用代入消元法解二元一次方程组的步骤:
变形
选取一个系数比较简单的二元一次方程变形,
用含一个未知数的式子表示另一个未知数.
代入
把y=ax+b (或x=ay+b) 代入另一个没有变形的方程.
求解
解消元后的一元一次方程.
回代
把求得的未知数的值代入步骤1中变形后的方程.
写解
把两个未知数的值用大括号联立起来.
当堂检测
4(x − y) − y = 5②
x = 0,
求得y=-1,从而进一步求得
y = −1,
这种方法被称为“整体代入法”.
请用这样的方法解方程组
2x − 3y − 7 = 0,
2x−3y
7
+ 2y = 9.
2x − 3y − 7 = 0, ①
2x − 3y
+ 2y = 9. ②
7
解:由第一个方程,得2x-3y=7,①
的解,那给出一个一般的二元一次方程组,我们怎么
得到它的解呢?本节课我们将学习解二元一次方程组
的方法.
新知探究
知识点:用代入法解二元一次方程组
篮球联赛中,每场都要分出胜负,每队胜 1 场得 2 分,负 1
场得 1 分. 某队 10 场比赛中得到 16 分,那么这个队胜负
场数分别是多少?
在8.1节中我们已经看到,直接设两个未知数:胜x场、负y场,可以
①
②
把③代入②,得 9x+8(3x-2)=17.
解这个方程,得 x=1.
把 x=1 代入③,得 y=3-2=1.
= 1,
所以这个方程组的解是
= 1.
新知探究
知识点:用代入法解二元一次方程组