1.两条弦在圆心的同侧 2.两条弦在圆心的两侧
A
●O
B
C
D
A C
B ●O
D
圆的两条平行弦所夹的弧相等.
挑战自我
驶向胜利 的彼岸
1、判断:
⑴垂直于弦的直线平分这条弦,并且平分弦所对的两条
弧.
( )
⑵平分弦所对的一条弧的直径一定平分这条弦所对的另
一条弧.
(√ )
⑶经过弦的中点的直径一定垂直于弦.( ) ⑷圆的两条弦所夹的弧相等,则这两条弦平行. ( )
合 法
垂径定理三种语言
定理 垂直于弦的直径平分弦,并且平分弦所的两条弧.
C
A M└ ●O
D
B
如图∵ CD是直径, CD⊥AB。
提示: 垂径定理是圆
∴AM=BM,
中一个重要的
A⌒C =B⌒C, A⌒D=B⌒D.
结论,三种语言 要相互转化,形 成整体,才能运
用自如.
垂径定理的推论
平分弦(不是直径)的直径垂直于弦,并且平 分弦 所对的两条弧. AB是⊙O的一条弦,且AM=BM.
CD是直径 CD⊥AB
可推得
AM=BM,
A⌒C=B⌒C, A⌒D=B⌒D.
D
垂径定理
垂直于弦的直径平分这条弦,并 且平分弦所对的两条弧。
题设
结论
} { (1)过圆心
(3)平分弦
知二得三
(4)平分弦所对的优弧
(2)垂直于弦
(5)平分弦所对的劣弧
C
已知:在⊙O中,CD是直径, AAEB是=弦BE,,CA⌒DC⊥=AB⌒BC,,垂A⌒足D=为B⌒ED。。求证:
圆也是中心对称图形. 它的对称中心就是圆心.
●O