MATLAB矩阵及其运算
- 格式:docx
- 大小:411.23 KB
- 文档页数:11
matlab矩阵的代数运算操作:1.矩阵相加:C = A + B,其中A、B和C都是具有相同维度的矩阵。
2.矩阵相减:C = A - B,其中A、B和C都是具有相同维度的矩阵。
3.矩阵乘法:C = A * B,其中A的列数与B的行数相等,C的维度为A的行数乘以B的列数。
4.矩阵点乘(对应元素相乘):C = A .* B,其中A、B和C都是具有相同维度的矩阵。
5.矩阵的转置:B = A',其中A和B具有相同的维度,但是B的行和列与A的行和列交换。
6.矩阵的逆:B = inv(A),其中A是一个可逆方阵,B是A的逆矩阵,满足A *B = B * A = I,其中I是单位矩阵。
7.矩阵的行列式:det_A = det(A),其中A是一个方阵,det_A是A的行列式。
8.矩阵的迹:trace_A = trace(A),其中A是一个方阵,trace_A是A的迹,即A的主对角线元素之和。
9.矩阵的特征值和特征向量:[V, D] = eig(A),其中A是一个方阵,V是特征向量矩阵,D是特征值矩阵,满足 A * V = V * D。
10.矩阵的广义逆矩阵:B = pinv(A),其中A是一个矩阵,B是A的广义逆矩阵,满足 A * B * A = A。
11.矩阵的克罗内克积:C = kron(A, B),其中A和B是两个矩阵,C是A和B的克罗内克积。
12.矩阵的行合并:C = [A; B],其中A和B具有相同的列数,C是将A和B按行合并得到的矩阵。
13.矩阵的列合并:C = [A, B],其中A和B具有相同的行数,C是将A和B按列合并得到的矩阵。
矩阵相加:A = [1 2; 3 4];B = [5 6; 7 8];C = A + B;矩阵相减:A = [1 2; 3 4];B = [5 6; 7 8];C = A - B;矩阵乘法A = [1 2; 3 4];B = [5 6; 7 8];C = A * B;矩阵点乘(对应元素相乘):A = [1 2; 3 4];B = [5 6; 7 8];C = A .* B;矩阵的转置:A = [1 2; 3 4];B = A';矩阵的逆:A = [1 2; 3 4];B = inv(A);矩阵的行列式:A = [1 2; 3 4];det_A = det(A);矩阵的特征值和特征向量:A = [1 2; 3 4];[V, D] = eig(A); % V为特征向量矩阵,D为特征值矩阵。
matlab矩阵运算符号在MATLAB中,矩阵运算符号包括加法、减法、乘法、除法和幂运算。
1. 加法:使用“+”运算符,用于将两个矩阵对应位置的元素相加,并返回一个新的矩阵。
例如:复制代码A = [1 2 3;4 5 6];B = [10 20 30;40 50 60];C = A + B;则C的值为:复制代码C = [11 22 33;44 55 66];1. 减法:使用“-”运算符,用于将两个矩阵对应位置的元素相减,并返回一个新的矩阵。
例如:复制代码A = [1 2 3;4 5 6];B = [10 20 30;40 50 60];C = A - B;则C的值为:复制代码C = [-9 -18 -27;-36 -45 -54];1. 乘法:使用“*”运算符,用于计算两个矩阵的乘积。
其中第一个矩阵的列数必须等于第二个矩阵的行数。
例如:复制代码A = [1 2;3 4];B = [5 6;7 8];C = A * B;则C的值为:复制代码C = [19 22;43 50];1. 除法:使用“/”运算符,用于计算一个矩阵除以另一个矩阵的逆。
例如:复制代码A = [1 2;3 4];B = [5 6;7 8];C = A / B;则C的值为:复制代码C = [-0.25 -0.1667;0.375 0.25];1. 幂运算:使用“^”运算符,用于计算一个矩阵的乘幂。
例如:复制代码A = [1 2;3 4];C = A ^ 2;则C的值为:复制代码C = [7 10;15 22];。
matlab程序设计矩阵及其运算1. 矩阵的定义和表示在matlab中,矩阵是一种常用的数据结构,用于存储和处理多维数据。
矩阵由行和列组成,每个元素都有一个唯一的位置。
在matlab中,可以通过方括号[ ]来定义和表示矩阵。
以下是一些常见的矩阵定义:一维行向量:matlabA = [1 2 3 4 5];一维列向量:matlabB = [1; 2; 3; 4; 5];二维矩阵:matlabC = [1 2 3; 4 5 6; 7 8 9];可以使用size()函数获取矩阵的维度信息,例如:matlab[m, n] = size(C); % m为行数,n为列数2. 矩阵的运算matlab中的矩阵可以进行各种运算,包括基本的加减乘除运算、转置运算、矩阵乘法运算等。
2.1 加法和减法矩阵的加法和减法可以使用+和-运算符进行,例如:matlabA = [1 2 3; 4 5 6; 7 8 9];B = [9 8 7; 6 5 4; 3 2 1];C = A + B; % 矩阵的加法D = A B; % 矩阵的减法2.2 矩阵乘法矩阵乘法在matlab中使用运算符进行,例如:matlabA = [1 2 3; 4 5 6; 7 8 9];B = [9 8 7; 6 5 4; 3 2 1];C = A B; % 矩阵的乘法2.3 转置运算矩阵的转置表示将矩阵的行和列互换,使用'运算符进行,例如:matlabA = [1 2 3; 4 5 6; 7 8 9];B = A'; % A的转置矩阵2.4 矩阵的逆运算矩阵的逆运算是指对于一个可逆矩阵A,存在一个矩阵B,使得A B = B A = I,其中I为单位矩阵。
在matlab中,可以使用inv()函数来求一个矩阵的逆矩阵,例如:matlabA = [1 2; 3 4];B = inv(A); % A的逆矩阵需要注意的是,不是所有的矩阵都有逆矩阵,对于不可逆的矩阵,inv()函数会报错。
MATLAB中的矩阵运算与计算技巧分享矩阵运算与计算技巧是MATLAB中非常重要的部分,它为用户提供了便捷的方法来处理和分析大量数据。
在本文中,我将分享一些在MATLAB 中进行矩阵运算和计算的技巧和方法。
1.矩阵创建和操作:MATLAB提供了多种方法来创建矩阵,如zeros函数创建全零矩阵、ones函数创建全一矩阵、eye函数创建单位矩阵等。
此外,还可以使用linspace函数创建等差数列构成的矩阵,或使用rand函数创建指定维度的随机数矩阵。
例如:A = zeros(3, 3) % 创建一个3x3的全零矩阵B = ones(2, 2) % 创建一个2x2的全一矩阵C = eye(3) % 创建一个3x3的单位矩阵D = linspace(1, 10, 5) % 创建一个从1到10的5个等差数列构成的矩阵E = rand(2, 2) % 创建一个2x2的随机数矩阵例如:A'%矩阵A的转置A(1:2,:)%取矩阵A的前两行[A,B]%将矩阵A和B沿着列方向拼接2.矩阵运算:例如:A+B%矩阵A和B的加法运算A-B%矩阵A和B的减法运算A*B%矩阵A和B的乘法运算A/B%矩阵A和B的除法运算A^2%矩阵A的平方3.矩阵函数:例如:inv(A) % 求矩阵A的逆矩阵eig(A) % 求矩阵A的特征值和特征向量rank(A) % 求矩阵A的秩det(A) % 求矩阵A的行列式4.矩阵索引和迭代:例如:A(1,1)%访问矩阵A的第一个元素A(2:3,2)%访问矩阵A的第2到3行的第2列元素for i = 1:size(A, 1)for j = 1:size(A, 2)A(i,j)=A(i,j)+1;%对矩阵A的每个元素加1endend5.矩阵运算的向量化:例如,可以使用矩阵运算代替for循环来实现向量的加法:A=[1,2,3];B=[4,5,6];C=A+B;以上只是MATLAB中矩阵运算与计算技巧的一部分,MATLAB还提供了许多其他功能和工具,如线性代数运算、矩阵分解、矩阵方程的求解等。
一、矩阵的创建在MA TLAB中创建矩阵有以下规则:a、矩阵元素必须在”[ ]“内;b、矩阵的同行元素之间用空格(或”,”)隔开;c、矩阵的行与行之间用”;”(或回车符)隔开;d、矩阵的元素可以是数值、变量、表达式或函数;e、矩阵的尺寸不必预先定义。
下面介绍四种矩阵的创建方法:1、直接输入法最简单的建立矩阵的方法是从键盘直接输入矩阵的元素,输入的方法按照上面的规则。
建立向量的时候可以利用冒号表达式,冒号表达式可以产生一个行向量,一般格式是:e1:e2:e3,其中e1为初始值,e2为步长,e3为终止值。
还可以用linspace函数产生行向量,其调用格式为:linspace(a,b,n) ,其中a和b是生成向量的第一个和最后一个元素,n是元素总数。
可以看出来linspace(a,b,n)与a:(b-a)/(n-1):b等价。
2、利用MATLAB函数创建矩阵基本矩阵函数如下:(1) ones()函数:产生全为1的矩阵,ones(n):产生n*n维的全1矩阵,ones(m,n):产生m*n 维的全1矩阵;(2) zeros()函数:产生全为0的矩阵;(3) rand()函数:产生在(0,1)区间均匀分布的随机阵;(4) eye()函数:产生单位阵;(5) randn()函数:产生均值为0,方差为1的标准正态分布随机矩阵。
3、利用文件建立矩阵当矩阵尺寸较大或为经常使用的数据矩阵,将此矩阵保存为文件,在需要时直接将文件利用load命令调入工作环境中使用即可。
可以利用命令reshape对调入的矩阵进行重排。
reshape(A,m,n),它在矩阵总元素保持不变的前提下,将矩阵A重新排成m*n的二维矩阵。
二、矩阵的拆分1.矩阵元素可以通过下标(行列索引)引用矩阵的元素,如Matrix(m,n)。
也可以采用矩阵元素的序号来引用矩阵元素。
矩阵元素的序号就是相应元素在内存中的排列顺序。
在MA TLAB中,矩阵元素按列存储,先第一列,再第二列,依次类推。
MATLAB的矩阵运算阅读⽬录 MATLAB是基于矩阵和数组计算的,可以直接对矩阵和数组进⾏整体的操作,MATLAB有三种矩阵运算类型:矩阵的代数运算、矩阵的关系运算和矩阵的逻辑运算。
其中,矩阵的代数运算应⽤最⼴泛。
本⽂主要讲述矩阵的基本操作,涉及矩阵的创建、矩阵的代数运算、关系运算和逻辑运算等基本知识。
矩阵的创建直接输⼊法创建矩阵% 1. 直接输⼊法创建矩阵>> A = [1,2,3; 4,5,6; 7,8,9]A =1 2 34 5 67 8 9函数法创建矩阵简单矩阵% 2. 函数法创建矩阵>> zeros(3)% ⽣成3x3的全零矩阵ans =0 0 00 0 00 0 0>> zeros(3,2)% ⽣成3x2的全零矩阵ans =0 00 00 0>> eye(3)% ⽣成单位矩阵ans =1 0 00 1 00 0 1>> ones(3)% ⽣成全1矩阵ans =1 1 11 1 11 1 1>> magic(3)% ⽣成3x3的魔⽅阵ans =8 1 63 5 74 9 2>> diag(1:3)% 对⾓矩阵ans =1 0 00 2 00 0 3>> diag(1:5,1)% 对⾓线向上移1位矩阵ans =0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 4 0 0 0 0 0 0 5 0 0 0 0 0 0 >> diag(1:5,-1)% 对⾓线向下移1位矩阵ans =0 0 0 0 0 01 0 0 0 0 0 02 0 0 0 0 0 03 0 0 0 0 0 04 0 0 0 0 0 05 0 >> triu(ones(3,3))% 上三⾓矩阵ans =1 1 10 1 10 0 1>> tril(ones(3,3))% 下三⾓矩阵ans =1 0 01 1 01 1 1随机矩阵>> rand(3)% ⽣成随机矩阵ans =0.2898 0.8637 0.05620.4357 0.8921 0.14580.3234 0.0167 0.7216>> rand('state',0); % 设定种⼦数,产⽣特定种⼦数下相同的随机数>> rand(3)ans =0.9501 0.4860 0.45650.2311 0.8913 0.01850.6068 0.7621 0.8214>> a = 1; b = 100;>> x = a + (b-a)* rand(3)% 产⽣区间(1,100)内的随机数x =38.2127 20.7575 91.113389.9610 31.0064 53.004043.4711 54.2917 31.3762>> a = 1; b = 100;>> a + fix(b * rand(1,50))% 产⽣50个[1,100]内的随机正整数ans =列 1 ⾄ 154 72 77 6 63 27 32 53 41 90 58 57 40 70 57列 16 ⾄ 3035 60 28 5 84 11 73 45 100 57 47 42 22 24 32列 31 ⾄ 4587 26 97 31 38 35 71 62 76 80 22 90 90 94 28列 46 ⾄ 5048 26 37 53 39相似函数扩展>> randn(3)% ⽣成均值为0,⽅差为1的正太分布随机数矩阵ans =-0.4326 0.2877 1.1892-1.6656 -1.1465 -0.03760.1253 1.1909 0.3273>> randperm(10)% ⽣成1-10之间随机分布10个正整数ans =4 9 10 25 8 1 3 7 6% 多项式x^3 - 7x + 6 的伴随矩阵>> u = [1,0,-7,6];>> A = compan(u)% ⽣成伴随矩阵A =0 7 -61 0 00 1 0>> eig(A) % 此处eig()函数⽤于求特征值% 利⽤伴随矩阵求得⽅程的根ans =-3.00002.00001.0000矩阵的运算矩阵的代数运算矩阵的算术运算>> A = [1,1;2,2];>> B = [1,1;2,2];>> AA =1 12 2>> BB =1 12 2>> A + Bans =2 24 4>> B-Aans =0 00 0>> A * Bans =3 36 6>> A^2ans =3 36 6>> A^3ans =9 918 18矩阵的运算函数>> C = magic(3)C =8 1 63 5 74 9 2>> size(C)ans =3 3>> length(C)ans =3>> sum(C)ans =15 15 15>> max(C)ans =8 9 7>> C'ans =8 3 41 5 96 7 2>> inv(C)ans =0.1472 -0.1444 0.0639 -0.0611 0.0222 0.1056 -0.0194 0.1889 -0.1028矩阵的元素群运算元素群运算,是指矩阵中的所有元素按单个元素进⾏运算,也即是对应位置进⾏运算。