O
P
A
B
C
D
若把上题改为:P是⊙O内一点,直线APB,CPD分别交⊙O于A、B和C、D,已知AB=CD,
结论还成立吗?
F
E
E
1.连结AB;
作法:
平分弦所对的弧
C
D
A
B
M
F
G
错在哪里?
1.作AB的垂直平分线CD
2.作AT、BT的垂直平分线EF、GH
T
E
N
H
P
强调:等分弧时一定要作弧所对的弦的垂直平分线.
作图依据:
拓展延伸:船能过拱桥吗
如图,某地有一圆弧形拱桥,桥下水面宽为7.2米,拱顶高出水面2.4米.现有一艘宽3米、船舱顶部为长方形并高出水面2米的货船要经过这里,此货船能顺利通过这座拱桥吗?
船能过拱桥吗
解:如图,用 表示桥拱, 所在圆的圆心为O,半径为Rm,经过圆心O作弦AB的垂线OD,D为垂足,与 相交于点C.根据垂径定理,D是AB的中点,C是 的中点,CD就是拱高.由题设得
5
8
4
3
2、在⊙O中,OC平分弦AB,AB = 16,OA = 10,则∠OCA = °,OC = 。
16
10
90
6
课堂练习:
7、已知:如图,⊙O中,AB为弦,OC⊥AB,OC交AB于D ,AB=6cm ,CD=1cm. 求⊙O的半径.
课堂小结: 本节课探索发现了垂径定理的推论1和推论2,并且运用推论1等分弧。 ●要分清推论1的题设和结论,即已知什么条件,可推出什么结论. 这是正确理解应用推论1的关键; ●例3是基本几何作图,会通过作弧所夹弦的垂直平分线来等分弧.能够体会转化思想在这里的运用.