高中数学必修四测试卷
- 格式:docx
- 大小:273.53 KB
- 文档页数:5
高中数学必修四试卷一、选择题3.如果1cos()2A π+=-,那么sin()2A π+= A.12 B.12 C.12 D.124.函数2005sin(2004)2y x π=-是A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数 6.如果点(sin 2P θ,cos 2)θ位于第三象限,那么角θ所在象限是 A.第一象限 B.第二象限 C.第三象限 D.第四象限7.在四边形ABCD 中,如果0AB CD =u u u r u u u r g,AB DC =u u u r u u u r,那么四边形ABCD 的形状是 A.矩形 B.菱形 C.正方形 D.直角梯形 8.若α是第一象限角,则sin cos αα+的值与1的大小关系是 A.sin cos 1αα+> B.sin cos 1αα+= C.sin cos 1αα+< D.不能确定 9.在△ABC 中,若sin 2cos sin C A B =,则此三角形必是A.等腰三角形B.正三角形C.直角三角形D.等腰直角三角形 二、填空题(本大题共4小题,每小题5分,共20分)11.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是 .12.已知tan 2α=,3tan()5αβ-=-,则tan β= . 13.已知(3a =r ,1),(sin b α=r ,cos )α,且a r ∥b r ,则4sin 2cos 5cos 3sin αααα-+= .三、解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤) 16.(本小题满分13分)已知函数()sin22x xf x =,x R ∈. (1)求函数()f x 的最小正周期,并求函数()f x 在[2,2]x ππ∈-上的单调递增区间; (2)函数()sin ()f x x x R =∈的图象经过怎样的平移和伸缩变换可以得到函数()f x 的图象.17.已知,cos )a x m x =+r ,(cos ,cos )b x m x =-+r , 且()f x a b =v vg(1) 求函数()f x 的解析式; (2) 当,63x ππ⎡⎤∈-⎢⎥⎣⎦时, ()f x 的最小值是-4 , 求此时函数()f x 的最大值, 并求出相应的x 的值.18.(本小题满分13分)已知向量(3,4)OA =-u u u r ,(6,3)OB =-u u u r ,(5,3)OC m m =---u u u r.(1)若点,,A B C 能够成三角形,求实数m 应满足的条件; (2)若△ABC 为直角三角形,且A ∠为直角,求实数m 的值.19.(本小题满分13分)设平面内的向量(1,7)OA =u u u r ,(5,1)OB =u u u r ,(2,1)OM =u u u u r ,点P 是直线OM 上的一个 动点,且8PA PB =-u u u r u u u r g ,求OP uuu r的坐标及APB ∠的余弦值.20.(本小题满分13分)已知向量33(cos ,sin )22x x a =r ,(cos ,sin )22x x b =-r ,且[,]2x ππ∈. (1)求a b r r g及a b +r r ; (2)求函数()f x a b a b =++r r r rg的最大值,并求使函数取得最大值时x 的值.高中数学必修(4)试卷参考答案及评分标准一、选择题二、填空题11. 2 12. -13 13. 5714. (1)(2)(3) 三、解答题15.解:(1)因为5342παπ<<,所以5232παπ<<. ………………………(2分) 因此4cos 25α==-. ………………………………(4分)由2cos 22cos 1αα=-,得cos α=. ……………………(8分) (2)因为sin()sin()2cos x x ααα--++=, 所以2cos (1sin )x α-=1sin 2x =. ………………………(11分) 因为x 为锐角,所以6x π=. ………………………………………………(13分)16.解:sin2sin()2223x x x y π=+=+. (1)最小正周期2412T ππ==. ……………………………………………(3分)令123z x π=+,函数sin y z =单调递增区间是[2,2]()22k k k Z ππππ-++∈.由 1222232k x k πππππ-+≤+≤+,得 544,33k x k k Z ππππ-+≤≤+∈. ………………………………(5分) 取0k =,得533x ππ-≤≤,而5[,]33ππ-⊂[2,2]ππ-, 所以,函数sin 22x x y =,[2,2]x ππ∈-得单调递增区间是5[,]33ππ-.…………………………………………………………………………(8分)(2)把函数sin y x =图象向左平移3π,得到函数sin()3y x π=+的图象,…(10分)再把函数sin()3y x π=+的图象上每个点的横坐标变为原来的2倍,纵坐标不变,得到函数sin()23x y π=+的图象, …………………………………(11分)然后再把每个点的纵坐标变为原来的2倍,横坐标不变,即可得到函数2sin()23x y π=+的图象. …………………………………………………(13分)17.解 (1) (),cos )(cos ,cos )f x a b x m x x m x ==+-+v vgg即22()cos cos f x x x x m =+-(2) 21cos 2()2xf x m +=- 21sin(2)62x m π=++- 由,63x ππ⎡⎤∈-⎢⎥⎣⎦, 52,666x πππ⎡⎤∴+∈-⎢⎥⎣⎦, 1sin(2),162x π⎡⎤∴+∈-⎢⎥⎣⎦,211422m ∴-+-=-, 2m ∴=± max 11()1222f x ∴=+-=-, 此时262x ππ+=, 6x π=.18.解:(1)已知向量(3,4)OA =-u u u r ,(6,3)OB =-u u u r ,(5,3)OC m m =---u u u r,若点,,A B C 能构成三角形,则这三点不共线,即AB u u u r 与BC uuur 不共线. ……(4分) (3,1)AB =u u u r ,(2,1)AC m m =--u u u r,故知3(1)2m m -≠-,∴实数12m ≠时,满足条件. …………………………………………………(8分) (若根据点,,A B C 能构成三角形,必须任意两边长的和大于第三边的长,即由AB u u u rBC CA +>u u u r u u u r去解答,相应给分)(2)若△ABC 为直角三角形,且A ∠为直角,则AB AC ⊥u u u r u u u r, …………(10分)∴3(2)(1)0m m -+-=, 解得74m =. …………………………………………………………………(13分) 19.解:设(,)OP x y =u u u r . ∵点P 在直线OM 上,∴OP uuu r 与OM u u u u r 共线,而OM u u u u r(2,1)=,∴20x y -=,即2x y =,有(2,)OP y y =u u u r. ………………………………(2分) ∵(12,7)PA OA OP y y =-=--u u u r u u u r u u u r ,(52,1)PB OB OP y y =-=--u u u r u u u r u u u r,……(4分) ∴(12)(52)(7)(1)PA PB y y y y =--+--u u u r u u u rg ,即252012PA PB y y =-+u u u r u u u r g . …………………………………………………(6分)又8PA PB =-u u u r u u u r g , ∴2520128y y -+=-,所以2y =,4x =,此时(4,2)OP =u u u r. ……………………………………(8分) (3,5),(1,1)PA PB =-=-u u u r u u u r.于是8PA PB PA PB ===-u u u r u u u r u u u r u u u rg . …………………………………(10分)∴cos 17PA PB APB PA PB∠===-⋅u u u r u u u rg u u u r u u u r . ………………………(13分) 20.解:(1)33cos cos sin sin cos 22222x x x xa b x =-=r r g , ……………………(3分)a b +=r r ………………………(4分)=2cos x == …………………………………………(7分) ∵[,]2x ππ∈, ∴cos 0x <.∴2cos a b x +=-r r. …………………………………………………………(9分) (2)2()cos 22cos 2cos 2cos 1f x a b a b x x x x =++=-=--r r r r g2132(cos )22x =-- …………………………………………………(11分) ∵[,]2x ππ∈, ∴1cos 0x -≤≤, ……………………………………(13分)∴当cos 1x =-,即x π=时max ()3f x =. ………………………………(15分)。
第三章三角恒等变换综合检测题本试卷分第I 卷选择题和第U 卷非选择题两部分,满分150分,时间120 分钟。
第I 卷(选择题共60分)一、选择题(本大题共12个小题,每小题 5分,共60分,在每小题给出的四个选项中 只有一个是符合题目要求的 )n 3 41 .已知 0v av 2v 3<n 又 sin a= 5, cos (a+ ®= — 5,贝V sin ()B . 0 或 2424 C.25 24 D . ±25 [答案]Cn 3 4[解析]•/ 0v av 2 v 3v n 且 sin a= 5, COS ( a+ 3 = — 54 n3 3• cos a= 5 , 2< a+ 3v ㊁ n, • sin( a+ 3 = ±5,=sin( a+ 3cos a — cos( a+ 3)sin a才< 3v n ••• sin 3> 0•故排除 A , B , D.4 3 4⑵由 cos( a+ 3)= — 5及 Sin a= 3可得 sin 3= §(1 + cos 3)代入 sin 2 3+ cos 2 3= 1 中可解得 cos37 n=—1或一25,再结合2<仟n 可求sin 32.若sin Bv 0, cos2 0v 0,则在(0,2 内)B 的取值范围是()3 n3=0.sin3=- 5x 4-又氏才,n j, • sin 3> 0,故 sin 3= 24当 sin( a+ 3 =,sin 3= sin [( a+ a[点评](1)可用排除法求解,T=器53 245 = 25;A . n< 0< 25 nB.5T <e< ¥3 nC.y <e< 2 nD.严< 0<孕4 4[答案]B[解析]2 2 2•/ cos2 e< 0, • 1 —2sin < 0,即sin e>2或sin < —"2,又已知sin < 0, •— 1 < sin e<—亠2,2由正弦曲线得满足条件的e取值为54n<e< ¥3. 函数y= sin2x+ cos2x的图象,可由函数y= sin2x —cos2x的图象()A .向左平移f个单位得到B .向右平移f个单位得到8c.向左平移n个单位得到4D .向右平移4个单位得到[答案]C[解析]y= sin2x+ cos2x= , 2sin(2x+J=2si n2(x +》_ n _ ny= sin2x—cos2x= 2sin(2x—4)= . 2sin2(x—§)n n n其中x+8=(x+ 4)—8n•••将y= sin2x—cos2x的图象向左平移:个单位可得y= sin2x+ cos2x的图象.44. 下列各式中,值为~2的是()A . 2sin 15 cos15 °2 2B. cos 15。
1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年陕西省商洛市高中数学人教B 版 必修四-立体几何初步-章节测试(3)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)①②③④①④②③1.关于直线m ,n 与平面 , 有以下四个命题:①若且 , 则m//n ; ②若且 , 则;③若且 , 则; ④若且 , 则m//n ;其中真命题的序号是( )A. B. C. D. 2.在各棱长均相等的四面体中,已知 是棱的中点,则异面直线 与 所成角的余弦值为( )A. B. C. D. 只有一条,不在平面α内有无数条,不一定在平面α内只有一条,且在平面α内有无数条,一定在平面α内3. 已知直线l ∥平面α , P ∈α , 那么过点P且平行于直线l 的直线A. B. C.D. ,则4. 设是空间中不同的直线, 是不同的平面,则下列说法正确的是( )A. B. C. D.5. 两条异面直线所成的角的范围是( )A. B. C. D.6. 在棱长为的正方体中,P 为左侧面上一点,已知点P 到的距离为 , P 到的距离为 ,ABCD 则过点P 且与平行的直线相交的面是()A. B. C. D.7. 已知圆锥的底面半径为, 其侧面展开图为一个半圆,则该圆锥的母线长为( )A. B. C. D. 平面平面PDE 平面平面PBC 平面平面BCDE平面平面BCDE8. 已知菱形ABCD 的边长为2,, E 是AD 的中点,沿BE 将折起至的位置,使 , 则下列结论中错误的是( ).A. B. C. D. .9. 三角形ABC中,, AB=3,BC=1 ,以边AB 所在直线为旋转轴,其余各边旋转一周而形成的曲面所围成的几何体的体积为( )A. B. C. D.600立方寸610立方寸620立方寸633立方寸10. 《九章算术》是我国古代著名数学经典,其中有这样一个问题,“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺问径几何?”类似地:如今有长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦尺,弓形高寸,估算该木材镶嵌在墙中的体积(最接近的一项)约为( )(注:1丈=10尺=100寸,,)A. B. C. D. 直棱柱的侧棱都相等,侧面都是矩形用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直棱台的侧棱延长后交于一点,且棱台侧面均为梯形11. 下列命题错误的是( )A. B. C. D. 12. 若一个几何体的三视图如图所示,则这个几何体的外接球的表面积为( )A. B. C. D.34π114π13. 已知三棱锥的四个顶点都在球的球面上,且,,,则球的表面积为 .14. 如图,正方形的边长为1,它是一个水平放置的平面图形的直观图,则原图形的周长为.15. 等边三角形ABC的三个顶点在一个O为球心的球面上,G为三角形ABC的中心,且OG= .且△ABC的外接圆的面积为,则球的体积为.16. 若正方体的表面积为则其体积为 .17. 如图,三棱柱中,,,平面平面 .(1) 求证:;(2) 若,直线与平面所成角为,为的中点,求二面角的余弦值.18. 如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1) 证明:BE⊥平面EB1C1;(2) 若AE=A1E,AB=3,求四棱锥的体积.19. 如图,在三棱柱ABC﹣A1B1C1中,面ABB1A1为矩形,AB=1,AA1= ,D为AA1的中点,BD与AB1交于点O,CO⊥面A BB1A1(Ⅰ)证明:BC⊥AB1(Ⅱ)若OC=OA,求二面角A﹣BC﹣B1的余弦值.20. 如图,在直三棱柱中,分别是和的中点.(Ⅰ)求证:平面;(Ⅱ)若上一点满足,求与所成角的余弦值.21. 如图,在三棱柱中,平面,点是的中点,,, .(1) 求证:平面平面;(2) 求点到平面的距离.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)18.(1)(2)19.20.(1)(2)。
高中数学必修四总复习测试题第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.)1.化简sin()2απ+等于( ). A.cos α B.sin α C.cos α- D.sin α-2.已知M 是ABC ∆的BC 边上的一个三等分点,且BM MC <,若AB = a ,AC =b ,则AM 等于( ).A.1()3-a bB.1()3+a bC.1(2)3+b aD.1(2)3+a b3.已知3tan =α,则αααα22cos 9cos sin 4sin 2-+的值为( ). A.3 B.1021 C.31 D.301 4.化简=--+( ). A. B.0 C. D. 5.函数x x y 2cos 2sin =是( ). A.周期为4π的奇函数 B.周期为2π的奇函数 C.周期为2π的偶函数 D.周期为4π的偶函数 6.已知)7,2(-M ,)2,10(-N ,点P 是线段MN 上的点,且−→−PN −→−-=PM 2,则P 点的坐标为( ). A.)16,14(- B.)11,22(- C.)1,6( D.)4,2( 7.已知函数sin()y A x B ωφ=++(0,0,||2A ωφπ>><)的周期为T ,在一个周期内的图象如图所示,则正确的结论是( ). A.3,2A T ==π B.2,1=-=ωBC.4,6T φπ=π=-D.3,6A φπ== 8.将函数sin()3y x =-π的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图像向左平移3π个单位,则所得函数图像对应的解析式为( ). A.1sin(26y x =-π B.1sin()23y x =-π C.1sin 2y x = D.sin(2)6y x =-π9.若平面四边形ABCD 满足0,()0AB CD AB AD AC +=-⋅=,则该四边形一定是( ).A.直角梯形B.矩形C.菱形D.正方形10.函数()sin 2cos2f x x x =-的最小正周期是( ).A.π2B.πC.2πD.4π11.设单位向量1e ,2e 的夹角为︒60,则向量1234e e +与向量1e 的夹角的余弦值是( ). A.43 B.375 C.3725 D.375 12.定义运算⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡df ce bf ae f e d c b a ,如⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡1514543021,已知αβ+=π,2αβπ-=,则=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡ββααααsin cos sin cos cos sin ( ). A.00⎡⎤⎢⎥⎣⎦ B.01⎡⎤⎢⎥⎣⎦ C.10⎡⎤⎢⎥⎣⎦D.11⎡⎤⎢⎥⎣⎦第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分. 把答案填在题中的横线上.) 13.︒75sin 的值为 .14.已知向量(2,4)=a ,(1,1)=b ,若向量()⊥+λb a b ,则实数λ的值是.15.︒︒︒80cos 40cos 20cos 的值为_____________________________. 16.在下列四个命题中:①函数tan()4y x π=+的定义域是{,}4x x k k π≠+π∈Z ; ②已知1sin 2α=,且[0,2]α∈π,则α的取值集合是{}6π;③函数x a x x f 2cos 2sin )(+=的图象关于直线8x π=-对称,则a 的值等于1-;④函数2cos sin y x x =+的最小值为1-.把你认为正确的命题的序号都填在横线上____________________.三、解答题(本大题共6小题,共74分,解答应写出必要的文字说明、证明过程及演算步骤.) 17.(本小题满分10分)已知4cos()45x π+=,(,)24x ππ∈--,求xxx tan 1sin 22sin 2+-的值.18.(本小题满分12分)已知函数()sin sin()2f x x x π=++,x ∈R . (1)求)(x f 的最小正周期;(2)求)(x f 的的最大值和最小值; (3)若43)(=αf ,求α2sin 的值.19.(本小题满分12分)(1)已知函数1()sin()24f x x π=+,求函数在区间[2,2]-ππ上的单调增区间; (2)计算:)120tan 3(10cos 70tan -︒︒︒.20.(本小题满分13分)已知函数()sin()f x x ωφ=+(0>ω,0φ≤≤π)为偶函数,其图象上相邻的两个最高点之间的距离为2π.(1)求)(x f 的解析式; (2)若(,)32αππ∈-,1()33f απ+=,求5sin(2)3απ+的值.21.(本小题满分13分)已知a ,b ,c 是同一平面内的三个向量,其中)2,1(=a .(1)若||=c ,且//c a ,求c 的坐标;(2)若||=b ,且2+a b 与2-a b 垂直,求a 与b 的夹角θ.22.(本小题满分14分)已知向量33(cos ,sin )22x x =a ,(cos ,sin )22x x =-b ,且[0,]2x π∈,()2||f x =⋅-λ+a b a b (λ为常数),求:(1)⋅a b 及||+a b ; (2)若)(x f 的最小值是23-,求实数λ的值.参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.)1.A 由诱导公式易得A 正确.2.C BC =- b a ,11()33BM BC ==- b a ,11()(2)33AM AB BM =+=+-=+ a b a b a .3.B αααααααααα222222cos sin cos 9cos sin 4sin 2cos 9cos sin 4sin 2+-+=-+10211tan 9tan 4tan 222=+-+=ααα. 4.B )()(=-=+-+=--+. 5.B x x x y 4sin 212cos 2sin ==,故是周期为2π的奇函数. 6.D 设),(y x P ,则)2,10(y x ---=,)7,2(y x ---=, −→−PN ⎩⎨⎧==⇒⎩⎨⎧--=-----=-⇒-=−→−.4,2),7(22),2(2102y x y y x x PM 7.C ⎩⎨⎧-==⇒⎩⎨⎧-=+-=+,1,3,4,2B A B A B A ππππ42)32(342=⇒=--=T T ,21422===πππωT ,623421πϕπϕπ-=⇒=+⨯. 8.A sin()sin()sin[(]sin(3336111))2232y x y y x x x πππππ=-→=→==-+--.9.C 0AB CD AB CD +=⇒=-⇒四边形ABCD 为平行四边形,()0AB AD AC DB AC DB AC -⋅=⋅=⇒⊥,对角线互相垂直的平行四边形为菱形.10.B ()sin 2cos 2)4f x x x x π=-=-,ππ==22T .11.D 1||1=e ,1||2=e ,2160cos ||||2121=︒⋅=⋅e e e e ,543)43(2121121=⋅+=⋅+e e e e e e ,37|43|21===+e e ,375|||43|cos 121121=⋅+=e e e θ.12.A ⎥⎦⎤⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡002cos sin )cos()sin(sin sin cos cos sin cos cos sin sin cos sin cos cos sin ππβαβαβαβαβαβαββαααα.二、填空题(本大题共4小题,每小题4分,共16分. 把答案填在题中的横线上.) 13.426+ ︒︒+︒︒=︒+︒=︒30sin 45cos 30cos 45sin )3045sin(75sin 42621222322+=⨯+⨯=. 14.3- 30)4(2)4,2()1,1()()(-=⇒=+++=++⋅=+⋅⇒+⊥λλλλλλλ. 15.818120sin 8160sin 20sin 880cos 40cos 20cos 20sin 880cos 40cos 20cos =︒︒=︒︒︒︒︒=︒︒︒. 16.①③④ )(424Z k k x k x ∈+≠⇒+≠+πππππ,故①正确;1sin 2α=,且[0,2]6παπα∈⇒=或65πα=,故②不正确;函数)(x f 的图象关于直线8π-=x 对称1)4()0(-=⇒-=⇒a f f π,故③正确;22215cos sin 1sin sin (sin )24y x x x x x =+=-+=--+,451≤≤-y ,故④正确. 三、解答题(本大题共6小题,共74分,解答应写出必要的文字说明、证明过程及演算步骤.) 17.解:∵)4,2(ππ--∈x , ∴)0,4(4ππ-∈+x ,∵54)4cos(=+x π, ∴53)4sin(-=+x π,4sin)4cos(4cos)4sin(]4)4sin[(sin ππππππx x x x +-+=-+=102722542253-=⋅-⋅-=, ∴102cos =x , ∴7528sin cos )sin (cos cos sin 2cos sin 1sin 2cos sin 2tan 1sin 22sin 22=+-=+-=+-x x x x x x xx x x x x x x .18.解:)4sin(2cos sin )2sin(sin )(ππ+=+=++=x x x x x x f ,(1))(x f 的最小正周期为ππ212==T ; (2))(x f 的最大值为2和最小值2-;(3)因为43)(=αf ,即167cos sin 2169)cos (sin 43cos sin 2-=⇒=+⇒=+αααααα,即1672sin -=α. 19.解:(1)由πππππk x k 2242122+≤+≤+-(Z k ∈)得ππππk x k 42423+≤≤+-(Z k ∈),当0=k 时,得223ππ≤≤-x , ]2,2[]2,23[ππππ-⊂-,且仅当0=k 时符合题意,∴函数)421sin()(π+=x x f 在区间]2,2[ππ-上的单调增区间是]2,23[ππ-. (2)︒︒-︒⋅︒⋅︒︒=-︒︒︒20cos 20cos 20sin 310cos 70cos 70sin )120tan 3(10cos 70tan ︒︒⋅︒︒-=︒︒-⋅︒⋅︒︒=20cos 20sin 70cos 70sin 20cos 10sin 210cos 70cos 70sin120cos 20sin 20sin 20cos -=︒︒⋅︒︒-=. 20.解:(1)∵图象上相邻的两个最高点之间的距离为π2,∴π2=T , 则12==Tπω, ∴)sin()(ϕ+=x x f ,∵)(x f 是偶函数, ∴)(2Z k k ∈+=ππϕ,又πϕ≤≤0, ∴2πϕ=, 则x x f cos )(=.(2)由已知得31)3cos(=+πα, ∵)2,3(ππα-∈, ∴)65,0(3ππα∈+, 则322)3sin(=+πα, ∴924)3cos()3sin(2)322sin()352sin(-=++-=+-=+παπαπαπα. 21.解:(1)设),(y x c =, ∵a c //,)2,1(=a , ∴02=-y x , ∴x y 2=,∵52||=, ∴5222=+y x , ∴2022=+y x , 即20422=+x x ,∴⎩⎨⎧==,4,2y x 或⎩⎨⎧-=-=,4,2y x∴)4,2(=或)4,2(--=(2)∵⊥+2-2, ∴)2(+0)2(=-⋅,∴023222=-⋅+b b a a , 即0||23||222=-⋅+b b a a , 又∵5||2=,45)25(||22==, ∴0452352=⨯-⋅+⨯b a , ∴25-=⋅b a , ∵5||=a ,25||=b , ∴125525||||cos -=⋅-=⋅=b a θ,∵],0[πθ∈, ∴πθ=. 22.解:(1)x xx x x 2cos 2sin 23sin 2cos 23cos=-=⋅, x x xx x x 222cos 22cos 22)2sin 23(sin )2cos 23(cos||=+=-++=+, ∵]2,0[π∈x , ∴0cos ≥x , x cos 2||=+.(2)2221)(cos 2cos 42cos )(λλλ---=-=x x x x f ,∵]2,0[π∈x , ∴1cos 0≤≤x ,①当0<λ时,当且仅当0cos =x 时,)(x f 取得最小值1-,这与已知矛盾;②当10≤≤λ,当且仅当λ=x cos 时,)(x f 取得最小值221λ--,由已知得23212-=--λ,解得21=λ; ③当1>λ时,当且仅当1cos =x 时,)(x f 取得最小值λ41-, 由已知得2341-=-λ,解得85=λ,这与1>λ相矛盾. 综上所述,21=λ为所求.。
必修四第一章复习题一、选择题(本大题共12小题,每题5分,共60分)1.下列说法中,正确的是( )A .第二象限的角是钝角B .第三象限的角必大于第二象限的角C .-831°是第二象限角D .-95°20′,984°40′,264°40′是终边相同的角2.若点(a,9)在函数y =3x 的图象上,则tan a π6的值为( ) A .0 B.33 C .1 D. 33.若|cos θ|=cos θ,|tan θ|=-tan θ,则θ2的终边在( )A .第一、三象限B .第二、四象限C .第一、三象限或x 轴上D .第二、四象限或x 轴上4.如果函数f (x )=sin(πx +θ)(0<θ<2π)的最小正周期是T ,且当 x =2时取得最大值,那么( )A .T =2,θ=π2B .T =1,θ=πC .T =2,θ=πD .T =1,θ=π25.若sin ⎝ ⎛⎭⎪⎫π2-x =-32,且π<x <2π,则x 等于( ) A.43π B.76π C.53π D.116π6.已知a 是实数,而函数f (x )=1+a sin ax 的图象不可能是( )7.将函数y =sin x 的图象向左平移φ(0≤φ<2π)个单位长度后,得到y =sin ⎝ ⎛⎭⎪⎫x -π6的图象,则φ=( ) A.π6 B.5π6 C.7π6 D.11π68.若tan θ=2,则2sin θ-cos θsin θ+2cos θ的值为( ) A .0 B .1 C.34 D.549.函数f (x )=tan x 1+cos x的奇偶性是( ) A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数10.函数f (x )=x -cos x 在(0,+∞)内( )A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点cos A )=m ,lg 11-cos A =n ,则lgsin A B .m -nD.12(m -n ) C , 对称;②函数f (x )在区间⎝ ⎛⎭⎪⎫-π12,5π12内是增函数; ③由y =3sin2x 的图象向右平移π3个单位长度可以得到图象C ,其中正确命题的个数是( )A .0B .1C .2D .3二、填空题(本大题共4小题,每题5分,共20分.将答案填在题中横线上)13.已知sin ⎝ ⎛⎭⎪⎫α+π2=13,α∈⎝ ⎛⎭⎪⎫-π2,0,则tan α=________. 14.函数y =3cos x (0≤x ≤π)的图象与直线y =-3及y 轴围成的图形的面积为________.15.已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.16.给出下列命题:①函数y =cos ⎝ ⎛⎭⎪⎫23x +π2是奇函数; ②存在实数x ,使sin x +x =2;③若α,βα<β,则tan α<tan β;④x =π8是函数y =sin ⎝ ⎛⎭⎪⎫2x +5π4的一条对称轴; ⑤函数y =sin ⎝⎛⎭⎪⎫2x +π3的图象关于点⎝ ⎛⎭⎪⎫π12,0成中心对称. 其中正确命题的序号为__________.小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知方程sin(α-3π)=2cos(α-4π),求sin (π-α)+5cos (2π-α)2sin ⎝ ⎛⎭⎪⎫3π2-α-sin (-α)的值.18.(12分)在△ABC 中,sin A +cos A =22,求tan A 的值.19.(12分)已知f (x )=sin ⎝⎛2x (1)求函数f (x )(2)求函数f (x )(3)函数f (x )换得到?20.(12分)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象过点P ⎝ ⎛⎭⎪⎫π12,0,图象与P 点最近的一个最高点坐标为⎝ ⎛⎭⎪⎫π3,5. (1)求函数解析式;(2)求函数的最大值,并写出相应的x 的值;(3)求使y ≤0时,x 的取值范围.21.(12分)已知cos ⎝ ⎛⎭⎪⎫π2-α=-2sin ⎝ ⎛⎭⎪⎫π2+β,且0<α<π22.(12分)已知函数f (x )=x 2+2x tan θ-1,x ∈[-1,3],其中θ∈⎝ ⎛⎭⎪⎫-π2,π2. (1)当θ=-π6时,求函数的最大值和最小值;(2)求θ的取值范围,使y =f (x )在区间[-1,3]上是单调函数(在指定区间为增函数或减函数称为该区间上的单调函数).。
人教A版高中数学必修四测试题及答案全套人教A版高中数学必修四测试题及答案全套阶段质量检测(一)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.在0°~360°的范围内,与-510°终边相同的角是()A。
330° B。
210° C。
150° D。
30°2.若sinα = 3/3,π/2 < α < π,则sin(α+π/2) = ()A。
-6/3 B。
-1/2 C。
16/2 D。
33.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A。
2 B。
2sin1 C。
2sin1 D。
sin24.函数f(x) = sin(x-π/4)的图象的一条对称轴是()A。
x = π/4 B。
x = π/2 C。
x = -π/4 D。
x = -π/25.化简1+2sin(π-2)·cos(π-2)得()A。
sin2+cos2 B。
cos2-sin2 C。
sin2-cos2 D。
±cos2-sin26.函数f(x) = tan(x+π/4)的单调增区间为()A。
(kπ-π/2.kπ+π/2),k∈Z B。
(kπ。
(k+1)π),k∈ZC。
(kπ-4π/4.kπ+4π/4),k∈Z D。
(kπ-3π/4.kπ+3π/4),k∈Z7.已知sin(π/4+α) = 1/√2,则sin(π/4-α)的值为()A。
1/3 B。
-1/3 C。
1/2 D。
-1/28.设α是第三象限的角,且|cosα| = α/2,则α的终边所在的象限是()A。
第一象限 B。
第二象限 C。
第三象限 D。
第四象限9.函数y = cos2x+sinx在[-π/6.π/6]的最大值与最小值之和为()A。
3/4 B。
2 C。
1/3 D。
4/310.将函数y = sin(x-π/3)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移一个单位,得到的图象对应的解析式为()A。
人教A 版高中数学必修四测试题及答案全套阶段质量检测(一)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在0°~360°的范围内,与-510°终边相同的角是( ) A .330° B .210° C .150° D .30° 2.若sin α=33,π2<α<π,则sin ⎝⎛⎭⎫α+π2=( ) A .-63B .-12C.12D.633.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( ) A .2 B.2sin 1C .2sin 1D .sin 24.函数f (x )=sin ⎝⎛⎭⎫x -π4的图象的一条对称轴是( )A .x =π4B .x =π2C .x =-π4D .x =-π25.化简1+2sin (π-2)·cos (π-2)得( ) A .sin 2+cos 2 B .cos 2-sin 2 C .sin 2-cos 2 D .±cos 2-sin 26.函数f (x )=tan ⎝⎛⎭⎫x +π4的单调增区间为( )A.⎝⎛⎫k π-π2,k π+π2,k ∈ZB .(k π,(k +1)π),k ∈Z C.⎝⎛⎭⎫k π-3π4,k π+π4,k ∈ZD.⎝⎛⎭⎫k π-π4,k π+3π4,k ∈Z7.已知sin ⎝⎛⎭⎫π4+α=32,则sin ⎝⎛⎭⎫3π4-α的值为( )A.12B .-12 C.32 D .-32 8.设α是第三象限的角,且⎪⎪⎪⎪cosα2=-cos α2,则α2的终边所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9.函数y =cos 2x +sin x ⎝⎛⎭⎫-π6≤x ≤π6的最大值与最小值之和为( )A.32B .2 C .0 D.3410.将函数y =sin ⎝⎛⎭⎫x -π3的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移π3个单位,得到的图象对应的解析式为( )A .y =sin 12xB .y =sin ⎝⎛⎭⎫12x -π2C .y =sin ⎝⎛⎭⎫12x -π6 D .y =sin ⎝⎛⎭⎫2x -π611.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的一段图象如图所示,则函数的解析式为( )A .y =2sin ⎝⎛⎭⎫2x -π4B .y =2sin ⎝⎛⎭⎫2x -π4或y =2sin ⎝⎛⎭⎫2x +3π4C .y =2sin ⎝⎛⎭⎫2x +3π4D .y =2sin ⎝⎛⎭⎫2x -3π412.函数f (x )=A sin ωx (ω>0),对任意x 有f ⎝⎛⎭⎫x -12=f ⎝⎛⎭⎫x +12,且f ⎝⎛⎭⎫-14=-a ,那么f ⎝⎛⎭⎫94等于( ) A .a B .2a C .3a D .4a二、填空题(本大题共4小题,每小题5分,共20分) 13.已知tan α=-3,π2<α<π,那么cos α-sin α的值是________. 14.设f (n )=cos ⎝⎛⎫n π2+π4,则f (1)+f (2)+f (3)+…+f (2 015)等于________.15.定义运算a *b 为a *b =⎩⎪⎨⎪⎧a (a ≤b ),b (a >b ),例如1*2=1,则函数f (x )=sin x *cos x 的值域为________.16.给出下列4个命题:①函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫2x -π12的最小正周期是π2;②直线x =7π12是函数y =2sin ⎝⎛⎭⎫3x -π4的一条对称轴;③若sin α+cos α=-15,且α为第二象限角,则tan α=-34;④函数y =cos(2-3x )在区间⎝⎛⎭⎫23,3上单调递减.其中正确的是________.(写出所有正确命题的序号).三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(10分)已知tan αtan α-1=-1,求下列各式的值:(1)sin α-3cos αsin α+cos α;(2)sin 2α+sin αcos α+2. 18.(12分)已知函数f (x )=2sin ⎝⎛⎭⎫13x -π6,x ∈R .(1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f (x )的单调递增区间. 19.(12分)已知函数f (x )=3sin ⎝⎛⎭⎫x +π4.(1)用五点法画出它在一个周期内的闭区间上的图象;(2)写出f (x )的值域、最小正周期、对称轴,单调区间.20.(12分)如图,函数y =2sin(πx +φ),x ∈R ⎝⎛⎭⎫其中0≤φ≤π2的图象与y 轴交于点(0,1).(1)求φ的值;(2)求函数y =2sin(πx +φ)的单调递增区间; (3)求使y ≥1的x 的集合.21.(12分)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π),在同一周期内,当x =π12时,f (x )取得最大值3;当x =7π12时,f (x )取得最小值-3.(1)求函数f (x )的解析式; (2)求函数f (x )的单调递减区间;(3)若x ∈⎣⎡⎦⎤-π3,π6时,函数h (x )=2f (x )+1-m 的图象与x 轴有两个交点,求实数m 的取值范围.22.(12分)如图,函数y =2cos(ωx +θ)(x ∈R ,ω>0,0≤θ⎭⎫≤π2的图象与y 轴交于点(0,3),且该函数的最小正周期为π.(1)求θ和ω的值;(2)已知点A ⎝⎛⎭⎫π2,0,点P 是该函数图象上一点,点Q (x 0,y 0)是P A 的中点,当y 0=32,x 0∈⎣⎡⎦⎤π2,π时,求x 0的值.答 案1. 解析:选B 因为-510°=-360°³2+210°,因此与-510°终边相同的角是210°.2. 解析:选A ∵sin ⎝⎛⎭⎫π2+α=cos α,又π2<α<π,sin α=33,∴cos α=-63. 3. 解析:选B 如图,由题意知θ=1,BC =1,圆的半径r 满足sin θ=sin 1=1r ,所以r =1sin 1,弧长AB =2θ·r =2sin 1.4. 解析:选C f (x )=sin ⎝⎛⎭⎫x -π4的图象的对称轴为x -π4=k π+π2,k ∈Z ,得x =k π+3π4,当k =-1时,则其中一条对称轴为x =-π4.5. 解析:选C1+2sin (π-2)·cos (π-2)=1+2sin 2·(-cos 2) =(sin 2-cos 2)2, ∵π2<2<π,∴sin 2-cos 2>0. ∴原式=sin 2-cos 2.6. 解析:选C 令k π-π2<x +π4<k π+π2,k ∈Z ,解得k π-3π4<x <k π+π4,k ∈Z ,选C.7. 解析:选C ∵⎝⎛⎭⎫π4+α+⎝⎛⎭⎫3π4-α=π, ∴3π4-α=π-⎝⎛⎭⎫π4+α,∴sin ⎝⎛⎭⎫3π4-α=sin ⎣⎡⎦⎤π-⎝⎛⎭⎫π4+α=sin ⎝⎛⎭⎫π4+α=32. 8. 解析:选B ∵α是第三象限的角, ∴π+2k π<α<3π2+2k π,k ∈Z .∴π2+k π<α2<3π4+k π,k ∈Z . ∴α2在第二或第四象限. 又∵⎪⎪⎪⎪cosα2=-cos α2,∴cos α2<0.∴α2是第二象限的角. 9. 解析:选A f (x )=1-sin 2x +sin x =-⎝⎛⎭⎫sin x -122+54,∵-π6≤x ≤π6, ∴-12≤sin x ≤12.当sin x =-12时,f (x )min =14;当sin x =12时,f (x )max =54,∴f (x )min +f (x )max =14+54=32.10. 解析:选C 将函数y =sin ⎝⎛⎭⎫x -π3的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),即将x 变为12x ,即可得y =sin ⎝⎛⎭⎫12x -π3,然后将其图象向左平移π3个单位,即将x 变为x +π3.∴y =sin ⎣⎡⎦⎤12⎝⎛⎭⎫x +π3-π3=sin ⎝⎛⎭⎫12x -π6.11. 解析:选C 由图象可知A =2,因为π8-⎝⎛⎭⎫-π8=π4,所以T =π,ω=2.当x =-π8时,2sin ⎝⎛⎭⎫-π8·2+φ=2,即sin ⎝⎛⎭⎫φ-π4=1,又|φ|<π,解得φ=3π4.故函数的解析式为y =2sin ⎝⎛⎭⎫2x +3π4.12. 解析:选A 由f ⎝⎛⎭⎫x -12=f ⎝⎛⎭⎫x +12,得f (x +1)=f ⎝⎛⎭⎫⎝⎛⎭⎫x +12+12=f ⎝⎛⎭⎫x +12-12=f (x ), 即1是f (x )的周期.而f (x )为奇函数, 则f ⎝⎛⎭⎫94=f ⎝⎛⎭⎫14=-f ⎝⎛⎭⎫-14=a . 13. 解析:因为π2<α<π,所以cos α<0,sin α>0,所以cos α=-cos 2α=-cos 2αcos 2α+sin 2α=-11+tan 2α=-11+3=-12.sin α=32, 所以cos α-sin α=-1+32.答案:-1+3214. 解析:f (n )=cos ⎝⎛⎭⎫n π2+π4的周期T =4,且f (1)=cos ⎝⎛⎭⎫π2+π4=cos 3π4=-22,f (2)=cos ⎝⎛⎭⎫π+π4=-22,f (3)=cos ⎝⎛⎭⎫3π2+π4=22, f (4)=cos ⎝⎛⎭⎫2π+π4=22.所以f (1)+f (2)+f (3)+f (4)=0, 所以f (1)+f (2)+f (3)+…+f (2 015) =f (1)+f (2)+f (3)=-22. 答案:-2215. 解析:由题意可知,这实际上是一个取小的自定义函数,结合函数的图象可得其值域为⎣⎡⎦⎤-1,22. 答案:⎣⎡⎦⎤-1,22 16. 解析:函数y =sin ⎝⎛⎭⎫2x -π12的最小正周期是π,则y =⎪⎪⎪⎪sin ⎝⎛⎭⎫2x -π12的最小正周期为π2,故①正确.对于②,当x =7π12时,2sin ⎝⎛⎭⎫3³7π12-π4=2sin 3π2=-2,故②正确.对于③,由(sin α+cos α)2=125得2sin αcos α=-2425,α为第二象限角,所以sin α-cos α=1-2sin αcos α=75,所以sin α=35,cos α=-45,所以tan α=-34,故③正确.对于④,函数y =cos(2-3x )的最小正周期为2π3,而区间⎝⎛⎭⎫23,3长度73>2π3,显然④错误. 答案:①②③17. 解:由tan αtan α-1=-1,得tan α=12.(1)sin α-3cos αsin α+cos α=tan α-3tan α+1=12-312+1=-53.(2)sin 2α+sin αcos α+2=sin 2α+sin αcos α+2(cos 2α+sin 2α) =3sin 2α+sin αcos α+2cos 2αsin 2α+cos 2α=3tan 2α+tan α+2tan 2α+1=3⎝⎛⎭⎫122+12+2⎝⎛⎭⎫122+1=135.18. 解:(1)f ⎝⎛⎭⎫5π4=2sin ⎝⎛⎭⎫13³5π4-π6=2sin π4=2(2)令2k π-π2≤13x -π6≤π2+2k π,k ∈Z ,所以2k π-π3≤13x ≤2π3+2k π,k ∈Z ,解得6k π-π≤x ≤2π+6k π,k ∈Z ,所以函数f (x )=2sin ⎝⎛⎭⎫13x -π6的单调递增区间为[6k π-π,2π+6k π],k ∈Z .19. 解:(1)列表如下:描点画图如图所示.(2)由图可知,值域为[-3,3],最小正周期为2π, 对称轴为x =π4+k π,k ∈Z ,单调递增区间为⎣⎡⎦⎤-3π4+2k π,π4+2k π(k ∈Z ),单调递减区间为⎣⎡⎦⎤π4+2k π,5π4+2k π(k ∈Z ).20. 解:(1)因为函数图象过点(0,1), 所以2sin φ=1,即sin φ=12.因为0≤φ≤π2,所以φ=π6.(2)由(1)得y =2sin ⎝⎛⎭⎫πx +π6,所以当-π2+2k π≤πx +π6≤π2+2k π,k ∈Z ,即-23+2k ≤x ≤13+2k ,k ∈Z 时,y =2sin ⎝⎛⎭⎫πx +π6是增函数,故y =2sin ⎝⎛⎭⎫πx +π6的单调递增区间为⎣⎡⎦⎤-23+2k ,13+2k ,k ∈Z . (3)由y ≥1,得sin ⎝⎛⎭⎫πx +π6≥12,所以π6+2k π≤πx +π6≤5π6+2k π,k ∈Z ,即2k ≤x ≤23+2k ,k ∈Z ,所以y ≥1时,x 的集合为⎩⎨⎧⎭⎬⎫x |2k ≤x ≤23+2k ,k ∈Z .21. 解:(1)由题意,A =3,T =2⎝⎛⎭⎫7π12-π12=π,ω=2πT =2. 由2³π12+φ=π2+2k π,k ∈Z ,得φ=π3+2k π,k ∈Z ,又因为-π<φ<π,所以φ=π3.所以f (x )=3sin ⎝⎛⎭⎫2x +π3.(2)由π2+2k π≤2x +π3≤3π2+2k π,k ∈Z ,得π6+2k π≤2x ≤7π6+2k π,k ∈Z , 则π12+k π≤x ≤7π12+k π,k ∈Z , 所以函数f (x )的单调递减区间为⎣⎡⎦⎤π12+k π,7π12+k π(k ∈Z ).(3)由题意知,方程sin ⎝⎛⎫2x +π3=m -16在⎣⎡⎤-π3,π6上有两个根.因为x ∈⎣⎡⎦⎤-π3,π6,所以2x +π3∈⎣⎡⎦⎤-π3,2π3.所以m -16∈⎣⎡⎭⎫32,1.所以m ∈[33+1,7).22. 解:(1)把(0,3)代入y =2cos(ωx +θ)中, 得cos θ=32. ∵0≤θ≤π2,∴θ=π6.∵T =π,且ω>0,∴ω=2πT =2ππ=2.(2)∵点A ⎝⎛⎭⎫π2,0,Q (x 0,y 0)是P A 的中点,y 0=32,∴点P 的坐标为⎝⎛⎭⎫2x 0-π2,3.∵点P 在y =2cos ⎝⎛⎭⎫2x +π6的图象上,且π2≤x 0≤π,∴cos ⎝⎛⎭⎫4x 0-5π6=32,且7π6≤4x 0-5π6≤19π6. ∴4x 0-5π6=11π6或4x 0-5π6=13π6.∴x 0=2π3或x 0=3π4.阶段质量检测(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在五边形ABCDE 中(如图),=( )2.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =( ) A .(-5,-10) B .(-4,-8) C .(-3,-6) D .(-2,-4)3.已知平面向量a =(1,-3),b =(4,-2),若λa +b 与a 垂直,则λ的值是( ) A .-1 B .1 C .-2 D .24.若|a |=2,|b |=2,且(a -b )⊥a ,则a 与b 的夹角是( ) A.π6 B.π4 C.π3 D.π2A.12 B .-12 C.32 D .-326.已知向量满足:|a |=2,|b |=3,|a -b |=4,则|a +b |=( ) A. 6 B.7 C.10 D.11A .内心B .外心C .垂心D .重心8.平面向量a =(x ,-3),b =(-2,1),c =(1,y ),若a ⊥(b -c ),b ∥(a +c ),则b 与c 的夹角为( ) A .0 B.π4 C.π2 D.3π49.已知AD ,BE 分别为△ABC 的边BC ,AC 上的中线,设=a ,=b ,则等于( )A.43a +23b B.23a +43b C.23a -43b D .-23a +43bA.⎝⎛⎭⎫0,π3B.⎝⎛⎭⎫π3,5π6C.⎝⎛⎭⎫π2,2π3D.⎝⎛⎭⎫2π3,5π611.已知a =(-1,3),=a -b ,=a +b ,若△AOB 是以O 为直角顶点的等腰直角三角形,则△AOB 的面积是( )A. 3 B .2 C .2 2 D .412.已知向量m =(a ,b ),n =(c ,d ),p =(x ,y ),定义新运算m ⊗n =(ac +bd ,ad +bc ),其中等式右边是通常的加法和乘法运算.如果对于任意向量m 都有m ⊗p =m 成立,则向量p 为( )A .(1,0)B .(-1,0)C .(0,1)D .(0,-1) 二、填空题(本大题共4小题,每小题5分,共20分)13.已知向量a =(2x +3,2-x ),b =(-3-x ,2x )(x ∈R ).则|a +b |的取值范围为________. 14.设e 1,e 2为两个不共线的向量,若a =e 1+λe 2与b =-(2e 1-3e 2)共线,则实数λ等于________. 15.在边长为2的菱形ABCD 中,∠BAD =60°,E 为CD 的中点,则=________.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知平面向量a =(1,x ),b =(2x +3,-x ),x ∈R . (1)若a ⊥b ,求x 的值; (2)若a ∥b ,求|a -b |.18.(12分)设向量a =(cos α,sin α)(0≤α<2π),b =⎝⎛⎭⎫-12,32,且a 与b 不共线.(1)求证:(a +b )⊥(a -b );(2)若向量3a +b 与a -3b 的模相等,求角α. 19.(12分)如图,平行四边形ABCD 中,=a ,=b ,H ,M 是AD ,DC 的中点,BF =13BC ,(1)以a ,b 为基底表示向量(2)若|a |=3,|b |=4,a 与b 的夹角为120°,求20.(12分)在边长为1的正△ABC 中,AD 与BE 相交于点F .21.(12分)在平面直角坐标系中,O 为坐标原点,已知向量a =(-1,2),又点A (8,0),B (n ,t ),C (k sin θ,t )⎝⎛⎭⎫0≤θ≤π2.22.(12分)已知e 1,e 2是平面内两个不共线的非零向量,且A ,E ,C 三点共线.(1)求实数λ的值;(2)若e 1=(2,1),e 2=(2,-2),求的坐标;(3)已知D (3,5),在(2)的条件下,若A ,B ,C ,D 四点按逆时针顺序构成平行四边形,求点A 的坐标.答 案1. 解析:选B ∵==.2. 解析:选B ∵a ∥b ,∴-21=m2,∴m =-4,∴b =(-2,-4),∴2a +3b =2(1,2)+3(-2,-4)=(-4,-8). 3. 解析:选A 由题意可知(λa +b )·a =λa 2+b ·a =0. ∵|a |=10,a ·b =1³4+(-3)³(-2)=10, ∴10λ+10=0,λ=-1.4. 解析:选B 由于(a -b )⊥a ,所以(a -b )·a =0,即|a|2-a ·b =0,所以a ·b =|a|2=2,所以 cos 〈a ,b 〉=a ·b |a||b|=222=22,即a 与b 的夹角是π4. 5.6. 解析:选C 由题意|a -b |2=a 2+b 2-2a ·b =16, ∴a ·b =-32.∴|a +b |2=a 2+b 2+2a ·b =10, ∴|a +b |=10. 7.∴P 是△ABC 的垂心.8. 解析:选C 由题意知b -c =(-3,1-y ),a +c =(x +1,y -3),依题意得⎩⎪⎨⎪⎧-3x -3(1-y )=0,x +1+2(y -3)=0,解得⎩⎪⎨⎪⎧x =1,y =2,∴c =(1,2),而b ·c =-2³1+1³2=0, ∴b ⊥c . 9.10.11. 解析:选D 由题意||=||且⊥,所以(a -b )2=(a +b )2且(a -b )·(a +b )=0, 所以a ·b =0,且a 2=b 2, 所以|a |=|b |=2,所以S △AOB =12||·||=12(a -b )2(a +b )2=12(a 2+b 2)2=4. 12. 解析:选A 因为m ⊗p =m ,即(a ,b )⊗(x ,y )=(ax +by ,ay +bx )=(a ,b ),所以⎩⎪⎨⎪⎧ax +by =a ,ay +bx =b ,即⎩⎪⎨⎪⎧a (x -1)+by =0,ay +b (x -1)=0. 由于对任意m =(a ,b ), 都有(a ,b )⊗(x ,y )=(a ,b )成立.所以⎩⎪⎨⎪⎧x -1=0,y =0,解得⎩⎪⎨⎪⎧x =1,y =0. 所以p =(1,0).故选A.13. 解析:因为a +b =(x ,x +2), 所以|a +b |=x 2+(x +2)2=2x 2+4x +4 =2(x +1)2+2≥2, 所以|a +b |∈[2,+∞). 答案:[2,+∞)14. 解析:因为a ,b 共线,所以由向量共线定理知,存在实数k ,使得a =k b , 即e 1+λe 2=-k (2e 1-3e 2)=-2k e 1+3k e 2 又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧1=-2k ,λ=3k ,解得λ=-32.答案:-3215. 解析:以A 为原点,AB 所在的直线为x 轴,过A 且垂直于AB 的直线为y 轴建立平面直角坐标系.则由A (0,0),B (2,0),E (2,3),D (1,3,可得=1.答案:1 16.答案:[1,4]17. 解:(1)若a ⊥b ,则a ·b =(1,x )·(2x +3,-x ) =1³(2x +3)+x (-x )=0.整理得x 2-2x -3=0,解得x =-1或x =3. (2)若a ∥b ,则有1³(-x )-x (2x +3)=0, 即x (2x +4)=0,解得x =0或x =-2. 当x =0时,a =(1,0),b =(3,0), ∴a -b =(-2,0),|a -b |=2;当x =-2时,a =(1,-2),b =(-1,2), ∴a -b =(2,-4),∴|a -b |=4+16=2 5. 综上所述,|a -b |为2或2 5.18. 解:(1)证明:由题意,得a +b =⎝⎛⎭⎫cos α-12,sin α+32,a -b =⎝⎛⎭⎫cos α+12,sin α-32,因为(a +b )·(a -b )=cos 2α-14+sin 2α-34=1-1=0,所以(a +b )⊥(a -b ).(2)因为向量3a +b 与a -3b 的模相等, 所以(3a +b )2=(a -3b )2,所以|a |2-|b |2+23a ·b =0,因为|a |=1,|b |=⎝⎛⎭⎫-122+⎝⎛⎭⎫322=1,所以|a |2=|b |2,所以a ·b =0, 所以-12cos α+32sin α=0,所以tan α=33, 又因为0≤α<2π, 所以α=π6或α=7π6.19. 解:(1)∵M 为DC 的中点,(2)由已知得a ·b =3³4³cos 120°=-6,=12a 2+⎝⎛⎭⎫1-112a ·b -16b 2 =12³32+1112³(-6)-16³42 =-113.20. 解:(1)由题意,D 为BC 边的中点,而△ABC 是正三角形,所以AD ⊥BC ,=12(a +b )·⎝⎛⎭⎫23b -a =13b 2-12a 2-16a ·b =13-12-16³1³1³12=-14.根据平面向量的基本定理有⎩⎪⎨⎪⎧-λ-22(λ+1)=-μ,λ2(λ+1)=2μ3,解得λ=4. 21.∴t =-2k sin θ+16.∵t sin θ=(-2k sin θ+16)sin θ =-2k ⎝⎛⎭⎫sin θ-4k 2+32k , ∵k >4,∴1>4k>0,当sin θ=4k 时,t sin θ取最大值为32k .由32k =4,得k =8,此时θ=π6,=(4,8),∴·=(8,0)·(4,8)=32.22. 解:(1)=(2e 1+e 2)+(-e 1+λe 2)=e 1+(1+λ)e 2.∵A ,E ,C 三点共线, ∴存在实数k ,使得,即e 1+(1+λ)e 2=k (-2e 1+e 2),得(1+2k )e 1=(k -1-λ)e 2.∵e 1,e 2是平面内两个不共线的非零向量,∴⎩⎪⎨⎪⎧1+2k =0,λ=k -1,解得k =-12,λ=-32.(2)=-3e 1-12e 2=(-6,-3)+(-1,1)=(-7,-2).(3)∵A ,B ,C ,D 四点按逆时针顺序构成平行四边形,即点A 的坐标为(10,7).阶段质量检测(三)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =2cos 2x2+1的最小正周期是( )A .4πB .2πC .π D.π22.sin 45°²cos 15°+cos 225°²sin 15°的值为( ) A .-32B .-12C.12D.323.已知α是第二象限角,且cos α=-35,则cos ⎝⎛⎭⎫π4-α的值是( )A.210B .-210C.7210D .-72104.若sin ⎝⎛⎭⎫π6-α=13,则cos ⎝⎛⎭⎫2π3+2α等于( ) A .-79B .-13C.13D.795.已知tan(α+β)=14,tan α=322,那么tan(2α+β)等于( )A.25B.14C.1318D.1322 6.1-3tan 75°3+tan 75°的值等于( )A .2+3B .2-3C .1D .-17.在△ABC 中,已知tan A +B2=sin C ,则△ABC 的形状为( )A .正三角形B .等腰三角形C .直角三角形D .等腰直角三角形8.若θ∈⎝⎛⎭⎫0,π2,sin θ-cos θ=22,则cos 2θ等于( )A.32B .-32C .±32D .±129.若函数g (x )=a sin x cos x (a >0)的最大值为12,则函数f (x )=sin x +a cos x 的图象的一条对称轴方程为( )A .x =0B .x =-3π4C .x =-π4D .x =-5π410.已知tan α,tan β是方程x 2+33x +4=0的两个根,且-π2<α<π2,-π2<β<π2,则α+β为( )A.π6 B .-2π3C.π6或-5π6 D .-π3或2π311.设a =22(sin 17°+cos 17°),b =2cos 213°-1,c =sin 37°²sin 67°+sin 53°sin 23°,则( ) A .c <a <b B .b <c <aC .a <b <cD .b <a <c12.在△ABC 中,A ,B ,C 是其三个内角,设f (B )=4sin B ²cos 2⎝⎛⎭⎫π4-B 2+cos 2B ,当f (B )-m <2恒成立时,实数m 的取值范围是( )A .m <1B .m >-3C .m <3D .m >1二、填空题(本大题共4小题,每小题5分,共20分)13.已知α∈⎝⎛⎭⎫π2,π,sin α=55,则tan 2α=________. 14.已知等腰△ABC 的腰为底的2倍,则顶角A 的正切值是________.15.已知θ∈⎝⎛⎭⎫π2,π,1sin θ+1cos θ=22,则sin ⎝⎛⎭⎫2θ+π3的值为________. 16.设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________. 三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分 )已知cos θ=1213,θ∈(π,2π),求sin ⎝⎛⎭⎫θ-π6以及tan ⎝⎛⎭⎫θ+π4的值. 18.(12分)已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0. 19.(12分)设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈⎣⎡⎦⎤0,π2. (1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值.20.(12分)已知f (x )=sin x +2sin ⎝⎛⎭⎫π4+x 2cos ⎝⎛⎭⎫π4+x 2.(1)若f (α)=22,α∈⎝⎛⎭⎫-π2,0,求α的值; (2)若sin x 2=45,x ∈⎝⎛⎭⎫π2,π,求f (x )的值. 21.(12分)已知函数f (x )=cos 2x 2-sin x 2cos x 2-12. (1)求函数f (x )的最小正周期和值域;(2)若f (α)=3210,求sin 2α的值. 22.(12分)已知函数f (x )=23sin x cos x +2cos 2x -1(x ∈R ).(1)求函数f (x )的最小正周期及在区间⎣⎡⎦⎤0,π2上的最大值和最小值; (2)若f (x 0)=65,x 0∈⎣⎡⎦⎤π4,π2,求cos 2x 0的值.答 案1. 解析:选B ∵y =2cos 2x 2+1=⎝⎛⎭⎫2cos 2 x 2-1+2=cos x +2, ∴函数的最小正周期T =2π.2. 解析:选C sin 45°cos 15°+cos 225°sin 15°=sin 45°cos 15°-cos 45°sin 15°=sin(45°-15°)=sin 30°=12. 3. 解析:选A 由题意,sin α=45, cos ⎝⎛⎭⎫π4-α=cos π4cos α+sin π4sin α=210. 4. 解析:选A cos(2π3+2α)=cos[π-2(π6-α)]=-cos[2(π6-α)]=2sin 2⎝⎛⎭⎫π6-α-1=-79. 5. 解析:选A tan(2α+β)=tan (α+β)+tan α1-tan (α+β)tan α=25. 6. 解析:选D 1-3tan 75°3+tan 75°=33-tan 75°1+33tan 75° =tan 30°-tan 75°1+tan 30°·tan 75°=tan(30°-75°) =tan(-45°)=-1.7. 解析:选C 在△ABC 中,tan A +B 2=sin C =sin(A +B )=2sin A +B 2cos A +B 2,∴2cos 2A +B 2=1,∴cos(A +B )=0,从而A +B =π2,即△ABC 为直角三角形.8. 解析:选B 由sin θ-cos θ=22两边平方得,sin 2θ=12,又θ∈⎝⎛⎭⎫0,π2,且sin θ>cos θ,所以π4<θ<π2,所以π2<2θ<π,因此,cos 2θ=-32,故选B. 9. 解析:选B g (x )=a 2sin 2x (a >0)的最大值为12, 所以a =1,f (x )=sin x +cos x =2sin ⎝⎛⎭⎫x +π4, 令x +π4=π2+k π,k ∈Z 得x =π4+k π,k ∈Z .故选B. 10. 解析:选B 由题意得⎩⎨⎧tan α+tan β=-33,tan α·tan β=4>0, 所以tan α<0,tan β<0, 所以-π2<α<0,-π2<β<0,-π<α+β<0. 又tan(α+β)=tan α+tan β1-tan αtan β=-331-4= 3. 所以α+β=-2π3.故选B. 11. 解析:选A a =cos 45°sin 17°+sin 45°cos 17°=sin 62°,b =cos 26°=sin 64°,c =sin 37°cos 23°+cos 37°sin 23°=sin 60°,故c <a <b .12. 解析:选D f (B )=4sin B cos 2⎝⎛⎭⎫π4-B 2+cos 2B =4sin B ·1+cos ⎝⎛⎭⎫π2-B 2+cos 2B =2sin B (1+sin B )+(1-2sin 2B )=2sin B +1.∵f (B )-m <2恒成立,∴2sin B +1-m <2恒成立,即m >2sin B -1恒成立.∵0<B <π,∴0<sin B ≤1.∴-1<2sin B -1≤1,故m >1.13. 解析:因为sin α=55,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-255. 所以tan α=sin αcos α=-12,所以tan 2α=2tan α1-tan 2α=-11-14=-43. 答案:-4314. 解析:由题意,sin A 2=14,∴cos A 2=154, ∴tan A 2=1515.∴tan A =2tan A 21-tan 2A 2=157. 答案:157 15. 解析:由已知条件可得sin ⎝⎛⎭⎫θ+π4=sin 2θ, 又θ∈⎝⎛⎭⎫π2,π,由三角函数图象可知θ+π4+2θ=3π, 即θ=11π12,sin ⎝⎛⎭⎫2θ+π3=sin 13π6=12. 答案:1216. 解析:因为α为锐角,cos ⎝⎛⎭⎫α+π6=45,所以sin(α+π6)=35,sin 2⎝⎛⎭⎫α+π6=2425,cos 2⎝⎛⎭⎫α+π6=725,所以sin ⎝⎛⎭⎫2α+π12=sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6-π4=22³1725=17250. 答案:1725017. 解:因为cos θ=1213,θ∈(π,2π), 所以sin θ=-513,tan θ=-512, 所以sin ⎝⎛⎭⎫θ-π6=sin θcos π6-cos θsin π6 =-513³32-1213³12=-53+1226, tan ⎝⎛⎭⎫θ+π4=tan θ+tanπ41-tan θtan π4=-512+11-⎝⎛⎭⎫-512³1=717. 18. 解:(1)∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+sin ⎝⎛⎭⎫x -3π4+π2 =sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明:由已知得cos βcos α+sin βsin α=45, cos βcos α-sin βsin α=-45. 两式相加得2cos βcos α=0.∵0<α<β≤π2,∴β=π2. ∴[f (β)]2-2=4sin 2π4-2=0. 19. 解:(1)由|a|2=(3sin x )2+(sin x )2=4sin 2x ,|b |2=(cos x )2+(sin x )2=1,及|a |=|b |,得4sin 2x =1.又x ∈⎣⎡⎦⎤0,π2,从而sin x =12,所以x =π6. (2)f (x )=a ·b =3sin x ·cos x +sin 2x =32sin 2x -12cos 2x +12=sin ⎝⎛⎭⎫2x -π6+12, 当x =π3∈⎣⎡⎦⎤0,π2时,sin ⎝⎛⎭⎫2x -π6取最大值1,此时f (x )取得最大值,最大值为32. 20. 解:(1)f (x )=sin x +2sin ⎝⎛⎭⎫π4+x 2cos ⎝⎛⎭⎫π4+x 2 =sin x +sin ⎝⎛⎭⎫x +π2=sin x +cos x =2sin ⎝⎛⎭⎫x +π4. 由f (α)=22,得2sin ⎝⎛⎭⎫α+π4=22,∴sin ⎝⎛⎭⎫α+π4=12. ∵α∈⎝⎛⎭⎫-π2,0,∴α+π4∈⎝⎛⎭⎫-π4,π4. ∴α+π4=π6,∴α=-π12. (2)∵x ∈⎝⎛⎭⎫π2,π,∴x 2∈⎝⎛⎭⎫π4,π2. 又∵sin x 2=45,∴cos x 2=35. ∴sin x =2sin x 2cos x 2=2425, cos x =-1-sin 2x =-725. ∴f (x )=sin x +cos x =2425-725=1725. 21. 解:(1)f (x )=cos 2x 2-sin x 2cos x 2-12=12(1+cos x )-12sin x -12=22cos ⎝⎛⎭⎫x +π4.所以f (x )的最小正周期为2π,值域为⎣⎡⎦⎤-22,22. (2)由(1)知f (α)=22cos ⎝⎛⎭⎫α+π4=3210, 所以cos ⎝⎛⎭⎫α+π4=35. 所以sin 2α=-cos ⎝⎛⎭⎫π2+2α=-cos 2⎝⎛⎭⎫α+π4 =1-2cos 2⎝⎛⎭⎫α+π4=1-1825=725. 22. 解:(1)由f (x )=23sin x cos x +2cos 2x -1,得f (x )=3(2sin x cos x )+(2cos 2x -1)=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6. ∴函数f (x )的最小正周期为π.∵f (x )=2sin ⎝⎛⎭⎫2x +π6在区间⎣⎡⎦⎤0,π6上为增函数,在区间⎝⎛⎦⎤π6,π2上为减函数,又f (0)=1,f ⎝⎛⎭⎫π6=2, f ⎝⎛⎭⎫π2=-1,∴函数f (x )在区间⎣⎡⎦⎤0,π2上的最大值为2,最小值为-1. (2)由(1)可知f (x 0)=2sin ⎝⎛⎭⎫2x 0+π6. 又∵f (x 0)=65,∴sin ⎝⎛⎭⎫2x 0+π6=35. 由x 0∈⎣⎡⎦⎤π4,π2,得2x 0+π6∈⎣⎡⎦⎤2π3,7π6. 从而cos ⎝⎛⎭⎫2x 0+π6=- 1-sin 2⎝⎛⎭⎫2x 0+π6=-45. ∴cos 2x 0=cos ⎣⎡⎦⎤⎝⎛⎭⎫2x 0+π6-π6 =cos ⎝⎛⎭⎫2x 0+π6cos π6+sin ⎝⎛⎭⎫2x 0+π6sin π6 =3-4310.。
高中数学《必修4》训练题(1)一、选择题:1.sin 150°的值等于( ).A .21B .-21 C .23 D .-23 2.已知=(3,0)等于( ).A .2B .3C .4D .53.在0到2π范围内,与角-34π终边相同的角是( ). A .6π B .3πC .32π D .34π 4.若cos α>0,sin α<0,则角 α 的终边在( ).A .第一象限B .第二象限C .第三象限D .第四象限5.sin 20°cos 40°+cos 20°sin 40°的值等于( ).A .41B .23 C .21 D .43 6.如图,在平行四边形ABCD 中,下列结论中正确的是( ).A .AB = B .AB -=BDC .+AB =D .+=0 7.下列函数中,最小正周期为 π 的是( ).A .y =cos 4xB .y =sin 2xC .y =sin2x D .y =cos4x 8.已知向量a =(4,-2),向量b =(x ,5),且a ∥b ,那么x 等于( ).A .10B .5C .-25 D .-109.若tan α=3,tan β=34,则tan (α-β)等于( ). A .-3B .3C .-31D .3110.函数y =2cos x -1的最大值、最小值分别是( ).A .2,-2B .1,-3C .1,-1D .2,-1 11.已知△ABC 三个顶点的坐标分别为A (-1,0),B (1,2),C (0,c ),若⊥,那么c 的值是( ).C (第6题)A .-1B .1C .-3D .312.下列函数中,在区间[0,2π]上为减函数的是( ). A .y =cos x B .y =sin x C .y =tan xD .y =sin (x -3π) 13.已知0<A <2π,且cos A =53,那么sin 2A 等于( ).A .254 B .257 C .2512 D .252414.-215°是 ( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角 15.角α的终边过点P (4,-3),则αcos 的值为 ( ) A.4 B.-3C.54 D.53- 16.若0cos sin <αα,则角α的终边在A.第二象限B.第四象限C.第二、四象限D.第三、四象限 17.函数x x y 22sin cos -=的最小正周期是 ( ) A.πB.2πC.4πD.π218.给出下面四个命题:① 0=+BA AB ;②AC C =+B AB ;③BC AC =-AB ; ④00=⋅。
高中数学试卷必修四基础50题一、单选题(共15题;共30分)1.设、为非零向量,则“”是“函数是一次函数”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件2.函数y=2cos(﹣x)﹣cos(+x)的最小值为()A. ﹣3B. ﹣2C. ﹣1D. ﹣3.“α是第二象限角”是“α是钝角”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既不充分也不必要条件4.设非零向量,满足,则()A. B. C. // D.5.已知角的终边过点,则的值是()A. B. C. 或 D. 随着k的取值不同其值不同6.的值是()A. B. C. D.7.如果函数y=sin(x+ϕ)的图象经过点,那么ϕ可以是()A. 0B.C.D.8.要得到函数的图象,可将函数的图象()A. 沿轴向左平移个单位长度B. 沿轴向右平移个单位长度C. 沿轴向左平移个单位长度D. 沿轴向右平移个单位长度9.给定性质:①最小正周期为,②图象关于直线对称,则下列四个函数中,同时具有性质①②的是()A. B. C. y=sin|x| D.10.向量满足,则与的夹角为()A. B. C. D.11.已知M,N分别是四面体OABC的棱OA,BC的中点,点P在线段MN上,且,设向量,,则()A. B. C. D.12.同时具有性质“(1)最小正周期是;(2)图像关于直线对称;(3)在上是增函数”的一个函数是()A. B. C. D.13.若角60°的终边上有一点(4,a),则a的值是()A. 4B. ﹣4C.D. ﹣14.平面向量=(1,4),=(2,4),则|+2|等于()A. 11B. 12C. 13D. 1715.梯形中,,点在直线上,点在直线上,且,则的最小值为()A. B. C. D.二、填空题(共20题;共20分)16.在单位圆中,的圆心角所对的弧长为________.17.已知菱形ABCD的边长为2,∠ABC=120°,P、Q分别是其对角线AC、BD上的动点,则• 的最大值为________.18.已知向量与垂直,则实数________.19.函数的定义域为________.20.已知,则________.21.已知,则________.22.已知sinα+cosα= ,则cos2α=________.23.设是两个单位向量,它们的夹角是,则________.24.在0°~180°范围内,与﹣950°终边相同的角是________.25.已知α是第二象限角,P(x,)为其终边上一点,且,则x的值是________.26.已知,是两个不共线的向量,,.若与是共线向量,则实数的值为________.27.向量=(1,1)在=(2,3)上的投影为________.28.已知,则的值为________.29.设向量,且,则实数的值是________;30.与向量垂直的单位向量为________.31.若| |=2,| |=4,且(+ )⊥,则与的夹角是________.32.函数,且,,若的图像在内与轴无交点则的取值范围是________.33.________34.(1+tan17°)(1+tan28°)=________.35.已知=(2,λ),=(3,4),若⊥,则λ=________.三、解答题(共15题;共120分)36.已知.(1)求的值;(2)求的值.37.已知的内角的对应边分别为,在①②③这三个条件中任选一个,补充在下面问题中,当_______时,求的最大值.38.已知.(1)求的值;(2)求的值.39.在平面直角坐标系中,已知向量,,.(1)若,求的值:(2)若与的夹角为,求的值.40.已知求的值.41.已知向量, 的夹角为, 且, .(1)求;(2)求.42.已知函数,x∈R,ω>0.(1)求函数f(x)的值域;(2)若函数y=f(x)的图象与直线y=﹣1的两个相邻交点间的距离为,求函数y=f(x)的单调区间.43.已知,且是第三象限角,(1)求的值;(2)求的值.44.已知角终边经过点,且,求,,.45.已知,.(1)求向量与的夹角;(2)若,且,求的值.46.已知函数.(1)求的最小正周期;(2)求函数在区间上的取值范围.47.若函数f(x)=Asin(ωx﹣)+1(A>0,ω>0)的最大值为4,其图象相邻两条对称轴之间的距离为.(1)求f(x)的解析式;(2)设θ∈(0,),f()=,求θ的值.48.已知函数的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间上的单调性.49.已知函数f(x)=Asin(ωx+φ)(其中x∈R,A>0,ω>0,﹣<φ<)的部分图象如图所示.(1)求A,ω,φ的值;(2)已知在函数f(x)图象上的三点M,N,P的横坐标分别为﹣1,1,3,求sin∠MNP的值.50.已知椭圆C:的焦距为,离心率为,其右焦点为F,过点B(0,b)作直线交椭圆于另一点A.(Ⅰ)若,求△ABF外接圆的方程;(Ⅱ)若过点M(2,0)的直线与椭圆N:相交于两点G、H,设P为N上一点,且满足(O为坐标原点),当时,求实数t的取值范围.答案解析部分一、单选题1.【答案】B2.【答案】D3.【答案】B4.【答案】A5.【答案】B6.【答案】D7.【答案】D8.【答案】B9.【答案】D10.【答案】A11.【答案】C12.【答案】C13.【答案】A14.【答案】C15.【答案】A二、填空题16.【答案】17.【答案】18.【答案】19.【答案】20.【答案】21.【答案】22.【答案】±23.【答案】24.【答案】130°25.【答案】26.【答案】-427.【答案】28.【答案】229.【答案】230.【答案】或31.【答案】32.【答案】33.【答案】34.【答案】235.【答案】﹣三、解答题36.【答案】(1)解:由题意,所以.(2)解:由(1)得,,所以.37.【答案】解:若选①,则由正弦定理,,,若选②,则由正弦定理知:,,,若选③,则有正弦定理知,,由余弦定理知:,,,,,所以当时,的最大值是.38.【答案】(1)解:(2)解:原式39.【答案】(1)解:,,,;(2)解:由题意得:,,,,,,解得:.40.【答案】解:41.【答案】(1)解:• =| || |cos60°=2×1× =1;(2)解:| + |2=(+ )2= +2 • +=4+2×1+1=7.所以| + |= .42.【答案】(1)解:∵f(x)=函数,=()+()﹣(cosωx+1),= …(4分),∵x∈R,∴,∴,∴函数y=f(x)的值域为[﹣3,1](2)解:∵由题设条件和三角函数图象和性质知:函数y=f(x)的周期为π,∴,∴,,,∴43.【答案】(1)解:由,可得,即,可得,由是第三象限角,可得,故的值为;(2)解:,代入,的值,可得原式.44.【答案】解:∵,∴,,解得,∴,.45.【答案】(1)解:,,,设向量与的夹角为,则,∴,即向量与的夹角为.(2)解:,由,可得,∴,解得46.【答案】(1)解:所以(2)解:由得所以函数的单调递增区间是.由得,所以所以.47.【答案】解:(1)∵函数f(x)=Asin(ωx﹣)+1(A>0,ω>0)的最大值为4,∴A+1=3,即A=3,∵函数图象相邻两条对称轴之间的距离为,∴T=π,∴ω=2.故函数的解析式为f(x)=3sin(2x﹣)+1;(2)∵f()=∴3sin(θ﹣)+1=,∴sin(θ﹣)=,又∵θ∈(0,),∴θ﹣∈(﹣,),∴θ﹣=,∴θ=.48.【答案】(1)解:函数.化简得Lf(x)=4cosωx(cosωx﹣sinωx)=2cos2ωx﹣sin2ωx=1+cos2ωx﹣sin2ωx=2cos(2ωx )+1.因为函数的最小正周期为π,即T= ,解得:ω=1,则:f(x)=2cos(2x )+1.故得ω的值为1(2)解:由(1)可得f(x)=2cos(2x )+1.当x在区间上时,故得:,当时,即时,函数f(x)=2cos(2x )+1为减函数.当π时,即时,函数f(x)=2cos(2x )+1为增函数.所以,函数f(x)=2cos(2x )+1为减区间为,增区间为49.【答案】解:(1)由图知,A=1.f(x)的最小正周期T=4×2=8,所以由T=,得.又且,所以,,解得.(2)因为f(﹣1)=0,f(1)=1,f(3)=0,所以M(﹣1,0),N(1,1),P(3,0),设Q(1,0),在等腰三角形MNP中,设∠MNQ=α,则.所以.50.【答案】解:(Ⅰ)由题意知:,,又a2﹣b2=c2,解得:,∴椭圆C的方程为:.可得:,,设A(x0,y0),则,,∵,∴,即.由,或,即,或①当A的坐标为时,,∴△ABF外接圆是以O为圆心,为半径的圆,即x2+y2=3.②当A的坐标为时,k AF=1,k BF=﹣1,所以△ABF为直角三角形,其外接圆是以线段AB为直径的圆,圆心坐标为,半径为,∴△ABF外接圆的方程为.综上可知:△ABF外接圆方程是x2+y2=3,或.…(7分)(Ⅱ)由以上可得,椭圆N:即,即.由题意可知直线GH的斜率存在,设GH:y=k(x﹣2),G(x1,y1),H(x2,y2),P(x,y),由得:(1+2k2)x2﹣8k2x+8k2﹣2=0,由△=64k4﹣4(2k2+1)(8k2﹣2)>0得:(*).由于,∵,∴,即,∴,∴,再结合(*)得:.∵,∴(x1+x2,y1+y2)=t(x,y)从而,.∵点P在椭圆上,∴,整理得:16k2=t2(1+2k2),即,∴,或,即实数t的取值范围为(﹣2,﹣)∪(,2)高中数学试卷必修四基础50题一、单选题(共15题;共30分)1.以下有四种说法,其中正确说法的个数为:(1)命题“若am2<bm2”,则“a<b”的逆命题是真命题(2)“a>b”是“a2>b2”的充要条件;(3)“x=3”是“x2-2x-3=0”的必要不充分条件;(4)“”是“”的必要不充分条件.A. 0个B. 1个C. 2个D. 3个2.cos12°cos18°﹣sin12°sin18°=()A. B. C. ﹣ D. ﹣3.若sin>0,cos<0,则角的终边在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.如图所示,D是△ABC的边AB的中点,则向量=( )A. B. C. D.5.已知角的终边与单位圆交于点,则的值为()A. B. C. D.6.在中,,,则角()A. B. C. 或 D.7.函数图像的一条对称轴为( )A. B. C. D.8.要得到的图象,只需把的图象()A. 向右平移个单位B. 向左平移个单位C. 向右平移个单位D. 向左平移个单位9.设函数的导函数的最大值为3,则的图象的一条对称轴的方程是()A. B. C. D.10.已知为非零向量,命题,命题的夹角为锐角,则命题p是命题q的( )A. 充分不必要的条件B. 既不充分也不必要的条件C. 充要条件D. 必要不充分的条件11.如图,在三棱锥中,点,,分别是,,的中点,设,,,则()A. B. C. D.12.函数的图像与函数的图像所有交点的横坐标之和等于()A. 2B. 4C. 6D. 813.若角的终边过点P,则等于( )A. B. C. D. 不能确定,与a的值有关14.如图,在正六边形ABCDEF,点O为其中心,则下列判断错误的是()A. B. C. D.15.已知向量=(﹣),=(),则∠ABC=()A. 30°B. 45°C. 60°D. 90°二、填空题(共20题;共20分)16.已知扇形的半径为3,弧长为2,则面积________.17.已知平面向量与的夹角为,,,则________.18.已知向量,,若,则________.19.不等式:的解集为________.20.已知,则________.21.tan =________.22.已知,则________23.已知向量满足,且则________。
1.已知中学生一节课的上课时间一般是45分钟,那么,经过一节课,分针旋转形成的角是( )A .120°B .-120°C .270°D .-270°解析:分针旋转形成的角是负角,每60分钟转动一周,所以一节课45分钟分针旋转形成的角是-360°×4560=-270°.答案:D2.下列叙述正确的是( )A .第一或第二象限的角都可作为三角形的内角B .始边相同而终边不同的角一定不相等C .第四象限角一定是负角D .钝角比第三象限角小解析:-330°角是第一象限角,但不能作为三角形的内角,故A 错;280°角是第四象限角,它是正角,故C 错;-100°角是第三象限角,它比钝角小,故D 错.答案:B3.若α是第四象限角,则180°-α是第________象限角. 解析:∵角α与角-α的终边关于x 轴对称, 又∵角α的终边在第四象限,∴角-α终边在第一象限,又角-α与180°-α的终边关于原点对称,∴角180°-α的终边在第三象限. 答案:三4.在0°~360°范围内:与-1 000°角终边相同的最小正角是________,是第________象限角.解析:-1 000°=-3×360°+80°,∴与-1 000°角终边相同的最小正角是80°,为第一象限角. 答案:80° 一5.在角的集合{α|α=k ·90°+45°,k ∈Z }中, (1)有几种终边不相同的角?(2)若-360°<α<360°,则集合中的α共有多少个?解:(1)在给定的角的集合中终边不相同的角共有四种,分别是与45°、135°、-135°、-45°终边相同的角.(2)令-360°<k ·90°+45°<360°,得-92<k <72. 又∵k ∈Z ,∴k =-4,-3,-2,-1,0,1,2,3, ∴满足条件的角共有8个.1.下列命题中,正确的是( ) A .1弧度是1度的圆心角所对的弧 B .1弧度是长度为半径的弧C .1弧度是长度等于半径的弧所对的圆心角D .1弧度是1度的弧与1度的角之和解析:利用弧度的概念可直接推得C 为正确选项. 答案:C2.2 100°化成弧度是( ) A.35π3 B .10π C.28π3D.25π3解析:2 100°=2 100×π180=35π3. 答案:A3.若扇形的圆心角为60°,半径为6,则扇形的面积为________. 解析:扇形的面积S =12|α|r 2=12×π3×62=6π. 答案:6π4.若θ角的终边与8π5角的终边相同,在[0,2π)内与θ4角的终边相同的角是________.解析:由题设知θ=2k π+8π5,k ∈Z ,则θ4=k π2+2π5,k ∈Z . ∴当k =0时,θ4=2π5; 当k =1时,θ4=9π10; 当k =2时,θ4=7π5; 当k =3时,θ4=19π10. 答案:2π5,9π10,7π5,19π105.已知α=-800°.(1)把α改写成β+2k π(k ∈Z,0≤β<2π)的形式,并指出α的终边在第几象限;(2)求 γ角,使γ与α角的终边相同,且γ∈⎝ ⎛⎭⎪⎫-π2,π2.解:(1)∵-800°=-3×360°+280°,280°=14π9, ∴α=14π9+(-3)×2π,α角与14π9的终边相同, ∴α是第四象限角.(2)∵与α角终边相同的角为2k π+α,k ∈Z ,α与14π9终边相同, ∴γ=2k π+14π9,k ∈Z .又∵γ∈⎝ ⎛⎭⎪⎫-π2,π2,∴-π2<2k π+14π9<π2, 当k =-1时,不等式成立, ∴γ=-2π+14π9=-4π9.1.有下列说法:①终边相同的角的同名三角函数的值相等; ②终边不同的角的同名三角函数的值不等; ③若sin α>0,则α是第一、二象限的角;④若α是第二象限的角,且P (x ,y )是其终边上一点,则cos α=-xx 2+y2, 其中不正确的个数为( ) A .0 B .1 C .2 D .3答案:D2.若点P 的坐标是(sin2,cos2),则点P 位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:D3.sin420°=________.答案:324.使得lg(cos αtan α)有意义的角α是第________象限角. 解析:要使原式有意义,必须cos αtan α>0,即需cos α,tan α同号,所以α是第一或第二象限角.答案:一或二 5.求下列各式的值.(1)sin1 470°;(2)cos 9π4;(3)tan(-116π). 解:(1)sin1 470°=sin(4×360°+30°)=sin30°=12. (2)cos 9π4=cos(2π+π4)=cos π4=22. (3)tan(-11π6)=tan(-2π+π6)=tan π6=33.1.已知角α的正弦线的长度为单位长度,那么角α的终边( ) A .在x 轴上 B .在y 轴上 C .在直线y =x 上 D .在直线y =-x 上答案:B2.已知11π6的正弦线为MP ,正切线为AT ,则有( ) A .MP 与AT 的方向相同 B .|MP |=|AT | C .MP >0,AT <0D .MP <0,AT >0 解析:三角函数线的方向和三角函数值的符号是一致的.MP =sin 11π6<0,AT =tan 11π6<0.答案:A3.若角α的正弦线的长度为12,且方向与y 轴的正方向相反,则sin α的值为________.答案:-124.函数y =lg(sin x -cos x )的定义域为________.解析:利用三角函数线,如下图,MN 为正弦线,OM 为余弦线,要使sin x ≥cos x ,即MN ≥OM ,则π4≤x ≤54π,(在[0,2π]内).∴定义域为{x |π4+2k π≤x ≤54π+2k π,k ∈Z }. 答案:{x |π4+2k π≤x ≤54π+2k π,k ∈Z }5.在单位圆中画出满足cos α=12的角α的终边,并写出α组成的集合.解:如图所示,作直线x =12交单位圆于M ,N ,连接OM ,ON ,则OM ,ON 为α的终边.由于cos π3=12,cos 5π3=12,则M 在π3的终边上,N 在5π3的终边上,则α=π3+2k π或α=5π3+2k π,k ∈Z . 所以α组成的集合为S =⎩⎨⎧⎭⎬⎫αα=π3+2k π或α=5π3+2k π,k ∈Z .1.已知α是第二象限角,sin α=513,则cos α=( ) A .-1213 B .-513 C.513D.213解析:因为α是第二象限角,所以cos α<0, 故cos α=-1-sin 2α=-1-(513)2=-1213.答案:A2.已知cos α-sin α=-12,则sin αcos α的值为( ) A.38 B .±38 C.34D .±34解析:由已知得(cos α-sin α)2=sin 2α+cos 2α-2sin αcos α=1-2sin αcos α=14,解得sin αcos α=38,故选A.答案:A3.若sin θ=-45,tan θ>0,则cos θ=________.解析:由已知得θ是第三象限角,所以cos θ=-1-sin 2θ=-1-(-45)2=-35. 答案:-354.已知tan α=3,则2sin 2α+4sin αcos α-9cos 2α的值为________. 解析:原式=2sin 2α+4sin αcos α-9cos 2αsin 2α+cos 2α=2tan 2α+4tan α-9tan 2α+1 =2×32+4×3-932+1=2110.答案:21105.若π2<α<π,化简cos α1-cos 2α+sin α1-sin 2α1-cos 2α.解:因为π2<α<π,所以cos α=-1-sin 2α,sin α=1-cos 2α,所以原式=cos αsin α+sin α(-cos α)1-cos 2α=cos αsin α-sin αcos αsin 2α=cos αsin α-cos αsin α=0.1.cos(-20π3)等于( ) A.12 B.32 C .-12D .-32解析:cos(-20π3)=cos 20π3 =cos(6π+2π3)=cos 2π3=-12. 答案:C2.sin600°+tan240°的值是( ) A .-32 B.32 C .-12+ 3 D.12+3 解析:sin600°+tan240°=sin(360°+240°)+tan(180°+60°) =sin240°+tan60°=sin(180°+60°)+tan60° =-sin60°+tan60°=-32+3=32. 答案:B3.已知sin(45°+α)=513,则sin(135°-α)=________.解析:sin(135°-α)=sin[180°-(45°+α)] =sin(45°+α)=513. 答案:5134.已知α∈(0,π2),tan(π-α)=-34,则sin α=________. 解析:由于tan(π-α)=-tan α=-34, 则tan α=34,解方程组⎩⎨⎧sin αcos α=34,sin 2α+cos 2α=1,得sin α=±35,又α∈(0,π2),所以sin α>0. 所以sin α=35. 答案:355.化简tan (2π-θ)sin (-2π-θ)cos (6π-θ)cos (θ-π)sin (5π+θ).解:原式=tan (-θ)sin (-θ)cos (-θ)(-cos θ)(-sin θ)=(-tan θ)(-sin θ)cos θcos θsin θ=tan θ.1.已知sin40°=a ,则cos130°等于( ) A .a B .-a C.1-a 2D .-1-a 2解析:cos130°=cos(90°+40°)=-sin40°=-a .答案:B2.已知sin(α-π4)=13,则cos(π4+α)的值等于( ) A.223 B .-232 C.13D .-13解析:∵π4+α-(α-π4)=π2, ∴cos(π4+α)=cos[π2+(α-π4)] =-sin(α-π4)=-13. 答案:D3.已知sin(π6-θ)=13,则cos(π3+θ)等于________. 解析:cos(π3+θ)=cos[π2-(π6-θ)] =sin(π6-θ)=13. 答案:134.已知cos α=15,且α为第四象限角,那么cos(α+π2)等于________. 解析:∵α为第四象限角且cos α=15, ∴sin α=-1-cos 2α=-25 6. ∴cos(α+π2)=-sin α=25 6. 答案:2655.化简1+2sin (π2-2)·cos (π2+2).解:原式=1+2cos2·(-sin2)=1-2sin2cos2=(sin2-cos2)2=|sin2-cos2|. 又∵sin2>cos2,∴原式=sin2-cos2.1.函数y =-sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,3π2的简图是( )解析:用特殊点来验证.x =0时,y =-sin0=0,排除选项A ,C ;又x =-π2时,y =-sin ⎝ ⎛⎭⎪⎫-π2=1,排除选项B.答案:D2.方程x +sin x =0的根有( ) A .0个 B .1个 C .2个D .无数个解析:设f (x )=-x ,g (x )=sin x ,在同一直角坐标系中画出 f (x )和g (x )的图象,如图所示.由图知f (x )和g (x )的图象仅有一个交点,则方程x +sin x =0仅有一个根.答案:B3.用“五点法”画y =1-cos x ,x ∈[0,2π]的图象时,五个关键点的坐标是________.答案:(0,0),⎝⎛⎭⎪⎫π2,1,(π,2),⎝⎛⎭⎪⎫3π2,1,(2π,0)4.函数y =2cos x -2的定义域是________. 解析:由2cos x -2≥0得cos x ≥22, 借助y =cos x 的图象可得cos x ≥22的解集为 ⎩⎨⎧⎭⎬⎫x |2k π-π4≤x ≤2k π+π4,k ∈Z .答案:⎩⎨⎧⎭⎬⎫x |2k π-π4≤x ≤2k π+π4,k ∈Z 5.在[0,2π]内用五点法作出y =-sin x -1的简图. 解:(1)按五个关键点列表xπ2π3π22πy -1 -2 -1 0 -1(2)描点并用光滑曲线连接可得其图象,如图所示:1.函数y =2cos(π3-ωx )的最小正周期是4π,则ω等于( ) A .2 B.12 C .±2D .±12解析:4π=2π|ω|,∴ω=±12. 答案:D2.定义在R 上的周期函数f (x )的一个周期为5,则f (2 011)=( )A .f (1)B .f (2)C .f (3)D .f (4) 解析:f (2 011)=f (402×5+1)=f (1). 答案:A3.若函数f (x )=sin ωx (ω>0)的周期为π,则ω=________. 解析:由于周期T =2πω,所以2πω=π,解得ω=2. 答案:24.已知函数f (x )是定义在R 上的周期为6的奇函数,且f (1)=1,则f (5)=________.解析:由于函数f (x )是定义在R 上的周期为6的奇函数,则f (5)=f (5-6)=f (-1)=-f (1).又f (1)=1,则f (5)=-1. 答案:-15.若函数f (x )是以π2为周期的奇函数,且f (π3)=1,求 f (-176π)的值.证明:∵f (x )的周期为π2,且为奇函数, ∴f (-17π6)=f (-3π+π6)=f (-6×π2+π6) =f (π6).而f (π6)=f (π2-π3)=f (-π3)=-f (π3)=-1, ∴f (-17π6)=-1.1.函数y =sin(2x +52π)的图象的一条对称轴方程是( ) A .x =-π2 B .x =-π4 C .x =π8D .x =54π解析:y =sin(2x +52 π)=cos2x ,令2x =k π(k ∈Z ),则x =k2 π(k ∈Z ).当k =-1时,x =-π2.答案:A2.函数y =2sin(2x -π4)的一个单调递减区间是( ) A .[3π8,7π8] B .[-π8,3π8] C .[3π4,5π4]D .[-π4,π4]解析:令z =2x -π4,函数y =sin z 的单调递减区间是[π2+2k π,3π2+2k π](k ∈Z ).由π2+2k π≤2x -π4≤3π2+2k π,k ∈Z , 得3π8+k π≤x ≤7π8+k π,k ∈Z . 令k =0,3π8≤x ≤7π8. 答案:A3.下列关系式中正确的是( ) A .sin11°<cos10°<sin168° B .sin168°<sin11°<cos10° C .sin11°<sin168°<cos10° D .sin168°<cos10°<sin11°解析:∵sin168°=sin(180°-168°)=sin12°,cos10°=sin80°, ∴sin11°<sin12°<sin80°. ∴sin11°<sin168°<cos10°. 答案:C4.设ω>0,若函数f (x )=2sin ωx 在[-π3,π4]上单调递增,则ω的取值范围是________.解析:令-π2≤ωx ≤π2,-π2ω≤x ≤π2ω,则[-π2ω,π2ω]是函数的关于原点对称的递增区间中范围最大的,即[-π3,π4]⊆[-π2ω,π2ω],则⎩⎪⎨⎪⎧π4≤π2ω,-π3≥-π2ω.⇒ω≤32.答案:[0,32]5.求函数y =1-2cos 2x +5sin x 的最大值和最小值. 解:y =1-2cos 2x +5sin x =2sin 2x +5sin x -1 =2(sin x +54)2-338.∵sin x ∈[-1,1],而y 在[-1,1]上是增函数, ∴当sin x =-1时,函数取得最小值-4; 当sin x =1时,函数取得最大值6.1.y =tan(x +π)是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶函数答案:A2.函数y =2tan ⎝ ⎛⎭⎪⎫3x -π4的一个对称中心是( )A.⎝ ⎛⎭⎪⎫π3,0B.⎝ ⎛⎭⎪⎫π6,0 C.⎝ ⎛⎭⎪⎫-π4,0 D.⎝ ⎛⎭⎪⎫-π2,0 解析:由3x -π4=k π2,得x =k π6+π12 令k =-2得x =-π4.故选C. 答案:C3.函数y =2tan ⎝ ⎛⎭⎪⎫π3-x 2的定义域是________.解析:由π3-x 2≠k π+π2,得x ≠-2k π-π3,k ∈Z ,故函数y =2tan ⎝⎛⎭⎪⎫π3-x 2的定义域是:⎩⎨⎧⎭⎬⎫x |x ≠-π3-2k π,k ∈Z .答案:⎩⎨⎧⎭⎬⎫x |x ≠-π3-2k π,k ∈Z4.使函数y =2tan x 与y =cos x 同时为单调增的区间是________. 解析:由y =2tan x 与y =cos x 的图象知,同时为单调增的区间为(2k π-π2,2k π)(k ∈Z )和(2k π+π,2k π+3π2)(k ∈Z ).答案:⎝ ⎛⎭⎪⎫2k π-π2,2k π(k ∈Z )和(2k π+π,2k π+3π2)(k ∈Z )5.求函数y =tan(π-x ),x ∈⎝⎛⎭⎪⎫-π4,π3的值域.解:y =tan(π-x )=-tan x ,在⎝ ⎛⎭⎪⎫-π4,π3上为减函数,所以值域为(-3,1).1.把函数y =sin ⎝ ⎛⎭⎪⎫2x -π4的图象向左平移π8个单位长度,所得到的图象对应的函数是( )A .奇函数B .偶函数C .既是奇函数也是偶函数D .非奇非偶函数解析:y =sin ⎝⎛⎭⎪⎫2x -π4=sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π8,向左平移π8个单位长度后为y =sin[2(x -π8+π8)]=sin2x ,为奇函数,故选A.答案:A2.为了得到函数y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象,只需把函数y =sin ⎝ ⎛⎭⎪⎫2x +π6的图象( )A .向左平移π4个单位长度 B .向右平移π4个单位长度 C .向左平移π2个单位长度 D .向右平移π2个单位长度 解析:由y =sin ⎝ ⎛⎭⎪⎫2x +π6――→x →x +φy=sin ⎣⎢⎡⎦⎥⎤2(x +φ)+π6=sin ⎝ ⎛⎭⎪⎫2x -π3,即2x +2φ+π6=2x -π3,解得φ=-π4,即向右平移π4个单位长度.答案:B3.用“五点法”画函数y =2sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0)在一个周期内的简图时,五个关键点是(-π6,0),(π12,2),(π3,0),(712 π,-2),(5π6,0),则ω=________.解析:周期T =5π6-(-π6)=π. ∴2πω=π,ω=2. 答案:24.把函数y =2sin ⎝ ⎛⎭⎪⎫3x +π4的图象上所有的点向右平移π6个单位长度,再把所有点的横坐标伸长到原来的2倍,纵坐标不变,得到的图象对应的一个解析式为________.解析:把函数y =2sin ⎝ ⎛⎭⎪⎫3x +π4的图象上所有的点向右平移π6个单位长度,得函数y =2sin ⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫x -π6+π4=2sin ⎝ ⎛⎭⎪⎫3x -π4的图象,再把所有点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y =2sin ⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫12x -π4的图象,即y =2sin ⎝ ⎛⎭⎪⎫32x -π4.答案:y =2sin ⎝ ⎛⎭⎪⎫32x -π45.已知函数y =sin ⎝ ⎛⎭⎪⎫2x +π4+1.(1)用“五点法”画出函数的草图.(2)函数图象可由y =sin x 的图象怎样变换得到? 解:(1)列表:2x +π4 0 π2 π 3π2 2π x -π8 π8 3π8 5π8 7π8 y1211描点、连线如图所示.将y =sin ⎝ ⎛⎭⎪⎫2x +π4+1在⎣⎢⎡⎦⎥⎤-π8,7π8上的图象向左(右)平移k π(k ∈Z )个单位,即可得到y =sin(2x +π4)+1的整个图象.1.函数y =2sin(x 2+π5)的周期、振幅依次是( ) A .4π,-2 B .4π,2 C .π,2D .π,-2解析:在y =A sin(ωx +φ)(A >0,ω>0)中,T =2πω,A 叫振幅(A >0),故y =2sin(x 2+π5)的周期T =2π12=4π,振幅为2,故选B.答案:B2.已知函数f (x )=2 sin(ωx +φ),x ∈R ,其中ω>0,-π<φ≤π.若f (x )的最小正周期为6π,且当x =π2时,f (x )取得最大值,则( )A .f (x )在区间[-2π,0]上是增函数B .f (x )在区间[-3π,-π]上是增函数C .f (x )在区间[3π,5π]上是减函数D .f (x )在区间[4π,6π]上是减函数 解析:∵函数f (x )的最小正周期为6π,∴2πω=6π,得ω=13,在x =π2时,函数f (x )取得最大值, ∴13×π2+φ=2k π+π2,k ∈Z . 又∵-π<φ≤π,∴φ=π3. ∴f (x )=2sin(13x +π3).由2k π-π2≤13x +π3≤2k π+π2(k ∈Z ), 得6k π-52π≤x ≤6k π+12π(k ∈Z ).∴f (x )的增区间是[6k π-52π,6k π+π2](k ∈Z ). 取k =0,得[-52π,π2]是f (x )的一个增区间. ∴函数f (x )在区间[-2π,0]上是增函数. 答案:A3.函数y =|5sin(2x +π3)|的最小正周期为________. 解析:∵y =5sin(2x +π3)的最小正周期为π, ∴函数y =|5sin(2x +π3)|的最小正周期为π2. 答案:π24.使函数f (x )=3sin(2x +5θ)的图象关于y 轴对称的θ为________. 解析:∵函数f (x )=3sin(2x +5θ)的图象关于y 轴对称, ∴f (-x )=f (x )恒成立,∴3sin(-2x +5θ)=3sin(2x +5θ). ∴sin(-2x +5θ)=sin(2x +5θ).∴-2x +5θ=2x +5θ+2k π(舍去)或-2x +5θ+2x +5θ=2k π+π(k ∈Z ).即10θ=2k π+π,故θ=k π5+π10(k ∈Z ). 答案:θ=k π5+π10,k ∈Z5.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的一段图象如图,试求这个函数的解析式.解:方法一:易知A =22,T4=6-2=4. ∴T =16,∴2πω=16,∴ω=π8. 又∵图象过点(2,22). ∴22sin(π8×2+φ)=2 2. 又∵|φ|<π2,∴φ=π4. 于是y =22sin(π8x +π4).方法二:易知A =22,由图可知,第二、第三两关键点的横坐标分别为2和6.∵⎩⎨⎧2ω+φ=π2,6ω+φ=π,∴⎩⎪⎨⎪⎧ω=π8,φ=π4.∴y =22sin(π8x +π4).1.已知某人的血压满足函数解析式f (t )=24sin(160πt )+115.其中f (t )为血压(mmHg),t 为时间(min),则此人每分钟心跳的次数为( )A .60B .70C .80D .90解析:由题意可得频率f =1T =160π2π=80(次/分),所以此人每分钟心跳的次数是80.答案:C2.如图表示电流I 与时间t 的关系I =A sin(ωt +φ)(A >0,ω>0)在一个周期内的图象,则该函数的解析式为( )A .I =300sin ⎝ ⎛⎭⎪⎫50πt +π3B .I =300sin ⎝ ⎛⎭⎪⎫50πt -π3C .I =300sin ⎝ ⎛⎭⎪⎫100πt +π3D .I =300sin(100πt -π3)解析:由图象得周期T =2(1150+1300)=150,最大值为300,图象经过点(1150,0),则ω=2πT =100π,A =300,∴I =300sin(100πt +φ). ∴0=300sin(100π×1150+φ). ∴sin(2π3+φ)=0.取φ=π3, ∴I =300sin(100πt +π3). 答案:C 3.如图为某简谐运动的图象,则这个简谐运动需要________s 往复一次.解析:由图象知周期T =0.8-0=0.8,则这个简谐运动需要0.8 s 往复一次.答案:0.84.据市场调查,某种商品每件的售价按月呈f (x )=A sin(ωx +φ)+B (A >0,ω>0,|φ|<π2)的模型波动(x 为月份),已知3月份达到最高价8千元,7月份价格最低为4千元,则f (x )=________.解析:由题意得⎩⎪⎨⎪⎧A +B =8,-A +B =4,解得A =2,B =6.周期T =2(7-3)=8,∴ω=2πT =π4,∴f (x )=2sin ⎝ ⎛⎭⎪⎫π4x +φ+6. 又当x =3时,y =8,∴8=2sin ⎝ ⎛⎭⎪⎫3π4+φ+6. ∴sin ⎝ ⎛⎭⎪⎫3π4+φ=1.由于|φ|<π2,∴φ=-π4, ∴f (x )=2sin ⎝ ⎛⎭⎪⎫π4x -π4+6.答案:2sin ⎝ ⎛⎭⎪⎫π4x -π4+65.如图所示,摩天轮的半径为40 m ,O 点距地面的高度为50 m ,摩天轮做匀速转动,每3 min 转一圈,摩天轮上的P 点的起始位置在最低点处.(1)试确定在时刻t min 时P 点距离地面的高度;(2)在摩天轮转动的一圈内,有多长时间P 点距离地面超过70 m? 解:(1)以中心O 为坐标原点建立如图所示的坐标系,设t min 时P 距地面的高度为y ,依题意得y =40sin ⎝⎛⎭⎪⎫2π3t -π2+50.(2)令40sin ⎝ ⎛⎭⎪⎫2π3t -π2+50>70,则sin ⎝ ⎛⎭⎪⎫2π3t -π2>12,∴2k π+π6<2π3t -π2<2k π+5π6(k ∈Z ),∴2k π+2π3<2π3t <2k π+4π3(k ∈Z ),∴3k +1<t <3k +2(k ∈Z ).令k =0得1<t <2. 因此,共有1 min P 点距地面超过70 m.单元综合测试一时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.若角600°的终边上有一点(-4,a ),则a 的值是( ) A .-4 3 B .±43 C. 3D .43解析:因为tan600°=a-4=tan(540°+60°)=tan60° =3,故a =-4 3. 答案:A2.已知cos(π2+φ)=32,且|φ|<π2,则tan φ=( ) A .-33 B.33 C .- 3D.3 解析:由cos(π2+φ)=32,得sin φ=-32,又|φ|<π2,∴cos φ=12,∴tan φ=- 3. 答案:C3.下列函数中,最小正周期为π,且图象关于直线x =π3对称的是( )A .y =sin(2x +π6) B .y =sin(x 2+π6) C .y =sin(2x -π6)D .y =sin(2x -π3)解析:∵最小正周期为π,∴ω=2,又图象关于直线x =π3对称, ∴f (π3)=±1,故只有C 符合. 答案:C4.若2k π+π<θ<2k π+5π4(k ∈Z ),则sin θ,cos θ,tan θ的大小关系是( )A .sin θ<cos θ<tan θB .cos θ<tan θ<sin θC .cos θ<sin θ<tan θD .sin θ<tan θ<cos θ解析:设π<α<54π,则有sin θ=sin α, cos θ=cos α,tan θ=tan α, ∵tan α>0,而sin α<0,cos α<0,∴B 、D 排除,又∵cos α<-22<sin α,即cos α<sin α,排除A.选C. 答案:C5.已知A 是三角形的内角,且sin A +cos A =52,则tan A 等于( )A .4+15B .4-15C .4±15D .以上均不正确解析:因为sin A +cos A =52,所以2sin A cos A =14>0.所以A 为锐角.又(sin A -cos A )2=1-2sin A cos A =1-14=34,所以sin A -cos A =±32.从而可求出sin A ,cos A 的值,从而求出tan A =4±15.答案:C6.函数y =2sin(π6-2x )(x ∈[0,π])的单调递增区间是( ) A .[0,π3] B .[π12,7π12] C .[π3,5π6]D .[5π6,π]解析:由π2+2k π≤2x -π6≤3π2+2k π 可得π3+k π≤x ≤5π6+k π(k ∈Z ).∵x ∈[0,π],∴单调递增区间为[π3,5π6]. 答案:C7.为得到函数y =cos ⎝⎛⎭⎪⎫x +π3的图象,只需将函数y =sin x 的图象( )A .向左平移π6个单位长度 B .向右平移π6个单位长度 C .向左平移5π6个单位长度D .向右平移5π6个单位长度 解析:∵y =cos ⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫x +π3+π2 =sin ⎝ ⎛⎭⎪⎫x +5π6, ∴只需将y =sin x 的图象向左平移5π6个单位长度. 答案:C8.已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,则函数f (x )的一个单调递增区间是( )A.⎣⎢⎡⎦⎥⎤-7π12,5π12 B.⎣⎢⎡⎦⎥⎤-7π12,-π12 C.⎣⎢⎡⎦⎥⎤-π4,π6 D.⎣⎢⎡⎦⎥⎤11π12,17π12 解析:由图形可得14T =23π-512π,∴T =π,则ω=2,又图象过点⎝ ⎛⎭⎪⎫512π,2.∴2sin ⎝ ⎛⎭⎪⎫2×512π+φ=2, ∴φ=-π3,∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3, 其单调递增区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+512π(k ∈Z ), 取k =1,即得选项D. 答案:D9.设a 为常数,且a >1,0≤x ≤2π,则函数f (x )=cos 2x +2a sin x -1的最大值为( )A .2a +1B .2a -1C .-2a -1D .a 2解析:f (x )=cos 2x +2a sin x -1 =1-sin 2x +2a sin x -1 =-(sin x -a )2+a 2,∵0≤x ≤2π,∴-1≤sin x ≤1,又a >1,∴f (x )max =-(1-a )2+a 2=2a -1. 答案:B 10.函数y =cos(ωx +φ)(ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,A ,B 分别为最高点与最低点,并且两点间的距离为22,则该函数图象的一条对称轴方程为( )A .x =2π B .x =π2 C .x =1D .x =2解析:函数y =cos(ωx +φ)(ω>0,0<φ<π)的最大值为1,最小值为-1,所以周期T =2(22)2-22=4,所以ω=π2,又函数为奇函数,所以cos φ=0(0<φ<π)⇒φ=π2,所以函数解析式为y =cos(π2x +π2)=-sin π2x ,所以直线x =1为该函数图象的一条对称轴.答案:C11.中国最高的摩天轮是“南昌之星”,它的最高点离地面160米,直径为156米,并以每30分钟一周的速度匀速旋转,若从最低点开始计时,则摩天轮进行5分钟后离地面的高度为( )A .41米B .43米C .78米D .118米解析:摩天轮转轴离地面高160-⎝ ⎛⎭⎪⎫1562=82(米),ω=2πT =π15,摩天轮上某个点P 离地面的高度h 米与时间t 的函数关系是h =82-78cos π15t ,当摩天轮运行5分钟时,其离地面高度为h =82-78cos π15t =82-78×12=43(米).答案:B12.设ω>0,函数y =sin(ωx +π3)+2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是( )A.23B.43C.32D .3解析:方法一:函数y =sin(ωx +π3)+2的图象向右平移4π3个单位后得到函数y =sin[ω(x -4π3)+π3]+2=sin(ωx -4π3ω+π3)+2的图象.∵两图象重合,∴ωx +π3=ωx -4π3ω+π3+2k π,k ∈Z ,解得ω=32k ,k ∈Z .又ω>0,∴当k =1时,ω的最小值是32.方法二:由题意可知,4π3是函数y =sin(ωx +π3)+2(ω>0)的最小正周期T 的正整数倍,即4π3=kT =2k πω(k ∈N *),ω=32k ,ω的最小值为32. 答案:C第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.在扇形中,已知半径为8,弧长为12,则圆心角是________弧度,扇形面积是________.解析:圆心角α=l r =128=32, 扇形面积S =12lr =12×12×8=48.答案:32 4814.方程sin x =lg x 的解的个数为________.解析:画出函数y =sin x 和y =lg x 的图象(图略),结合图象易知这两个函数的图象有3个交点.答案:315.设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β为非零常数.若f (2 013)=-1,则f (2 014)=________.解析:f (2 013)=a sin(2 013π+α)+b cos(2 013π+β) =-1,f (2 014)=a sin(2 014π+α)+b cos(2 014π+β) =a sin[π+(2 013π+α)]+b cos[π+(2 013π+β)] =-[a sin(2 013π+α)+b cos(2 013π+β)]=1. 答案:116.关于函数f (x )=cos ⎝⎛⎭⎪⎫2x +π3+1有以下结论:①函数f (x )的值域是[0,2];②点⎝⎛⎭⎪⎫-512π,0是函数f (x )的图象的一个对称中心;③直线x =π3是函数f (x )的图象的一条对称轴;④将函数f (x )的图象向右平移π6个单位长度后,与所得图象对应的函数是偶函数.其中,所有正确结论的序号是________.解析:①∵-1≤cos ⎝ ⎛⎭⎪⎫2x +π3≤1, ∴0≤cos ⎝⎛⎭⎪⎫2x +π3+1≤2;②∵f ⎝ ⎛⎭⎪⎫-5π12=cos ⎝ ⎛⎭⎪⎫-5π6+π3+1=cos ⎝ ⎛⎭⎪⎫-π2+1=1≠0,∴点⎝ ⎛⎭⎪⎫-512π,0不是函数f (x )图象的一个对称中心;③∵f ⎝ ⎛⎭⎪⎫π3=cos ⎝ ⎛⎭⎪⎫2π3+π3+1=cosπ+1=0,函数取得最小值,∴直线x =π3是函数f (x )的图象的一条对称轴;④将函数f (x )的图象向右平移π6个单位长度后,与所得图象对应的函数解析式为g (x )=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+π3+1=cos2x +1,此函数是偶函数.综上所述,①③④正确.答案:①③④三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知sin θ=45,π2<θ<π, (1)求tan θ;(2)求sin 2θ+2sin θcos θ3sin 2θ+cos 2θ的值.解:(1)∵sin 2θ+cos 2θ=1,∴cos 2θ=1-sin 2θ=925.又π2<θ<π,∴cos θ=-35. ∴tan θ=sin θcos θ=-43.(2)sin 2θ+2sin θcos θ3sin 2θ+cos 2θ=tan 2θ+2tan θ3tan 2θ+1=-857.18.(12分)(1)已知cos(75°+α)=13,其中α为第三象限角,求cos(105°-α)+sin(α-105°)的值;(2)已知π<θ<2π,cos(θ-9π)=-35,求tan(10π-θ)的值. 解:(1)cos(105°-α)=cos[180°-(75°+α)] =-cos(75°+α)=-13,sin(α-105°)=-sin[180°-(75°+α)] =-sin(75°+α). ∵α为第三象限角,∴75°+α为第三或第四象限角,又cos(75°+α)=13>0, ∴75°+α为第四象限角,∴sin(75°+α)=-1-cos 2(75°+α) =-1-⎝ ⎛⎭⎪⎫132=-223, ∴cos(105°-α)+sin(α-105°) =-13+223=22-13. (2)由已知得cos(θ-9π)=-35, ∴cos(π-θ)=-35,∴cos θ=35, ∵π<θ<2π,∴3π2<θ<2π,∴sin θ=-45, ∴tan θ=-43,∴tan(10π-θ)=tan(-θ)=-tan θ=43.19.(12分)已知函数f (x )=2cos(2x -π4),x ∈R . (1)求函数f (x )的最小正周期和单调递增区间.(2)求函数f (x )在区间[-π8,π2]上的最小值和最大值,并求出取得最值时x 的值.解:(1)因为f (x )=2cos(2x -π4),所以函数f (x )的最小正周期为T =2π2=π.由-π+2k π≤2x -π4≤2k π(k ∈Z ),得-3π8+k π≤x ≤π8+k π(k ∈Z ),故函数f (x )的单调递增区间为[-3π8+k π,π8+k π](k ∈Z ).(2)因为f (x )=2cos(2x -π4)在区间[-π8,π8]上为增函数,在区间[π8,π2]上为减函数,又f (-π8)=0,f (π8)=2,f (π2)=2cos(π-π4)=-2cos π4=-1,所以函数f (x )在区间[-π8,π2]上的最大值为2,此时x =π8;最小值为-1,此时x =π2.20.(12分)函数f 1(x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的一段图象过点(0,1),如图所示.(1)求函数f 1(x )的表达式;(2)把f 1(x )的图象向右平移π4个单位长度得到f 2(x )的图象,求f 2(x )取得最大值时x 的取值.解:(1)由图知,T =π,于是ω=2πT =2.将y =A sin2x 的图象向左平移π12,得y =A sin(2x +φ)的图象,于是φ=2×π12=π6.将(0,1)代入y =A sin(2x +π6),得A =2.故f 1(x )=2sin(2x +π6).(2)依题意,f 2(x )=2sin[2(x -π4)+π6] =-2cos(2x +π6),当2x +π6=2k π+π(k ∈Z ),即x =k π+5π12(k ∈Z )时, y max =2.此时x 的取值为{x |x =k π+5π12,k ∈Z }. 21.(12分)已知函数f (x )=2sin(2x +π6)-1.(1)若点P (1,-3)在角α的终边上,求f (α2-π12)的值; (2)若x ∈[-π6,π3],求f (x )的值域.解:(1)因为点P (1,-3)在角α的终边上, 所以sin α=-32,cos α=12,所以f (α2-π12)=2sin[2×(α2-π12)+π6]-1 =2sin α-1=2×(-32)-1=-3-1. (2)令t =2x +π6,因为x ∈[-π6,π3],所以-π6≤2x +π6≤5π6,而y =sin t 在[-π6,π2]上单调递增, 在[π2,5π6]上单调递减, 且sin(-π6)=-12,sin 5π6=12,所以函数y =sin t 在[-π6,5π6]上的最大值为1, 最小值为-12,即-12≤sin(2x +π6)≤1, 所以f (x )的值域是[-2,1].22.(12分)已知函数f (x )=A sin(ωx +φ)+B (A >0,ω>0)的一系列对应值如下表:(1)(2)根据(1)的结果,若函数y =f (kx )(k >0)的最小正周期为2π3,当x ∈[0,π3]时,方程f (kx )=m 恰有两个不同的解,求实数m 的取值范围. 解:(1)设f (x )的最小正周期为T , 得T =11π6-(-π6)=2π, 由T =2πω,得ω=1.又⎩⎪⎨⎪⎧ B +A =3,B -A =-1.解得⎩⎪⎨⎪⎧A =2,B =1.令ω·5π6+φ=π2,即5π6+φ=π2,解得φ=-π3, ∴f (x )=2sin(x -π3)+1.(2)∵函数y =f (kx )=2sin(kx -π3)+1的最小正周期为2π3, 又k >0,∴k =3,令t =3x -π3, ∵x ∈[0,π3],∴t ∈[-π3,2π3],若sin t =s 在[-π3,2π3]上有两个不同的解, 则s ∈[32,1),∴方程f (kx )=m 在x ∈[0,π3]时恰好有两个不同的解,则m ∈[3+1,3),即实数m的取值范围是[3+1,3).1.如图,在⊙O 中,向量OB →,OC →,AO →是( ) A .有相同起点的向量 B .共线向量 C .模相等的向量 D .相等的向量解析:由题知OB →,OC →,AO →对应的有向线段都是圆的半径,因此它们的模相等.答案:C2.下列说法中正确的是( ) A .若|a |>|b |,则a >b B .若|a |=|b |,则a =b C .若a =b ,则a ∥bD .若a ≠b ,则a 与b 不是共线向量解析:向量不能比较大小,所以A 不正确;a =b 需满足两个条件:a ,b 同向且|a |=|b |,所以B 不正确,C 正确;a 与b 是共线向量只需方向相同或相反,所以D 不正确.答案:C3.设O 是正方形ABCD 的中心,则OA →,BO →,AC →,BD →中,模相等的向量是________.解析:∵四边形ABCD 为正方形,O 为正方形的中心, ∴OA =BO ,即|OA →|=|BO →|,|AC →|=|BD →|. 答案:OA →与BO →,AC →与BD →4.如图所示,四边形ABCD 和ABDE 都是平行四边形. (1)与向量ED →相等的向量为______;(2)若|AB →|=3,则向量EC →的模等于________. 解析:(1)在平行四边形ABCD 和ABDE 中, ∵AB →=ED →,AB →=DC →,∴ED →=DC →. (2)由(1)知ED →=DC →,∴E 、D 、C 三点共线,|EC →|=|ED →|+|DC →|=2|AB →|=6. 答案:(1)AB →、DC →(2)65.一个人从点A 出发沿东北方向走了100 m 到达点B ,然后改变方向,沿南偏东15°方向又走了100 m 到达点C .(1)画出AB →,BC →,CA →. (2)求|CA →|. 解:(1)如图所示. (2)|AB →|=100 m , |BC →|=100 m ,∠ABC =45°+15°=60°, 则△ABC 为正三角形. 故|CA →|=100 m.1.在四边形ABCD 中,AC →=AB →+AD →,则( ) A .ABCD 一定是矩形 B .ABCD 一定是菱形 C .ABCD 一定是正方形D .ABCD 一定是平行四边形解析:由AC →=AB →+AD →知由A ,B ,C ,D 构成的四边形一定是平行四边形.答案:D2.下列等式不成立的是( ) A .0+a =a B .a +b =b +a C.AB →+BA →=2BA →D.AB →+BC →=AC →解析:对于C ,∵AB →与BA →是相反向量, ∴AB →+BA →=0. 答案:C3.化简(AB →+MB →)+(BO →+BC →)+OM →=________.解析:原式=(AB →+BO → )+(OM →+MB → )+BC →=AO →+OB →+BC →=AB →+BC →=AC →.答案:AC →4.若a =“向北走8 km ”,b =“向东走8 km ”,则|a +b |=________;a +b 的方向是________.解析:由向量加法的平行四边形法则,知|a +b |=82,方向为东北方向.答案:8 2 km 东北方向5.在水流速度为4 3 km/h 的河中,要使船以12 km/h 的实际航速与河岸成直角行驶,求船在静水中的航行速度的大小和方向.解:设AB →表示水流的速度,AC →表示船的实际航行速度,如图,作出AB →,AC →,连接BC ,作AD 綊BC ,连接DC ,则AD →为所求船的静水航速,且AD →+AB →=AC →.∵|AB →|=43,|AC →|=12, tan ∠ACB =4312=33. ∴∠ACB =30°=∠CAD , |AD →|=|BC →|=83,∠BAD =120°.∴船在静水中的航行速度的大小为8 3 km/h ,方向与水流速度成120°角.1.下列等式: ①0-a =-a ②-(-a )=a ③a +(-a )=0 ④a +0=a ⑤a -b =a +(-b ) ⑥a +(-a )=0正确的个数是( )A .3B .4C .5D .6解析:根据向量的加减运算易知①②③④⑤均正确. 答案:C2.设AB →,BC →,AC →是三个非零向量,且AB →+BC →=AC →,则( ) A .线段AB ,BC ,AC 一定构成一个三角形 B .线段AB ,BC 一定共线 C .线段AB ,BC 一定平行D .线段AB ,BC ,AC 构成三角形或共线解析:由于三角形法则对于共线时也成立,因此线段AB ,BC ,AC 可以构成三角形,也可以共线,但线段AB ,BC 不可能平行.答案:D3.若向量a 与b 共线,且|a |=|b |=1,则|a -b |=________. 解析:∵a 与b 共线, ∴两向量同向或反向. 又|a |=|b |=1,∴|a -b |=0或2. 答案:0或24.化简:(1)(AD →-BM →)+(BC →-MC →)=________. (2)(PQ →-MO →)+(QO →-QM →)=________. 答案:(1)AD → (2)PQ →5.如图,在五边形ABCDE 中,若四边形ACDE 是平行四边形,且AB →=a ,AC →=b ,AE →=c ,试用a ,b ,c 表示向量BD →,BE →,CE →.解:∵四边形ACDE 为平行四边形, ∴CD →=AE →=c ,BC →=AC →-AB →=b -a . ∴BD →=BC →+CD →=b -a +c , BE →=AE →-AB →=c -a , CE →=AE →-AC →=c -b .1.在四边形ABCD 中,若AB →=-12CD →,则此四边形是( ) A .平行四边形 B .菱形 C .梯形D .矩形解析:由AB →=-12CD →可得,在四边形ABCD 中有AB ∥CD ,但|AB |≠|CD |,故为梯形.答案:C2.已知非零向量a ,b 满足a =λb ,b =λa (λ∈R ),则λ=( ) A .-1 B .±1 C .0D .0解析:∵a =λb ,b =λa ,∴a =λ2a ,∴λ±1.答案:B3.化简:2(a -2b )+3(13a +b )=________. 答案:3a -b4.若|a |=5,b 与a 的方向相反,且|b |=7,则a =________b . 解析:∵b 与a 方向相反,∴设a =λb (λ<0) ∴|a |=|λ||b |,∴5=|λ|×7,∴|λ|=57, ∴λ=±57,又λ<0,∴λ=-57. 答案:-57 5.如图,在梯形ABCD 中,AB ∥CD ,且AB =2CD ,M ,N 分别是DC 和AB 的中点,若AB →=a ,AD →=b ,试用a ,b 表示BC →和MN →.解:在四边形ANMD 中,有 MN →=MD →+DA →+AN → =-12DC →-AD →+12AB → =-AD →-12(12AB →)+12AB →=-AD →+14AB →=14a -b . 在四边形ABCD 中,有BC →=BA →+AD →+DC →=-AB →+AD →+12AB → =AD →-12AB →=b -12a .1.已知e 1,e 2是表示平面内所有向量的一组基底,那么下面四组向量中,不能作为一组基底的是( )A .e 1,e 1+e 2B .e 1-2e 2,e 2-2e 1C .e 1-2e 2,4e 2-2e 1D .e 1+e 2,e 1-e 2解析:因为4e 2-2e 1=-2(e 1-2e 2),从而e 1-2e 2与4e 2-2e 1共线.答案:C2.在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,以b 与c 作为基底,则AD →=( )A.23b +13cB.53c -23bC.23b -13cD.13b +23c解析:∵BD →=2DC →,∴AD →-AB →=2(AC →-AD →), ∴AD →-c =2(b -AD →),∴AD →=13c +23b . 答案:A。
高中数学必
修四测试卷
第I 卷
一、选择题(本题共17道小题,每小题0分,共0分) 1.若点P (-3,4)在角α的终边上,则cos α=()
A. 53-
B.53
C. 54-
D.5
4 °的值为( )
A. 21
B.23
C. 21
-
D .
23- 3.已知扇形的周长为cm 8,圆心角为2弧度,则该扇形的面积为( )
A. 2
4cm B. 2
6cm C. 2
8cm D. 2
16cm
4.函数
()cos(2)
6f x x π
=-的最小正周期是( ) 5.已知tan 2α=,则sin cos 2sin cos αα
αα+=
-()
A. 1
B. -1 D. -2 6.函数()sin()f x A x ωϕ=+(其中A >0,ϕ<
π
2
的图象如图所示,为了得到()sin3g x x =的图象,只需将()f x 的图象( )
A.右平移
π4个单位长度 B.左平移π
4个单位长度 C.右平移π12个单位长度 D.左平移π
12
个单位长度
7.将函数
cos()
3y x π
=-的图象上各点的横坐标伸长到原来的2倍(纵
坐标不变),再向左平移6π
个单位,所得函数图象的一条对称轴为( ) A
.
9x π
=
B .8x π
=
C
.
2
x π
=
D
.
x π=
8.已知平面向量(1,3),(2,0)=-=-a b ,则|2|+=a b
A. 32
B. 3
C. 22
D. 5
9.已知平行四边形OABC (O 为坐标原点),(2,0),(3,1)OA OB ==u u u r u u u r ,则OC u u u r 等于
A .(1,1)
B .(1,-1)
C .(-1,-1)
D .(-1,1)
10.在△ABC 中,若点D 满足3BD DC =u u u r u u u r ,点E 为AC 的中点,则ED =u u u r
A .5163AC A
B +u u u r u u u r B .1144AB A
C +u u u r u u u r C .3144AC AB -u u u r u u u r
D .5163AC AB -u u u r u u u r
11.已知m ,n 为正数,向量()()1,1,1,n b m a -==,若b a //,则
12m n +
的最小值为( ) A .3
B .22.322+ D .7
12.已知
3
cos()45x π-=
,则sin 2x =( )
A .2518
B .257
C .257-
D .2516
-
13.已知2tan =α,则=ααcos sin ( )
A . 52-
B .52
C 54-
D .54
14.若41)6sin(=-θπ,则=
+)232cos(θπ
A .87
- B .41-
C .41
D .87
15.函数f(x)=sin(2π
﹣x)是( )
A .奇函数,且在区间(0,2π)上单调递增
B .奇函数,且在区间(0,2π
)上单调递减
C .偶函数,且在区间(0,2π)上单调递增
D .偶函数,且在区间(0,2π
)上单调递减
16.若
1
sin 3α=
,则cos2α= A .8
9
B .7
9
C .7
9-
D .8
9-
17.已知O 是ABC ∆内部一点,且3OA OB OC 0++=uu r uu u r uuu r ,6AB AC
?uu u r uuu r
, 60BAC
?o ,则OBC ∆的
面积为 A .
35 B .335
C .3
D .935 第II 卷(非选择题)
二、填空题(本题共4道小题,每小题0分,共0分)
18.已知向量),2(),5,5(),0,3(k c b a =-==,若)(c a b +⊥,则k =__________ 19.已知2sin 3cos 0θθ+=,则tan 2θ=________.
20.已知为角终边上的一点,则
__________.
21.已知函数
()sin(),(,0,)
2f x A x x R π
ωϕωϕ=+∈><
的部分图象
如图
所示.则()f x 的解析式是______________。
三、解答题
22.已知,且α是第二象限的角.
(1)求
的值;
(2)求cos2α的值. 23.已知函数)2sin()4
sin(32)(ππ
+-+=x x x f .
(1)求f (x )的最小正周期;
(2)若将f (x )的图象向右平移
3π个单位,得到函数g (x )的图象,求函数g (x )在区间⎪⎭
⎫⎢⎣⎡2,0π上的最大值和最小值,并求出相应的x 的值. 24.已知向量)sin 2,3(),1,cos (x x =-= (1)当⊥时,求
x
x
x 2
cos 1sin cos 3+的值; (2)已知钝角△ABC 中,角B 为钝角,a ,b ,c 分别为角A ,B ,C 的对边,且)sin(2B A b c +=,若函数2
2
4)(x f -=,求)(B f 的值.
25.已知函数()cos(2)sin 2(0)
6f x x x π
ωωω=-+>的最小正周期为π.
(I)求ω的值;
(Ⅱ)求函数()f x 在0,2π⎡⎤⎢
⎥⎣⎦上的值域.
26.已知函数f (x )=sin 2x –cos 2x –32sin x cos x (x ∈R ).
(Ⅰ)求)32(
πf 的值.
(Ⅱ)求f (x )的最小正周期及单调递增区间.
数学必修四测试卷答案
由三角函数的定义可知
534)3(3cos 2
2-=+--==
r x α
B T 选∴,π2π
2||π2===
ωΘ 由题意知,2(3,3)+=--a b ,所以|2|32+=a b .
故选 A. ∵为平行四边形,由向量加法的平行四边形法则知
,
∴.
11
,1001,11//>∴
<<⇒>-=∴=+⇒-=⇒m m m n n m n m b a Θ,
()223232121+≥++=⎪⎭
⎫
⎝⎛++=+∴
m n n m n m n m n m ,当且仅当222n m =时取等号. 【分析】函数=cosx ,即可得出结论.
【解答】解:函数=cosx ,是偶函数,且在区间上单调递减,
故选D .
故答案为B.
19.512由条件得23tan -=θ,从而512)23(1)
23
(22tan 2
=---⨯=
θ
5 21.
22.解:(1)∵,且α是第二象限的角∴cosα=﹣
=
∴
=sinα?cos
﹣cosα?sin
=
(2)cos2α=1﹣2sin 2α=1﹣= 23.解:(1)由
,得
=
=
.∴f(x )的最小正周期为π;
(2)∵将f (x )的图象向右平移个单位,得到函数g (x )的图象,
∴
=.∵x∈[0,
)时,
,∴当
,即
时,g (x )取得最大值2;
当
,即x=0时,g (x )取得最小值
.
24.(1)∵⊥,∴x x sin 2cos 3=,即23tan =
x 223sin 3611
1cos 2tan x x x x x ==++
(2)2sin()c b A B =+Q ,sin 2sin sin C B C ∴=1
sin 0, sin 2C B ≠∴=
Q
22
()44cos 21f x m n x =-=+u r r Q 由角B 为钝角知56
B π=
5()4cos 133f B π∴=+= 25.
26.
(Ⅰ)由2sin
3π=,21cos 32π=-,22211()()()322f π=----.得2()23
f π
=.
(Ⅱ)由22cos2cos sin x x x =-与sin22sin cos x x x =得()cos 22f x x x =--.2sin(2)6
x π
=-+.
所以()f x 的最小正周期是π.由正弦函数的性质得3222,262
k x k k πππ
+π≤+≤+π∈Z ,
解得2,63k x k k ππ+π≤≤+π∈Z ,所以,()f x 的单调递增区间是2[,]63
k k k ππ+π+π∈Z ,.。