sinx在[-π/6.π/6]的最大值与最小值之和为()A。
3/4 B。
2 C。
1/3 D。
4/310.将函数y = sin(x-π/3)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移一个单位,得到的图象对应的解析式为()A。
人教A 版高中数学必修四测试题及答案全套阶段质量检测(一)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在0°~360°的范围内,与-510°终边相同的角是( ) A .330° B .210° C .150° D .30° 2.若sin α=33,π2<α<π,则sin ⎝⎛⎭⎫α+π2=( ) A .-63B .-12C.12D.633.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( ) A .2 B.2sin 1C .2sin 1D .sin 24.函数f (x )=sin ⎝⎛⎭⎫x -π4的图象的一条对称轴是( )A .x =π4B .x =π2C .x =-π4D .x =-π25.化简1+2sin (π-2)·cos (π-2)得( ) A .sin 2+cos 2 B .cos 2-sin 2 C .sin 2-cos 2 D .±cos 2-sin 26.函数f (x )=tan ⎝⎛⎭⎫x +π4的单调增区间为( )A.⎝⎛⎫k π-π2,k π+π2,k ∈ZB .(k π,(k +1)π),k ∈Z C.⎝⎛⎭⎫k π-3π4,k π+π4,k ∈ZD.⎝⎛⎭⎫k π-π4,k π+3π4,k ∈Z7.已知sin ⎝⎛⎭⎫π4+α=32,则sin ⎝⎛⎭⎫3π4-α的值为( )A.12B .-12 C.32 D .-32 8.设α是第三象限的角,且⎪⎪⎪⎪cosα2=-cos α2,则α2的终边所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9.函数y =cos 2x +sin x ⎝⎛⎭⎫-π6≤x ≤π6的最大值与最小值之和为( )A.32B .2 C .0 D.3410.将函数y =sin ⎝⎛⎭⎫x -π3的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移π3个单位,得到的图象对应的解析式为( )A .y =sin 12xB .y =sin ⎝⎛⎭⎫12x -π2C .y =sin ⎝⎛⎭⎫12x -π6 D .y =sin ⎝⎛⎭⎫2x -π611.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的一段图象如图所示,则函数的解析式为( )A .y =2sin ⎝⎛⎭⎫2x -π4B .y =2sin ⎝⎛⎭⎫2x -π4或y =2sin ⎝⎛⎭⎫2x +3π4C .y =2sin ⎝⎛⎭⎫2x +3π4D .y =2sin ⎝⎛⎭⎫2x -3π412.函数f (x )=A sin ωx (ω>0),对任意x 有f ⎝⎛⎭⎫x -12=f ⎝⎛⎭⎫x +12,且f ⎝⎛⎭⎫-14=-a ,那么f ⎝⎛⎭⎫94等于( ) A .a B .2a C .3a D .4a二、填空题(本大题共4小题,每小题5分,共20分) 13.已知tan α=-3,π2<α<π,那么cos α-sin α的值是________. 14.设f (n )=cos ⎝⎛⎫n π2+π4,则f (1)+f (2)+f (3)+…+f (2 015)等于________.15.定义运算a *b 为a *b =⎩⎪⎨⎪⎧a (a ≤b ),b (a >b ),例如1*2=1,则函数f (x )=sin x *cos x 的值域为________.16.给出下列4个命题:①函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫2x -π12的最小正周期是π2;②直线x =7π12是函数y =2sin ⎝⎛⎭⎫3x -π4的一条对称轴;③若sin α+cos α=-15,且α为第二象限角,则tan α=-34;④函数y =cos(2-3x )在区间⎝⎛⎭⎫23,3上单调递减.其中正确的是________.(写出所有正确命题的序号).三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(10分)已知tan αtan α-1=-1,求下列各式的值:(1)sin α-3cos αsin α+cos α;(2)sin 2α+sin αcos α+2. 18.(12分)已知函数f (x )=2sin ⎝⎛⎭⎫13x -π6,x ∈R .(1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f (x )的单调递增区间. 19.(12分)已知函数f (x )=3sin ⎝⎛⎭⎫x +π4.(1)用五点法画出它在一个周期内的闭区间上的图象;(2)写出f (x )的值域、最小正周期、对称轴,单调区间.20.(12分)如图,函数y =2sin(πx +φ),x ∈R ⎝⎛⎭⎫其中0≤φ≤π2的图象与y 轴交于点(0,1).(1)求φ的值;(2)求函数y =2sin(πx +φ)的单调递增区间; (3)求使y ≥1的x 的集合.21.(12分)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π),在同一周期内,当x =π12时,f (x )取得最大值3;当x =7π12时,f (x )取得最小值-3.(1)求函数f (x )的解析式; (2)求函数f (x )的单调递减区间;(3)若x ∈⎣⎡⎦⎤-π3,π6时,函数h (x )=2f (x )+1-m 的图象与x 轴有两个交点,求实数m 的取值范围.22.(12分)如图,函数y =2cos(ωx +θ)(x ∈R ,ω>0,0≤θ⎭⎫≤π2的图象与y 轴交于点(0,3),且该函数的最小正周期为π.(1)求θ和ω的值;(2)已知点A ⎝⎛⎭⎫π2,0,点P 是该函数图象上一点,点Q (x 0,y 0)是P A 的中点,当y 0=32,x 0∈⎣⎡⎦⎤π2,π时,求x 0的值.答 案1. 解析:选B 因为-510°=-360°³2+210°,因此与-510°终边相同的角是210°.2. 解析:选A ∵sin ⎝⎛⎭⎫π2+α=cos α,又π2<α<π,sin α=33,∴cos α=-63. 3. 解析:选B 如图,由题意知θ=1,BC =1,圆的半径r 满足sin θ=sin 1=1r ,所以r =1sin 1,弧长AB =2θ·r =2sin 1.4. 解析:选C f (x )=sin ⎝⎛⎭⎫x -π4的图象的对称轴为x -π4=k π+π2,k ∈Z ,得x =k π+3π4,当k =-1时,则其中一条对称轴为x =-π4.5. 解析:选C1+2sin (π-2)·cos (π-2)=1+2sin 2·(-cos 2) =(sin 2-cos 2)2, ∵π2<2<π,∴sin 2-cos 2>0. ∴原式=sin 2-cos 2.6. 解析:选C 令k π-π2<x +π4<k π+π2,k ∈Z ,解得k π-3π4<x <k π+π4,k ∈Z ,选C.7. 解析:选C ∵⎝⎛⎭⎫π4+α+⎝⎛⎭⎫3π4-α=π, ∴3π4-α=π-⎝⎛⎭⎫π4+α,∴sin ⎝⎛⎭⎫3π4-α=sin ⎣⎡⎦⎤π-⎝⎛⎭⎫π4+α=sin ⎝⎛⎭⎫π4+α=32. 8. 解析:选B ∵α是第三象限的角, ∴π+2k π<α<3π2+2k π,k ∈Z .∴π2+k π<α2<3π4+k π,k ∈Z . ∴α2在第二或第四象限. 又∵⎪⎪⎪⎪cosα2=-cos α2,∴cos α2<0.∴α2是第二象限的角. 9. 解析:选A f (x )=1-sin 2x +sin x =-⎝⎛⎭⎫sin x -122+54,∵-π6≤x ≤π6, ∴-12≤sin x ≤12.当sin x =-12时,f (x )min =14;当sin x =12时,f (x )max =54,∴f (x )min +f (x )max =14+54=32.10. 解析:选C 将函数y =sin ⎝⎛⎭⎫x -π3的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),即将x 变为12x ,即可得y =sin ⎝⎛⎭⎫12x -π3,然后将其图象向左平移π3个单位,即将x 变为x +π3.∴y =sin ⎣⎡⎦⎤12⎝⎛⎭⎫x +π3-π3=sin ⎝⎛⎭⎫12x -π6.11. 解析:选C 由图象可知A =2,因为π8-⎝⎛⎭⎫-π8=π4,所以T =π,ω=2.当x =-π8时,2sin ⎝⎛⎭⎫-π8·2+φ=2,即sin ⎝⎛⎭⎫φ-π4=1,又|φ|<π,解得φ=3π4.故函数的解析式为y =2sin ⎝⎛⎭⎫2x +3π4.12. 解析:选A 由f ⎝⎛⎭⎫x -12=f ⎝⎛⎭⎫x +12,得f (x +1)=f ⎝⎛⎭⎫⎝⎛⎭⎫x +12+12=f ⎝⎛⎭⎫x +12-12=f (x ), 即1是f (x )的周期.而f (x )为奇函数, 则f ⎝⎛⎭⎫94=f ⎝⎛⎭⎫14=-f ⎝⎛⎭⎫-14=a . 13. 解析:因为π2<α<π,所以cos α<0,sin α>0,所以cos α=-cos 2α=-cos 2αcos 2α+sin 2α=-11+tan 2α=-11+3=-12.sin α=32, 所以cos α-sin α=-1+32.答案:-1+3214. 解析:f (n )=cos ⎝⎛⎭⎫n π2+π4的周期T =4,且f (1)=cos ⎝⎛⎭⎫π2+π4=cos 3π4=-22,f (2)=cos ⎝⎛⎭⎫π+π4=-22,f (3)=cos ⎝⎛⎭⎫3π2+π4=22, f (4)=cos ⎝⎛⎭⎫2π+π4=22.所以f (1)+f (2)+f (3)+f (4)=0, 所以f (1)+f (2)+f (3)+…+f (2 015) =f (1)+f (2)+f (3)=-22. 答案:-2215. 解析:由题意可知,这实际上是一个取小的自定义函数,结合函数的图象可得其值域为⎣⎡⎦⎤-1,22. 答案:⎣⎡⎦⎤-1,22 16. 解析:函数y =sin ⎝⎛⎭⎫2x -π12的最小正周期是π,则y =⎪⎪⎪⎪sin ⎝⎛⎭⎫2x -π12的最小正周期为π2,故①正确.对于②,当x =7π12时,2sin ⎝⎛⎭⎫3³7π12-π4=2sin 3π2=-2,故②正确.对于③,由(sin α+cos α)2=125得2sin αcos α=-2425,α为第二象限角,所以sin α-cos α=1-2sin αcos α=75,所以sin α=35,cos α=-45,所以tan α=-34,故③正确.对于④,函数y =cos(2-3x )的最小正周期为2π3,而区间⎝⎛⎭⎫23,3长度73>2π3,显然④错误. 答案:①②③17. 解:由tan αtan α-1=-1,得tan α=12.(1)sin α-3cos αsin α+cos α=tan α-3tan α+1=12-312+1=-53.(2)sin 2α+sin αcos α+2=sin 2α+sin αcos α+2(cos 2α+sin 2α) =3sin 2α+sin αcos α+2cos 2αsin 2α+cos 2α=3tan 2α+tan α+2tan 2α+1=3⎝⎛⎭⎫122+12+2⎝⎛⎭⎫122+1=135.18. 解:(1)f ⎝⎛⎭⎫5π4=2sin ⎝⎛⎭⎫13³5π4-π6=2sin π4=2(2)令2k π-π2≤13x -π6≤π2+2k π,k ∈Z ,所以2k π-π3≤13x ≤2π3+2k π,k ∈Z ,解得6k π-π≤x ≤2π+6k π,k ∈Z ,所以函数f (x )=2sin ⎝⎛⎭⎫13x -π6的单调递增区间为[6k π-π,2π+6k π],k ∈Z .19. 解:(1)列表如下:描点画图如图所示.(2)由图可知,值域为[-3,3],最小正周期为2π, 对称轴为x =π4+k π,k ∈Z ,单调递增区间为⎣⎡⎦⎤-3π4+2k π,π4+2k π(k ∈Z ),单调递减区间为⎣⎡⎦⎤π4+2k π,5π4+2k π(k ∈Z ).20. 解:(1)因为函数图象过点(0,1), 所以2sin φ=1,即sin φ=12.因为0≤φ≤π2,所以φ=π6.(2)由(1)得y =2sin ⎝⎛⎭⎫πx +π6,所以当-π2+2k π≤πx +π6≤π2+2k π,k ∈Z ,即-23+2k ≤x ≤13+2k ,k ∈Z 时,y =2sin ⎝⎛⎭⎫πx +π6是增函数,故y =2sin ⎝⎛⎭⎫πx +π6的单调递增区间为⎣⎡⎦⎤-23+2k ,13+2k ,k ∈Z . (3)由y ≥1,得sin ⎝⎛⎭⎫πx +π6≥12,所以π6+2k π≤πx +π6≤5π6+2k π,k ∈Z ,即2k ≤x ≤23+2k ,k ∈Z ,所以y ≥1时,x 的集合为⎩⎨⎧⎭⎬⎫x |2k ≤x ≤23+2k ,k ∈Z .21. 解:(1)由题意,A =3,T =2⎝⎛⎭⎫7π12-π12=π,ω=2πT =2. 由2³π12+φ=π2+2k π,k ∈Z ,得φ=π3+2k π,k ∈Z ,又因为-π<φ<π,所以φ=π3.所以f (x )=3sin ⎝⎛⎭⎫2x +π3.(2)由π2+2k π≤2x +π3≤3π2+2k π,k ∈Z ,得π6+2k π≤2x ≤7π6+2k π,k ∈Z , 则π12+k π≤x ≤7π12+k π,k ∈Z , 所以函数f (x )的单调递减区间为⎣⎡⎦⎤π12+k π,7π12+k π(k ∈Z ).(3)由题意知,方程sin ⎝⎛⎫2x +π3=m -16在⎣⎡⎤-π3,π6上有两个根.因为x ∈⎣⎡⎦⎤-π3,π6,所以2x +π3∈⎣⎡⎦⎤-π3,2π3.所以m -16∈⎣⎡⎭⎫32,1.所以m ∈[33+1,7).22. 解:(1)把(0,3)代入y =2cos(ωx +θ)中, 得cos θ=32. ∵0≤θ≤π2,∴θ=π6.∵T =π,且ω>0,∴ω=2πT =2ππ=2.(2)∵点A ⎝⎛⎭⎫π2,0,Q (x 0,y 0)是P A 的中点,y 0=32,∴点P 的坐标为⎝⎛⎭⎫2x 0-π2,3.∵点P 在y =2cos ⎝⎛⎭⎫2x +π6的图象上,且π2≤x 0≤π,∴cos ⎝⎛⎭⎫4x 0-5π6=32,且7π6≤4x 0-5π6≤19π6. ∴4x 0-5π6=11π6或4x 0-5π6=13π6.∴x 0=2π3或x 0=3π4.阶段质量检测(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在五边形ABCDE 中(如图),=( )2.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =( ) A .(-5,-10) B .(-4,-8) C .(-3,-6) D .(-2,-4)3.已知平面向量a =(1,-3),b =(4,-2),若λa +b 与a 垂直,则λ的值是( ) A .-1 B .1 C .-2 D .24.若|a |=2,|b |=2,且(a -b )⊥a ,则a 与b 的夹角是( ) A.π6 B.π4 C.π3 D.π2A.12 B .-12 C.32 D .-326.已知向量满足:|a |=2,|b |=3,|a -b |=4,则|a +b |=( ) A. 6 B.7 C.10 D.11A .内心B .外心C .垂心D .重心8.平面向量a =(x ,-3),b =(-2,1),c =(1,y ),若a ⊥(b -c ),b ∥(a +c ),则b 与c 的夹角为( ) A .0 B.π4 C.π2 D.3π49.已知AD ,BE 分别为△ABC 的边BC ,AC 上的中线,设=a ,=b ,则等于( )A.43a +23b B.23a +43b C.23a -43b D .-23a +43bA.⎝⎛⎭⎫0,π3B.⎝⎛⎭⎫π3,5π6C.⎝⎛⎭⎫π2,2π3D.⎝⎛⎭⎫2π3,5π611.已知a =(-1,3),=a -b ,=a +b ,若△AOB 是以O 为直角顶点的等腰直角三角形,则△AOB 的面积是( )A. 3 B .2 C .2 2 D .412.已知向量m =(a ,b ),n =(c ,d ),p =(x ,y ),定义新运算m ⊗n =(ac +bd ,ad +bc ),其中等式右边是通常的加法和乘法运算.如果对于任意向量m 都有m ⊗p =m 成立,则向量p 为( )A .(1,0)B .(-1,0)C .(0,1)D .(0,-1) 二、填空题(本大题共4小题,每小题5分,共20分)13.已知向量a =(2x +3,2-x ),b =(-3-x ,2x )(x ∈R ).则|a +b |的取值范围为________. 14.设e 1,e 2为两个不共线的向量,若a =e 1+λe 2与b =-(2e 1-3e 2)共线,则实数λ等于________. 15.在边长为2的菱形ABCD 中,∠BAD =60°,E 为CD 的中点,则=________.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知平面向量a =(1,x ),b =(2x +3,-x ),x ∈R . (1)若a ⊥b ,求x 的值; (2)若a ∥b ,求|a -b |.18.(12分)设向量a =(cos α,sin α)(0≤α<2π),b =⎝⎛⎭⎫-12,32,且a 与b 不共线.(1)求证:(a +b )⊥(a -b );(2)若向量3a +b 与a -3b 的模相等,求角α. 19.(12分)如图,平行四边形ABCD 中,=a ,=b ,H ,M 是AD ,DC 的中点,BF =13BC ,(1)以a ,b 为基底表示向量(2)若|a |=3,|b |=4,a 与b 的夹角为120°,求20.(12分)在边长为1的正△ABC 中,AD 与BE 相交于点F .21.(12分)在平面直角坐标系中,O 为坐标原点,已知向量a =(-1,2),又点A (8,0),B (n ,t ),C (k sin θ,t )⎝⎛⎭⎫0≤θ≤π2.22.(12分)已知e 1,e 2是平面内两个不共线的非零向量,且A ,E ,C 三点共线.(1)求实数λ的值;(2)若e 1=(2,1),e 2=(2,-2),求的坐标;(3)已知D (3,5),在(2)的条件下,若A ,B ,C ,D 四点按逆时针顺序构成平行四边形,求点A 的坐标.答 案1. 解析:选B ∵==.2. 解析:选B ∵a ∥b ,∴-21=m2,∴m =-4,∴b =(-2,-4),∴2a +3b =2(1,2)+3(-2,-4)=(-4,-8). 3. 解析:选A 由题意可知(λa +b )·a =λa 2+b ·a =0. ∵|a |=10,a ·b =1³4+(-3)³(-2)=10, ∴10λ+10=0,λ=-1.4. 解析:选B 由于(a -b )⊥a ,所以(a -b )·a =0,即|a|2-a ·b =0,所以a ·b =|a|2=2,所以 cos 〈a ,b 〉=a ·b |a||b|=222=22,即a 与b 的夹角是π4. 5.6. 解析:选C 由题意|a -b |2=a 2+b 2-2a ·b =16, ∴a ·b =-32.∴|a +b |2=a 2+b 2+2a ·b =10, ∴|a +b |=10. 7.∴P 是△ABC 的垂心.8. 解析:选C 由题意知b -c =(-3,1-y ),a +c =(x +1,y -3),依题意得⎩⎪⎨⎪⎧-3x -3(1-y )=0,x +1+2(y -3)=0,解得⎩⎪⎨⎪⎧x =1,y =2,∴c =(1,2),而b ·c =-2³1+1³2=0, ∴b ⊥c . 9.10.11. 解析:选D 由题意||=||且⊥,所以(a -b )2=(a +b )2且(a -b )·(a +b )=0, 所以a ·b =0,且a 2=b 2, 所以|a |=|b |=2,所以S △AOB =12||·||=12(a -b )2(a +b )2=12(a 2+b 2)2=4. 12. 解析:选A 因为m ⊗p =m ,即(a ,b )⊗(x ,y )=(ax +by ,ay +bx )=(a ,b ),所以⎩⎪⎨⎪⎧ax +by =a ,ay +bx =b ,即⎩⎪⎨⎪⎧a (x -1)+by =0,ay +b (x -1)=0. 由于对任意m =(a ,b ), 都有(a ,b )⊗(x ,y )=(a ,b )成立.所以⎩⎪⎨⎪⎧x -1=0,y =0,解得⎩⎪⎨⎪⎧x =1,y =0. 所以p =(1,0).故选A.13. 解析:因为a +b =(x ,x +2), 所以|a +b |=x 2+(x +2)2=2x 2+4x +4 =2(x +1)2+2≥2, 所以|a +b |∈[2,+∞). 答案:[2,+∞)14. 解析:因为a ,b 共线,所以由向量共线定理知,存在实数k ,使得a =k b , 即e 1+λe 2=-k (2e 1-3e 2)=-2k e 1+3k e 2 又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧1=-2k ,λ=3k ,解得λ=-32.答案:-3215. 解析:以A 为原点,AB 所在的直线为x 轴,过A 且垂直于AB 的直线为y 轴建立平面直角坐标系.则由A (0,0),B (2,0),E (2,3),D (1,3,可得=1.答案:1 16.答案:[1,4]17. 解:(1)若a ⊥b ,则a ·b =(1,x )·(2x +3,-x ) =1³(2x +3)+x (-x )=0.整理得x 2-2x -3=0,解得x =-1或x =3. (2)若a ∥b ,则有1³(-x )-x (2x +3)=0, 即x (2x +4)=0,解得x =0或x =-2. 当x =0时,a =(1,0),b =(3,0), ∴a -b =(-2,0),|a -b |=2;当x =-2时,a =(1,-2),b =(-1,2), ∴a -b =(2,-4),∴|a -b |=4+16=2 5. 综上所述,|a -b |为2或2 5.18. 解:(1)证明:由题意,得a +b =⎝⎛⎭⎫cos α-12,sin α+32,a -b =⎝⎛⎭⎫cos α+12,sin α-32,因为(a +b )·(a -b )=cos 2α-14+sin 2α-34=1-1=0,所以(a +b )⊥(a -b ).(2)因为向量3a +b 与a -3b 的模相等, 所以(3a +b )2=(a -3b )2,所以|a |2-|b |2+23a ·b =0,因为|a |=1,|b |=⎝⎛⎭⎫-122+⎝⎛⎭⎫322=1,所以|a |2=|b |2,所以a ·b =0, 所以-12cos α+32sin α=0,所以tan α=33, 又因为0≤α<2π, 所以α=π6或α=7π6.19. 解:(1)∵M 为DC 的中点,(2)由已知得a ·b =3³4³cos 120°=-6,=12a 2+⎝⎛⎭⎫1-112a ·b -16b 2 =12³32+1112³(-6)-16³42 =-113.20. 解:(1)由题意,D 为BC 边的中点,而△ABC 是正三角形,所以AD ⊥BC ,=12(a +b )·⎝⎛⎭⎫23b -a =13b 2-12a 2-16a ·b =13-12-16³1³1³12=-14.根据平面向量的基本定理有⎩⎪⎨⎪⎧-λ-22(λ+1)=-μ,λ2(λ+1)=2μ3,解得λ=4. 21.∴t =-2k sin θ+16.∵t sin θ=(-2k sin θ+16)sin θ =-2k ⎝⎛⎭⎫sin θ-4k 2+32k , ∵k >4,∴1>4k>0,当sin θ=4k 时,t sin θ取最大值为32k .由32k =4,得k =8,此时θ=π6,=(4,8),∴·=(8,0)·(4,8)=32.22. 解:(1)=(2e 1+e 2)+(-e 1+λe 2)=e 1+(1+λ)e 2.∵A ,E ,C 三点共线, ∴存在实数k ,使得,即e 1+(1+λ)e 2=k (-2e 1+e 2),得(1+2k )e 1=(k -1-λ)e 2.∵e 1,e 2是平面内两个不共线的非零向量,∴⎩⎪⎨⎪⎧1+2k =0,λ=k -1,解得k =-12,λ=-32.(2)=-3e 1-12e 2=(-6,-3)+(-1,1)=(-7,-2).(3)∵A ,B ,C ,D 四点按逆时针顺序构成平行四边形,即点A 的坐标为(10,7).阶段质量检测(三)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =2cos 2x2+1的最小正周期是( )A .4πB .2πC .π D.π22.sin 45°²cos 15°+cos 225°²sin 15°的值为( ) A .-32B .-12C.12D.323.已知α是第二象限角,且cos α=-35,则cos ⎝⎛⎭⎫π4-α的值是( )A.210B .-210C.7210D .-72104.若sin ⎝⎛⎭⎫π6-α=13,则cos ⎝⎛⎭⎫2π3+2α等于( ) A .-79B .-13C.13D.795.已知tan(α+β)=14,tan α=322,那么tan(2α+β)等于( )A.25B.14C.1318D.1322 6.1-3tan 75°3+tan 75°的值等于( )A .2+3B .2-3C .1D .-17.在△ABC 中,已知tan A +B2=sin C ,则△ABC 的形状为( )A .正三角形B .等腰三角形C .直角三角形D .等腰直角三角形8.若θ∈⎝⎛⎭⎫0,π2,sin θ-cos θ=22,则cos 2θ等于( )A.32B .-32C .±32D .±129.若函数g (x )=a sin x cos x (a >0)的最大值为12,则函数f (x )=sin x +a cos x 的图象的一条对称轴方程为( )A .x =0B .x =-3π4C .x =-π4D .x =-5π410.已知tan α,tan β是方程x 2+33x +4=0的两个根,且-π2<α<π2,-π2<β<π2,则α+β为( )A.π6 B .-2π3C.π6或-5π6 D .-π3或2π311.设a =22(sin 17°+cos 17°),b =2cos 213°-1,c =sin 37°²sin 67°+sin 53°sin 23°,则( ) A .c <a <b B .b <c <aC .a <b <cD .b <a <c12.在△ABC 中,A ,B ,C 是其三个内角,设f (B )=4sin B ²cos 2⎝⎛⎭⎫π4-B 2+cos 2B ,当f (B )-m <2恒成立时,实数m 的取值范围是( )A .m <1B .m >-3C .m <3D .m >1二、填空题(本大题共4小题,每小题5分,共20分)13.已知α∈⎝⎛⎭⎫π2,π,sin α=55,则tan 2α=________. 14.已知等腰△ABC 的腰为底的2倍,则顶角A 的正切值是________.15.已知θ∈⎝⎛⎭⎫π2,π,1sin θ+1cos θ=22,则sin ⎝⎛⎭⎫2θ+π3的值为________. 16.设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________. 三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分 )已知cos θ=1213,θ∈(π,2π),求sin ⎝⎛⎭⎫θ-π6以及tan ⎝⎛⎭⎫θ+π4的值. 18.(12分)已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0. 19.(12分)设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈⎣⎡⎦⎤0,π2. (1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值.20.(12分)已知f (x )=sin x +2sin ⎝⎛⎭⎫π4+x 2cos ⎝⎛⎭⎫π4+x 2.(1)若f (α)=22,α∈⎝⎛⎭⎫-π2,0,求α的值; (2)若sin x 2=45,x ∈⎝⎛⎭⎫π2,π,求f (x )的值. 21.(12分)已知函数f (x )=cos 2x 2-sin x 2cos x 2-12. (1)求函数f (x )的最小正周期和值域;(2)若f (α)=3210,求sin 2α的值. 22.(12分)已知函数f (x )=23sin x cos x +2cos 2x -1(x ∈R ).(1)求函数f (x )的最小正周期及在区间⎣⎡⎦⎤0,π2上的最大值和最小值; (2)若f (x 0)=65,x 0∈⎣⎡⎦⎤π4,π2,求cos 2x 0的值.答 案1. 解析:选B ∵y =2cos 2x 2+1=⎝⎛⎭⎫2cos 2 x 2-1+2=cos x +2, ∴函数的最小正周期T =2π.2. 解析:选C sin 45°cos 15°+cos 225°sin 15°=sin 45°cos 15°-cos 45°sin 15°=sin(45°-15°)=sin 30°=12. 3. 解析:选A 由题意,sin α=45, cos ⎝⎛⎭⎫π4-α=cos π4cos α+sin π4sin α=210. 4. 解析:选A cos(2π3+2α)=cos[π-2(π6-α)]=-cos[2(π6-α)]=2sin 2⎝⎛⎭⎫π6-α-1=-79. 5. 解析:选A tan(2α+β)=tan (α+β)+tan α1-tan (α+β)tan α=25. 6. 解析:选D 1-3tan 75°3+tan 75°=33-tan 75°1+33tan 75° =tan 30°-tan 75°1+tan 30°·tan 75°=tan(30°-75°) =tan(-45°)=-1.7. 解析:选C 在△ABC 中,tan A +B 2=sin C =sin(A +B )=2sin A +B 2cos A +B 2,∴2cos 2A +B 2=1,∴cos(A +B )=0,从而A +B =π2,即△ABC 为直角三角形.8. 解析:选B 由sin θ-cos θ=22两边平方得,sin 2θ=12,又θ∈⎝⎛⎭⎫0,π2,且sin θ>cos θ,所以π4<θ<π2,所以π2<2θ<π,因此,cos 2θ=-32,故选B. 9. 解析:选B g (x )=a 2sin 2x (a >0)的最大值为12, 所以a =1,f (x )=sin x +cos x =2sin ⎝⎛⎭⎫x +π4, 令x +π4=π2+k π,k ∈Z 得x =π4+k π,k ∈Z .故选B. 10. 解析:选B 由题意得⎩⎨⎧tan α+tan β=-33,tan α·tan β=4>0, 所以tan α<0,tan β<0, 所以-π2<α<0,-π2<β<0,-π<α+β<0. 又tan(α+β)=tan α+tan β1-tan αtan β=-331-4= 3. 所以α+β=-2π3.故选B. 11. 解析:选A a =cos 45°sin 17°+sin 45°cos 17°=sin 62°,b =cos 26°=sin 64°,c =sin 37°cos 23°+cos 37°sin 23°=sin 60°,故c <a <b .12. 解析:选D f (B )=4sin B cos 2⎝⎛⎭⎫π4-B 2+cos 2B =4sin B ·1+cos ⎝⎛⎭⎫π2-B 2+cos 2B =2sin B (1+sin B )+(1-2sin 2B )=2sin B +1.∵f (B )-m <2恒成立,∴2sin B +1-m <2恒成立,即m >2sin B -1恒成立.∵0<B <π,∴0<sin B ≤1.∴-1<2sin B -1≤1,故m >1.13. 解析:因为sin α=55,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-255. 所以tan α=sin αcos α=-12,所以tan 2α=2tan α1-tan 2α=-11-14=-43. 答案:-4314. 解析:由题意,sin A 2=14,∴cos A 2=154, ∴tan A 2=1515.∴tan A =2tan A 21-tan 2A 2=157. 答案:157 15. 解析:由已知条件可得sin ⎝⎛⎭⎫θ+π4=sin 2θ, 又θ∈⎝⎛⎭⎫π2,π,由三角函数图象可知θ+π4+2θ=3π, 即θ=11π12,sin ⎝⎛⎭⎫2θ+π3=sin 13π6=12. 答案:1216. 解析:因为α为锐角,cos ⎝⎛⎭⎫α+π6=45,所以sin(α+π6)=35,sin 2⎝⎛⎭⎫α+π6=2425,cos 2⎝⎛⎭⎫α+π6=725,所以sin ⎝⎛⎭⎫2α+π12=sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6-π4=22³1725=17250. 答案:1725017. 解:因为cos θ=1213,θ∈(π,2π), 所以sin θ=-513,tan θ=-512, 所以sin ⎝⎛⎭⎫θ-π6=sin θcos π6-cos θsin π6 =-513³32-1213³12=-53+1226, tan ⎝⎛⎭⎫θ+π4=tan θ+tanπ41-tan θtan π4=-512+11-⎝⎛⎭⎫-512³1=717. 18. 解:(1)∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+sin ⎝⎛⎭⎫x -3π4+π2 =sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明:由已知得cos βcos α+sin βsin α=45, cos βcos α-sin βsin α=-45. 两式相加得2cos βcos α=0.∵0<α<β≤π2,∴β=π2. ∴[f (β)]2-2=4sin 2π4-2=0. 19. 解:(1)由|a|2=(3sin x )2+(sin x )2=4sin 2x ,|b |2=(cos x )2+(sin x )2=1,及|a |=|b |,得4sin 2x =1.又x ∈⎣⎡⎦⎤0,π2,从而sin x =12,所以x =π6. (2)f (x )=a ·b =3sin x ·cos x +sin 2x =32sin 2x -12cos 2x +12=sin ⎝⎛⎭⎫2x -π6+12, 当x =π3∈⎣⎡⎦⎤0,π2时,sin ⎝⎛⎭⎫2x -π6取最大值1,此时f (x )取得最大值,最大值为32. 20. 解:(1)f (x )=sin x +2sin ⎝⎛⎭⎫π4+x 2cos ⎝⎛⎭⎫π4+x 2 =sin x +sin ⎝⎛⎭⎫x +π2=sin x +cos x =2sin ⎝⎛⎭⎫x +π4. 由f (α)=22,得2sin ⎝⎛⎭⎫α+π4=22,∴sin ⎝⎛⎭⎫α+π4=12. ∵α∈⎝⎛⎭⎫-π2,0,∴α+π4∈⎝⎛⎭⎫-π4,π4. ∴α+π4=π6,∴α=-π12. (2)∵x ∈⎝⎛⎭⎫π2,π,∴x 2∈⎝⎛⎭⎫π4,π2. 又∵sin x 2=45,∴cos x 2=35. ∴sin x =2sin x 2cos x 2=2425, cos x =-1-sin 2x =-725. ∴f (x )=sin x +cos x =2425-725=1725. 21. 解:(1)f (x )=cos 2x 2-sin x 2cos x 2-12=12(1+cos x )-12sin x -12=22cos ⎝⎛⎭⎫x +π4.所以f (x )的最小正周期为2π,值域为⎣⎡⎦⎤-22,22. (2)由(1)知f (α)=22cos ⎝⎛⎭⎫α+π4=3210, 所以cos ⎝⎛⎭⎫α+π4=35. 所以sin 2α=-cos ⎝⎛⎭⎫π2+2α=-cos 2⎝⎛⎭⎫α+π4 =1-2cos 2⎝⎛⎭⎫α+π4=1-1825=725. 22. 解:(1)由f (x )=23sin x cos x +2cos 2x -1,得f (x )=3(2sin x cos x )+(2cos 2x -1)=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6. ∴函数f (x )的最小正周期为π.∵f (x )=2sin ⎝⎛⎭⎫2x +π6在区间⎣⎡⎦⎤0,π6上为增函数,在区间⎝⎛⎦⎤π6,π2上为减函数,又f (0)=1,f ⎝⎛⎭⎫π6=2, f ⎝⎛⎭⎫π2=-1,∴函数f (x )在区间⎣⎡⎦⎤0,π2上的最大值为2,最小值为-1. (2)由(1)可知f (x 0)=2sin ⎝⎛⎭⎫2x 0+π6. 又∵f (x 0)=65,∴sin ⎝⎛⎭⎫2x 0+π6=35. 由x 0∈⎣⎡⎦⎤π4,π2,得2x 0+π6∈⎣⎡⎦⎤2π3,7π6. 从而cos ⎝⎛⎭⎫2x 0+π6=- 1-sin 2⎝⎛⎭⎫2x 0+π6=-45. ∴cos 2x 0=cos ⎣⎡⎦⎤⎝⎛⎭⎫2x 0+π6-π6 =cos ⎝⎛⎭⎫2x 0+π6cos π6+sin ⎝⎛⎭⎫2x 0+π6sin π6 =3-4310.。
高中数学习题必修4及答案篇一:人教版高一数学必修四测试题(含详细答案)高一数学考试(必修4)(特别适合按14523顺序的省份)必修4第1章三角函数(1)一、选择题:1.如果a={第一象限角},B={锐角},C={角度小于90°},那么a,B和C之间的关系是()a.b=a∩cb.b∪c=cc.acd.a=b=c2sin21200等于()?133c?d22223.已知sin??2cos?3sin??5cos5,那么tan?的值为b.2c.()16164.在下列函数中,最小正周期为π的偶数函数为()A.-223D.-23x1?tan2xa.y=sin2xb.y=cosc.sin2x+cos2xd.y=21?tan2x5.转角600的端边是否有点??4,a那么a的值是()04b?43c?43d6.得到函数y=cos(a.向左平移x?x?)的图象,只需将y=sin的图象()242??个单位b.同右平移个单位22c、将装置向左移动D.将装置向右移动447.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向左平移?1个单位,沿y轴向下平移1个单位,得到函数y=sinx的图象22Y=f(x)是()a.y=1?1?sin(2x?)?1b.y=sin(2x?)?122221.1.c、 y=sin(2x?)?1d。
罪(2x?)?一万二千四百二十四8.函数y=sin(2x+5?)的图像的一条对轴方程是()25.a、 x=-b.x=-c.x=d.x=42481,则下列结论中一定成立的是229.如果罪??余弦??()罪恶??2b.罪22罪??余弦??1d.罪??余弦??0c。
()10.函数y?2sin(2x??3)形象a.关于原点对称b.关于点(-11.功能y?罪(x?a.[,0)对称c.关于y轴对称d.关于直线x=对称66?2x?r是()??,]上是增函数b.[0,?]上是减函数22c、 [?,0]是减法函数D.[?,?]上限是一个减法函数12.功能y?()3,2k??a、 2k b、 2k??,2k??(k?z)(k?z)3.66??2??3.c、 2k3,2k(k?Z)d?2k23,2k2(kz)3二、填空:13.函数y?cos(x2)(x?[,?])的最小值是.863和2002年相同端边的最小正角度为_________015.已知sin??cos??1??,且,则cos??sin??.842如果设置一个??x | kx?k???,k?z?,b??x|?2?x?2?,3?然后是a?b=_______________________________________三、解答题:17.认识辛克斯吗?Coxx?1和0?x??。
必修四综合测试
1.若α为第二象限角,则下列各式恒小于零的是( ) A .sin α+cos α B .tan α+sin α C .cos α-tan α
D .sin α-tan α
解析 由α为第二象限角知,sin α>0,tan α<0,由三角函数线知|tan α|>sin α. ∴-tan α>sin α,即sin α+tan α<0.答案 B 2.依据三角函数线,作出如下判断:
①sin π6=sin 7π6;②cos ⎝ ⎛⎭
⎪⎫-π4=cos π4;③tan π8>tan 3π5;④sin 3π5>sin 4π
5.
其中正确的有( )
A .1个
B .2个
C .3个
D .4个 答案 C
3.函数y =cos2x 在下列哪个区间上是减函数( )
A.⎣⎢⎡⎦
⎥⎤
-π4,π4 B.⎣⎢⎡⎦⎥⎤
π4,3π4 C.⎣⎢⎡
⎦
⎥⎤0,π2 D.⎣⎢⎡⎦
⎥⎤π2,π 解析 ∵y =cos2x ,∴2k π≤2x ≤π+2k π(k ∈Z ),
即k π≤x ≤π
2+k π(k ∈Z ).∴⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z )为y =cos2x 的单调递减
区间.而⎣
⎢⎡
⎦
⎥⎤0,π2显然是上述区间中的一个.答案 C
4.函数y =cos ⎝ ⎛⎭⎪⎫x +π6,x ∈⎣⎢⎡
⎦
⎥⎤0,π2的值域是( )
A.⎝
⎛⎦⎥⎤
-32,12
B.⎣⎢⎡⎦⎥⎤
-12
,32
C.⎣⎢⎡⎦
⎥⎤32,1 D.⎣
⎢⎡⎦
⎥⎤
12,1 解析 由0≤x ≤π2,得π6≤x +π6≤2π3,∴-12≤cos ⎝ ⎛⎭⎪⎫x +π6≤3
2,选B.
5.y =cos ⎝
⎛
⎭
⎪⎫x -π2+tan(π+x )是( )
A .奇函数
B .偶函数
C .既是奇函数又是偶函数
D .非奇非偶函数 解析 y =cos ⎝
⎛
⎭
⎪⎫x -π2+tan(π+x )=sin x +tan x .
∵y =sin x ,y =tan x 均为奇函数,∴原函数为奇函数.答案 A 6.把函数f (x )的图象向右平移π
12个单位后得到函数y =sin ⎝ ⎛⎭⎪⎫x +π3的图象,则f (x )为( )
A .sin ⎝ ⎛
⎭⎪⎫x +712π
B .sin ⎝ ⎛
⎭⎪⎫x +34π
C .sin ⎝ ⎛
⎭
⎪⎫x +5π12
D .sin ⎝ ⎛
⎭
⎪⎫x -512π
解析 用x -π
12代换选项中的x ,化简得到y =sin ⎝ ⎛⎭⎪⎫x +π3的就是f (x ),代入选项C ,有f (x )=sin ⎝ ⎛⎭⎪⎫x -π12+5π12=sin ⎝ ⎛
⎭⎪⎫x +π3.答案 C
7.若非零向量a ,b 互为相反向量,则下列说法错误的是( )
A .a ∥b
B .a ≠b
C .|a |≠|b |
D .b =-a
解析 根据相反向量的定义:大小相等,方向相反,可知|a |=|b |.
答案 C
8.给出下列四个结论:
①AB →=AO →+OB →; ②AB →-AC →=BC →
;
③AB →+BC →+CA →
=0; ④|a +b |≥|a -b |. 其中错误的有( ) A .1个 B .2个 C .3个
D .4个
解析 ①正确,②错误,∵AB →-AC →=AB →+CA →=CB →≠BC →
.③错误,∵AB →+BC →+CA →
=0≠0.④错误,当a 与b 方向相反时,有|a +b |<|a -b |.综上知,仅①正确,故选C.
9.已知两点A (2,-1),B (3,1),与AB →
平行且方向相反的向量a 可能是( )
A .(1,-2)
B .(9,3)
C .(-1,2)
D .(-4,-8)
解析 AB →
=(3-2,1+1)=(1,2),
∵(-4,-8)=-4(1,2),∴(-4,-8)满足条件.答案 D 10.若向量a =(1,1),b =(-1,1),c =(4,2)满足(k a +b )∥c ,则k =( )
A .3
B .-3 C.13 D .-1
3 解析 k a +b =(k -1,k +1),
由(k a +b )∥c ,得2(k -1)-4(k +1)=0,解得k =-3. 11.已知α,β都是锐角,下列不等式中不成立的是( )
A .sin α+cos α>1
B .sin α-cos α<1
C .sin(α+β)>sin(α-β)
D .cos(α+β)>cos(α-β)
解析 令α=β=30°,则cos(α+β)=1
2,cos(α-β)=1,故cos(α+β)<cos(α-β).因此选项D 是不成立的.答案 D 12.sin15°+cos15°的值是( )
A.32
B.22
C.62 D .-6
2
解析 sin15°+cos15°=sin(45°-30°)+cos(45°-30°)
=sin45°cos30°-cos45°sin30°+cos45°cos30°+sin45°sin30°=2
2×32-22×12+22×32+22×12=6
2.答案 C
13.函数f (x )=sin x -3cos x (x ∈R )的最小正周期为________,最大值为________.
解析 f (x )=2⎝ ⎛⎭
⎪⎫12sin x -3
2cos x =2sin ⎝ ⎛⎭⎪⎫x -π3. ∴最小正周期T =2π,最大值为2.答案 2π 2
14.若角α的正弦线的长度为3
4,且方向与y 轴的正方向相反,则sin α的值为________. 答案 -3
4
15.化简:sin A +sin2A
1+cos A +cos2A
=________.
解析 原式=sin A +2sin A cos A cos A +2cos 2
A =sin A (1+2cos A )
cos A (1+2cos A )=tan A . 答案 tan A
16.若tan x =2,则2cos 2
x
2-sin x -1
sin x +cos x
=________.
解析 2cos 2
x
2-sin x -1sin x +cos x =cos x -sin x sin x +cos x =1-tan x tan x +1
=1-2
2+1=22-3. 答案 22-3
17.已知tan2α=1
2,则tan α的值为________.
解析 由tan2α=2tan α1-tan 2α=12,整理可得:tan 2
α+4tan α-1=0.解得:tan α=-2±5.答案 -2±5
18.已知sin(α-β)cos α-cos(β-α)sin α=4
5,β是第三象限的角,求sin ⎝
⎛
⎭
⎪⎫β+π4的值.
解 sin(α-β)cos α-cos(β-α)sin α
=sin(α-β)cos α-cos(α-β)sin α=sin[(α-β)-α]=sin(-β)=4
5, ∴sin β=-45. 又β是第三象限的角,∴cos β=-3
5. ∴sin ⎝ ⎛⎭⎪⎫β+π4=sin βcos π4+cos βsin π4=-45×22-35×22=-72
10.
19.已知函数f (x )=2sin(π-x )cos x .
(1)求f (x )的最小正周期.(2)求f (x )在区间⎣⎢⎡⎦
⎥⎤
-π6,π2上的最大值和最小
值.
解 (1)因为f (x )=2sin(π-x )cos x =2sin x cos x =sin2x , 所以函数f (x )的最小正周期为π. (2)由-π6≤x ≤π2⇒-π
3≤2x ≤π, 所以-3
2≤sin2x ≤1,
所以f (x )在区间⎣⎢⎡⎦
⎥⎤-π6,π2上的最大值为1,最小值为-3
2.
20.已知函数f (x )=cos 2x 2-sin x 2cos x 2-1
2.
(1)求函数f (x )的最小正周期和值域; (2)若f (α)=32
10,求sin2α的值.
分析 (1)先利用余弦的二倍角公式和辅助角公式将f (x )化成f (x )=A sin(ωx +φ)形式.再求解.
(2)利用同角间三角函数关系与二倍角正弦公式求值.
解 (1)由已知f (x )=cos 2
x 2-sin x 2cos x 2-12=12(1+cos x )-12sin x -1
2
=22cos ⎝ ⎛⎭
⎪⎫x +π4.
所以函数f (x )的最小正周期为2π,值域为⎣
⎢⎡⎦⎥⎤
-22,22.
(2)由(1)知,f (x )=22cos ⎝ ⎛
⎭⎪⎫α+π4=3210,∴cos ⎝ ⎛⎭⎪⎫α+π4=35. ∴cos α-sin α=325,平方得1-sin2α=1825. ∴sin2α=7
25.。