MATLAB矩阵及其运算函数表
- 格式:doc
- 大小:103.00 KB
- 文档页数:3
MATLAB矩阵操作大全1. 创建矩阵:可以使用函数`zeros`、`ones`、`eye`、`rand`等来创建全零矩阵、全一矩阵、单位矩阵和随机矩阵。
2.矩阵索引:可以使用`(`或`[]`来访问矩阵中的元素。
例如,`A(3,2)`表示访问矩阵A中第3行第2列的元素。
3.矩阵运算:可以使用`+`、`-`、`*`、`/`等运算符对矩阵进行加法、减法、乘法和除法运算。
4. 矩阵转置:可以使用`'`符号或`transpose`函数来对矩阵进行转置操作。
例如,`B = A'`表示将矩阵A转置为矩阵B。
5.矩阵加法和减法:可以使用`+`和`-`运算符对两个矩阵进行逐元素的加法和减法运算。
6.矩阵乘法和除法:可以使用`*`和`/`运算符对矩阵进行乘法和除法运算。
注意,矩阵乘法是按照矩阵相应元素进行乘法运算,并不是简单的逐元素乘法。
7. 矩阵求逆:可以使用`inv`函数来求矩阵的逆矩阵。
例如,`B =inv(A)`表示求矩阵A的逆矩阵,并将结果保存在矩阵B中。
8. 矩阵转换:可以使用转换函数`double`、`single`、`int8`、`int16`、`int32`、`int64`等将矩阵的数据类型转换为指定类型。
9. 矩阵求解线性方程组:可以使用`solve`函数来求解线性方程组。
例如,`x = solve(A, b)`表示求解线性方程组Ax = b,并将结果保存在向量x中。
10. 矩阵求特征值和特征向量:可以使用`eig`函数来求矩阵的特征值和特征向量。
例如,`[V, D] = eig(A)`表示求矩阵A的特征值和特征向量,并将结果保存在矩阵V和对角矩阵D中。
11. 矩阵的行列式:可以使用`det`函数来计算矩阵的行列式。
例如,`D = det(A)`表示计算矩阵A的行列式,并将结果保存在变量D中。
12. 矩阵的秩:可以使用`rank`函数来计算矩阵的秩。
例如,`r = rank(A)`表示计算矩阵A的秩,并将结果保存在变量r中。
MATLAB函数大全Matlab有没有求矩阵行数/列数/维数的函数?ndims(A)返回A的维数size(A)返回A各个维的最大元素个数length(A)返回max(size(A))[m,n]=size(A)如果A是二维数组,返回行数和列数nnz(A)返回A中非0元素的个数MATLAB的取整函数:fix(x), floor(x) :,ceil(x) , round(x) (1)fix(x) : 截尾取整.>> fix( [3.12 -3.12])ans =3 -3(2)floor(x):不超过x 的最大整数.(高斯取整)>> floor( [3.12 -3.12])ans =3 -4(3)ceil(x) : 大于x 的最小整数>> ceil( [3.12 -3.12])ans =4 -3(4)四舍五入取整>> round(3.12 -3.12)ans =>> round([3.12 -3.12])ans =3 -3>>如何用matlab生成随机数函数rand(1)rand(n):生成0到1之间的n阶随机数方阵rand(m,n):生成0到1之间的m×n的随机数矩阵(现成的函数) 另外:Matlab随机数生成函数betarnd 贝塔分布的随机数生成器binornd 二项分布的随机数生成器chi2rnd 卡方分布的随机数生成器exprnd 指数分布的随机数生成器frnd f分布的随机数生成器gamrnd 伽玛分布的随机数生成器geornd 几何分布的随机数生成器hygernd 超几何分布的随机数生成器lognrnd 对数正态分布的随机数生成器nbinrnd 负二项分布的随机数生成器ncfrnd 非中心f分布的随机数生成器nctrnd 非中心t分布的随机数生成器ncx2rnd 非中心卡方分布的随机数生成器normrnd 正态(高斯)分布的随机数生成器poissrnd 泊松分布的随机数生成器raylrnd 瑞利分布的随机数生成器trnd 学生氏t分布的随机数生成器unidrnd 离散均匀分布的随机数生成器unifrnd 连续均匀分布的随机数生成器weibrnd 威布尔分布的随机数生成器一、MATLAB常用的基本数学函数abs(x):纯量的绝对值或向量的长度angle(z):复数z的相角(Phase angle)sqrt(x):开平方real(z):复数z的实部imag(z):复数z的虚部conj(z):复数z的共轭复数round(x):四舍五入至最近整数fix(x):无论正负,舍去小数至最近整数floor(x):地板函数,即舍去正小数至最近整数ceil(x):天花板函数,即加入正小数至最近整数rat(x):将实数x化为分数表示rats(x):将实数x化为多项分数展开sign(x):符号函数(Signum function)。
矩阵转置用符号“`”来表示和实现。
例如:A=[1 2 3;4 5 6 ;7 8 9 ];B=A`↙B=1 4 72 5 83 6 9如故Z是复数矩阵,则Z`为它们的复数共轭转置矩阵,非共轭转置矩阵使用Z.`或conj(Z`)。
size(a)[d1,d2,d3,..]=size(a) 求矩阵的大小,对m*n二维矩阵,第一个为行数m,第二个为列数n;对多维矩阵,第N个为矩阵第N维的长度。
cat(k,a,b) 矩阵合并,运行a = magic(3)b = pascal(3)c = cat(4,a,b)改4为3或2或1,自己体会合并后的效果。
k=1,合并后形如[a;b],行添加矩阵(要求a,b的列数相等才能合并);k=2,合并后形如[a,b],列添加矩阵(要求a,b的行数相等才能合并),以此类推,n维的矩阵合并,要求n-1维维数相等才可以)。
fliplr(a) 矩阵左右翻转flipud(a) 矩阵上下翻转rot90(a)rot90(a,k) 矩阵逆时针旋转90度(把你的头顺时针旋转90看原数就可以知道结果了,^-^)k参数定义为逆时针旋转90*k度。
flipdim(a,k) 矩阵对应维数数值翻转,如k=1时,行(上下)翻转,k=2时,列(左右)翻转。
tril(a)tril(a,k) 矩阵的下三角部分(包括对角线元素),对应k=0时的取值数。
k参数设置为正负数值对应对角线向上或向下移动k行划分下三角元素。
triu(a)tril(a,k) 矩阵的上三角部分(包括对角线元素),对应k=0时的取值数。
k参数设置为正负数值对应对角线向上或向下移动k行划分上三角元素。
diag(a)diag(a,k) 生成对角矩阵或取出对角元素,对应k=0时的取值数。
k参数设置为正负数值对应对角线向上或向下移动k行取对角元素或生成对角矩阵。
repmat(a,m,n) 矩阵复制,把矩阵a作为一个单位计算,复制成m*n 的矩阵,其每一元素都含一个矩阵a,实际结果为一个size(a,1)*m行,size(a,2)*n列的矩阵。
matlab矩阵位运算在数学和计算机科学中,矩阵是一种非常重要的数据结构。
它由行和列组成,可以用来表示和处理各种类型的数据。
而位运算是一种对二进制数进行操作的方法,它可以对矩阵中的每个元素进行逐位操作。
在matlab中,矩阵位运算可以通过一些内置函数来实现。
matlab中的位运算函数主要有bitand、bitor、bitxor和bitcmp。
这些函数可以对矩阵中的每个元素进行逐位的与、或、异或和取反操作。
下面我们来具体介绍一下这些函数的用法。
首先是bitand函数,它可以对两个矩阵进行逐位的与操作。
例如,我们有两个矩阵A和B,它们的大小相同。
我们可以使用bitand(A, B)来计算A和B的逐位与结果。
这个函数会返回一个新的矩阵,其中的每个元素都是A和B对应位置上的元素进行与操作的结果。
接下来是bitor函数,它可以对两个矩阵进行逐位的或操作。
与bitand函数类似,我们可以使用bitor(A, B)来计算A和B的逐位或结果。
这个函数也会返回一个新的矩阵,其中的每个元素都是A和B对应位置上的元素进行或操作的结果。
然后是bitxor函数,它可以对两个矩阵进行逐位的异或操作。
我们可以使用bitxor(A, B)来计算A和B的逐位异或结果。
这个函数同样会返回一个新的矩阵,其中的每个元素都是A和B对应位置上的元素进行异或操作的结果。
最后是bitcmp函数,它可以对矩阵中的每个元素进行逐位的取反操作。
我们可以使用bitcmp(A)来计算A的逐位取反结果。
这个函数同样会返回一个新的矩阵,其中的每个元素都是A对应位置上的元素进行取反操作的结果。
除了这些基本的位运算函数,matlab还提供了一些其他的位运算函数,如bitshift、bitset和bitget等。
这些函数可以对矩阵中的每个元素进行位移、设置和获取操作。
它们可以帮助我们更加灵活地处理矩阵中的位运算问题。
总结起来,matlab提供了一系列强大的矩阵位运算函数,可以对矩阵中的每个元素进行逐位的与、或、异或和取反操作。
在Matlab中如何进行矩阵运算矩阵运算是数学中一个非常重要的概念,它在多个学科领域得到广泛应用,如物理、工程、经济等。
而Matlab作为一种强大的数学软件,提供了丰富的函数和工具,方便了用户进行矩阵运算。
在本文中,我们将介绍在Matlab中如何进行矩阵的基本运算、特殊运算和高级运算,以帮助读者更好地理解和应用矩阵运算。
一、矩阵的基本运算1. 矩阵的定义和创建在Matlab中,可以通过一维数组或二维数组的方式来定义和创建矩阵。
例如,我们可以通过以下代码创建一个3×3的矩阵A:A = [1 2 3; 4 5 6; 7 8 9];这样就创建了一个3×3的矩阵A,其中每个元素的值由空格或分号进行分隔。
2. 矩阵的加法和减法在Matlab中,矩阵的加法和减法可以通过直接对两个矩阵进行加减操作来实现。
例如,我们可以通过以下代码实现矩阵A和矩阵B的加法和减法:C = A + B;D = A - B;其中矩阵C和矩阵D分别表示A与B的加法运算结果和减法运算结果。
3. 矩阵的乘法矩阵的乘法在Matlab中可以通过*符号进行实现。
例如,我们可以通过以下代码实现矩阵A和矩阵B的乘法:E = A * B;其中矩阵E表示A与B的乘法运算结果。
需要注意的是,矩阵的乘法要求前一个矩阵的列数等于后一个矩阵的行数,否则会报错。
4. 矩阵的转置在Matlab中,可以通过'符号对矩阵进行转置操作。
例如,我们可以通过以下代码实现矩阵A的转置:F = A';其中矩阵F表示A的转置结果。
转置操作可以将矩阵的行和列进行互换。
二、矩阵的特殊运算1. 矩阵的逆在Matlab中,可以通过inv函数来计算矩阵的逆。
例如,我们可以通过以下代码计算矩阵A的逆:G = inv(A);其中矩阵G表示A的逆矩阵。
需要注意的是,矩阵的逆只存在于方阵中,并且存在逆的矩阵称为可逆矩阵。
2. 矩阵的行列式在Matlab中,可以通过det函数来计算矩阵的行列式。
Matlab中矩阵运算的常用函数介绍Matlab是一种流行的数值计算软件,广泛应用于科学计算、数据分析等领域。
在Matlab中,矩阵是一种最基本的数据结构之一,几乎所有的数值计算都离不开矩阵运算。
本文将介绍一些常用的Matlab矩阵运算函数,帮助读者更好地理解和应用这些函数。
1. 矩阵创建与赋值在Matlab中,可以使用矩阵创建函数来创建一个矩阵对象。
常用的矩阵创建函数包括:- zeros:创建一个全零矩阵。
- ones:创建一个全一矩阵。
- eye:创建一个单位矩阵。
- rand:创建一个随机矩阵。
例如,使用zeros函数创建一个大小为3×3的全零矩阵:```matlabA = zeros(3,3);```可以使用“=”运算符将矩阵赋值给一个变量,如上例中的变量A。
2. 矩阵操作Matlab提供了一系列的矩阵操作函数,用于对矩阵进行各种操作。
常用的矩阵操作函数包括:- transpose:求矩阵的转置。
- repmat:重复矩阵。
- reshape:改变矩阵的形状。
- inv:求矩阵的逆。
- det:求矩阵的行列式。
例如,使用transpose函数求一个矩阵的转置:```matlabA = [1,2,3;4,5,6;7,8,9];B = transpose(A);```上述代码将矩阵A的转置赋值给了变量B。
3. 矩阵运算Matlab中可以进行各种矩阵运算。
常用的矩阵运算函数包括:- plus:矩阵相加。
- minus:矩阵相减。
- mtimes:矩阵相乘。
- times:矩阵元素对应相乘。
例如,使用mtimes函数计算两个矩阵的点乘:```matlabA = [1,2,3;4,5,6;7,8,9];B = [9,8,7;6,5,4;3,2,1];C = mtimes(A,B);```上述代码将矩阵A和B的点乘结果赋值给了变量C。
4. 矩阵求解Matlab中提供了一些矩阵求解函数,用于求解线性方程组和最小二乘问题。
MATLAB矩阵运算1. 矩阵的加减乘除和(共轭)转置(1) 矩阵的加法和减法 如果矩阵A和B有相同的维度(⾏数和列数都相等),则可以定义它们的和A+B以及它们的差A-B,得到⼀个与A和B同维度的矩阵C,其中C ij=A ij+B ij或A ij-B ij.另外Matlab还⽀持任意⼀个矩阵A与⼀个标量s相加,结果为矩阵的每⼀个元素加减标量,得到⼀个与A同维度的新的矩阵,即A+s的各个元素为A ij+s.(2) 矩阵的乘法 如果矩阵A的列数等于矩阵B的⾏数,则可以将A和B相乘,命令为A*B,得到⼀个新的矩阵C,C的⾏数等于A的⾏数,列数等于B的列数. 由于矩阵的乘法不满⾜交换律,所以⼀般A*B不等于B*A.(3) 矩阵的张量积(tensor product) 矩阵A和B的张量积A⊗B可以⽅便地⽤kron函数计算,即使⽤命令kron(A,B), 例如(4) 矩阵的除法 在MatLab中,有两个矩阵除法符号,左除\和右除/. 如果A是⼀个⾮奇异⽅阵(nonsingular square, 即满秩⽅阵),B的⾏数与A的⾏数相等,那么A\B=A-1B. 如果C的列数与A的列数相等,那么C/A=CA-1. 从另⼀个⾓度来看,X=A\B是矩阵⽅程AX=B的解,X=C/A是矩阵⽅程XA=C的解. 如果b是⼀个⾏数与A的⾏数相等的列向量,则向量x=A\b是线性⽅程组 Ax=b的解. 且在矩阵⽅程AX=B中,A可以是⼀个m×n的矩阵,如果m=n则有唯⼀解;如果m<n则有多个解,Matlab会返回⼀个基础解;如果m>n则会返回⼀个最⼩⽅阵解.(5) 矩阵的转置和共轭转置 在Matlab中,矩阵的共轭转置⽤撇号’表⽰,如果不需要对元素进⾏共轭运算,仅仅只对矩阵进⾏转置,则在撇号之前输⼊⼀个点号,即.’ . 对于实数矩阵A,A’和A.’是相同的.2. 矩阵元素操作运算 矩阵的运算既可以是如前所述的正常的整体运算,也可以是矩阵对应的元素依次进⾏标量运算,也叫数组运算,即把矩阵看做是⼆维数组. 对矩阵进⾏数组运算后得到的结果是⼀个与参与运算的矩阵维度相同的新矩阵,.这种元素间的算术运算的前提是参与运算的两个矩阵的维数要相同.对于加法和减法,元素操作运算和矩阵运算没有差别,⽽对于乘、除和幂运算符,相应的数组运算符是在⼀般的算术运算符前⾯加上⼀个点号,如+ - .* ./ .\ .^其中,A./B 是指A中的元素除以B中相应的元素,即A./B 的第i⾏第j列的元素(A./B)ij=A ij/B ij,⽽(A.\B)ij=B ij\A ij. 这些元素运算符的使⽤例⼦如下所⽰: 在Matlab中预定义的数学标准函数,如sin(x), abs(x)等都是基于对矩阵元素的运算. 如果函数f(x)是这样的⼀个函数,A是⼀个m×n的矩阵,其元素是a ij ,那么 f(A)也是⼀个m×n的矩阵,其第i⾏第j列的元素为f(a ij),例如其中pi是Matlab的预定义变量,值为π,i也是预定义变量,表⽰复数的单位.3. 常⽤的矩阵函数 矩阵函数是指参数为矩阵的函数,函数结果可能是⼀个标量值也可能是⼀个函数或者向量. Matlab中常⽤的矩阵函数包括: (1) rank(A): 求矩阵A的秩,即A中线性⽆关的⾏数或者线性⽆关的列数. (2) det(A): 求矩阵A的⾏列式值. (3) inv(A): 如果A是⼀个⾮奇异(nonsingular)矩阵,则inv(A)返回A的逆矩阵. 另外还可以⽤左除A\eye(n)或右除eye(n)/A来计算A的逆,且在Matlab中⽤左除或右除来计算逆所花的计算时间⽐⽤inv函数要少,也⽐inv具有更好的容错性(error-detection properties). (4) dot(x,y): 求同维度的向量x和y的内积/点积. 若A和B是两个具有相同维度的矩阵,则dot(A,B)是计算A和B对应列的内积,结果是⼀个⾏向量,这个⾏向量的列数等于A或B的列数. 例如 (5) cross(x,y): 计算同维度的向量x和y的叉积,结果是⼀个向量,其⽅向由右⼿定则决定,长度等于|x|*|y|sin<x,y>. 若A和B是两个具有相同维度的矩阵,则cross(A,B)是计算A和B对应列的叉积,结果是⼀个维度与A和B相等的矩阵. (6) kron(A,B): 得到矩阵A和B的张量积. (7) isequal(A,B): 如果矩阵A和B是相同的,即具有相同的维数和相同的内容,则返回1. (8) isreal(A): 判断A是否是⼀个实矩阵,如果是则返回1,否则返回0. (9) trace(A): 计算⽅阵A的迹,即对⾓线元素之和. (10) eig(A): 计算⽅阵A的特征值,结果是⼀个列向量,向量中元素的个数等于特征值的个数,即A的维度(A的⾏数或列数). (11) [U,D]=eig(A): 计算⽅阵A的特征值和特征向量,得到两个⽅阵U和D,其中D的对⾓线元素为A的特征值,U的列向量为A的特征向量(可能是未normalize的结果),例如 (12) length(V): 求向量V的长度,即V的元素数量. (14) size(A): 若A是m⾏n列的矩阵,则返回⾏向量[m,n].。
MATLAB中的矩阵运算函数1,round函数函数简介调用格式:Y = round(X)在matlab中round也是一个四舍五入函数。
对数组A中每个元素朝最近的方向取整数部分,并返回与A同维的整数数组B,对于一个复数参量A,则分别对其实部和虚数朝最近的方向取整数部分,并返回一复数数据B。
(1)fix(x) : 截尾取整.>>fix( [3.12 -3.12])ans =3 -3(2)floor(x):不超过x 的最大整数.(高斯取整)>>floor( [3.12 -3.12])ans =3 -4(3)ceil(x) : 大于x 的最小整数>>ceil( [3.12 -3.12])ans =4 -3(4)四舍五入取整>> round(3.12 -3.12)ans =0>> round([3.12 -3.12])ans =3 -32,reshape函数:重新调整矩阵的行数、列数、维数先给上一段代码:>> a=[1 2 3;4 5 6;7 8 9;10 11 12];>> b=reshape(a,2,6);这段代码的结果是这样的:>>a1 2 34 5 67 8 910 11 12>>b1 72 83 94 105 116 12对于 b=reshape(a,m,n);其中的规律是这样的,先把矩阵a按列拆分,然后拼接成一个大小为m*n的向量。
然后对这个向量每隔m间隔取一个元素组成一个向量b_i,之后的向量b_i+1也是这样生成,只不过第一个元素往下移一位。
这样做完之后得到m个大小为n的行向量,将这些行向量拼接即可得到矩阵b。
3,取模(mod)与取余(rem)通常取模运算也叫取余运算,它们返回结果都是余数.rem和mod 唯一的区别在于:当x和y的正负号一样的时候,两个函数结果是等同的;当x和y的符号不同时,rem 函数结果的符号和x的一样,而mod和y一样。